%! TEX root = AG.tex % vim: tw=50 % 16/02/2024 12PM \begin{flashcard}[birational-map-defn] \begin{definition*}[Birational map] \glsnoundefn{bimap}{birational map}{birational maps} \glsadjdefn{birat}{birational}{map} \cloze{A \emph{birational map} is a \gls{ratmap} $f : X \ratmap Y$ with a \gls{rat} inverse $g : Y \ratmap X$ such that $f \circ g = \id_Y$ and $g \circ f = \id_X$ as \glspl{ratmap}.} \end{definition*} \end{flashcard} \begin{remark*} We can't always compose \glspl{ratmap}. Suppose given $f : X \ratmap Y$, $g : Y \ratmap Z$, $f : U \to Y$, $g : V \to Z$. If $f(U) \subseteq Y \setminus V$, we can't compose. If this is not the case, then $f^{-1}(Y \setminus V) \subsetneq U$ is a proper subset of $U$, and then $g \circ f : U \setminus f^{-1}(Y \setminus V) \to Z$ defines a \gls{ratmap} $g \circ f : X \ratmap Z$. Note the ability to compose may depend on the representative for $f, g$. \end{remark*} \begin{remark*} One can show that if $f : X \ratmap Y$ is a \gls{bimap}, then $\exists U \subseteq X$, $V \subseteq Y$ such that $f$ is defined on $U$, $f(U) \subseteq V$ and $f : U \to V$ is an \gls{isism}. \end{remark*} \begin{flashcard}[birationally-equivalent-defn] \begin{definition*}[Birationally equivalent] \glsadjdefn{biequiv}{birationally equivalent}{\glspl{vty}} \cloze{We say \glspl{vty} $X, Y$ are \emph{birationally equivalent} if there exists a \gls{bimap} $f : X \ratmap Y$. Equivalently, $\exists U \subseteq X$, $V \subseteq Y$ open subsets with $U \cong V$.} \end{definition*} \end{flashcard} \begin{example*} $\varphi : X \to \AA^n$, the \gls{blowup} of $\AA^n$ at $0 \in \AA^n$. This is a \gls{bimap} (\gls{gmorph}) since it induces an \gls{isism} $\varphi : \varphi^{-1}(\AA^n \setminus \{0\}) \to \AA^n \setminus \{0\}$. $\varphi^{-1} : \AA^n \ratmap X$ is not a \gls{gmorph}, only defined on $\AA^n \setminus \{0\}$. \end{example*} \begin{flashcard}[dominant-defn] \begin{definition*}[Dominant] \glsadjdefn{domf}{dominant}{function} \cloze{We say that $f : X \ratmap Y$ is a \emph{dominant} \gls{ratmap} if whenever $\tilde{f} : U \to Y$ is a representative for $f$, then $f(U)$ is dense in $Y$.} \end{definition*} \end{flashcard} \begin{flashcard}[function-field-vty-defn] \begin{definition*}[Function field of a variety] \glssymboldefn{gKX}{$K(X)$}{$K(X)$} \glssymboldefn{gsh}{$f^\#$}{$f^\#$} \cloze{The \emph{function field} of a \gls{vty} $X$ is \[ K(X) = \{(U, f) \st f : U \to \KK \text{ is a \gls{gregf} function}\} / \sim ,\] where $(U, f) \sim (V, g)$ if $f|_{U \cap V} = g|_{U \cap V}$. In particular, if $X$ is \gls{affvty}, then this is the field of fractions of $\cring A(X)$. If $f$ is \gls{domf}, we obtain \begin{align*} f^\# : K(Y) &\to K(X) \\ (V, \varphi) &\mapsto (f^{-1}(V) \cap U, \varphi \circ f) \end{align*} Note $f^{-1}(V) \cap U$ is non-empty since $V \cap f(U) \neq \emptyset$ by density of $f(U)$.} \end{definition*} \end{flashcard} \begin{note*} If $f : X \ratmap Y$ is a \gls{bimap}, with \gls{birat} inverse $g : Y \ratmap X$, each are \gls{domf} since they induce \glspl{isism} between open subsets. Thus we get \[ \gsh f : \gK(Y) \to \gK(X), \qquad \gsh g : \gK(X) \to \gK(Y) \] inverse maps, so $\gK(X) \cong \gK(Y)$. \end{note*} \vspace{-1em} \textbf{Fact:} If $\gK(X) \cong \gK(Y)$, then $X$ and $Y$ are \gls{birat} to each other, i.e. $\exists f : X \ratmap Y$ \gls{birat}. \begin{example*} $0 \in Y \subseteq \AA^n$, $\tilde{Y} \to Y$ the \gls{blowup} of $Y$ at $0$ is a \gls{birat} \gls{gmorph}: \begin{center} \includegraphics[width=0.6\linewidth]{images/2105f4a31c6445d6.png} \end{center} \end{example*} \newpage \section{Tangent spaces, singularities and dimension} \textbf{Recall:} Gvien an equation $f(X_1, \ldots, X_n) = 0$ in $\RR^n$, $X$ the solution set, $p \in X$, the tangent space to $X$ is the orthogonal complement to $(\nabla f)(p)$, i.e. the tangent space to $X$ at $p$ is \[ T_p X \defeq \left\{ (v_1, \ldots, v_n) \in \RR^n ~\Bigg|~ \sum_{i = 1}^n v_i \pfrac{f}{x_i}(p) = 0 \right\} .\] This is a vector subspace of $\RR^n$. \begin{flashcard}[tangent-space-defn] \begin{definition*}[Tangent space] \glsnoundefn{tspace}{tangent space}{tangent spaces} \glssymboldefn{tspace}{$T_p X$}{$T_p X$} \cloze{If $X \subseteq \AA^n$ is an \gls{affvty} with $I = \I(X) = \langle f_1, \ldots, f_r \rangle$, $f_1, \ldots, f_r \in \KK[X_1, \ldots, X_n]$, then we define, for $p \in X$ the tangent space to $X$ at $p$ by \[ T_p X = \left\{ (v_1, \ldots, v_n) \in \KK^n ~\Bigg|~ \sum_{i = 1}^n v_i \pfrac{f_j}{x_i}(f) = 0, 1 \le j \le r \right\} .\] The derivative is defined using the standard differentiation rules for polynomials.} \end{definition*} \end{flashcard} \begin{example*} $I = \langle x_2^2 - x_1^3 \rangle \subseteq \KK[x_1, x_2]$, $X = \Z(I)$, $p = (a_1, a_2)$. \begin{center} \includegraphics[width=0.6\linewidth]{images/72468e1e92e4441a.png} \end{center} \[ \tspace_p X = \{(v_1, v_2) \in \KK^2 \st v_1(-3a_1^2) + v_2(2a_2) = 0\} \] \[ \dim_{\KK} \tspace_p X = \begin{cases} 1 & p \neq (0, 0) \\ 2 & p = (0, 0) \end{cases} \] (assuming $\characteristic \KK \neq 2, 3$). \end{example*} \begin{flashcard}[dimension-of-vty-defn] \begin{definition*}[Dimension of an affine variety] \glsnoundefn{avdim}{dimension}{\gls{affvty}} \glssymboldefn{avdim}{dim $X$}{dim $X$} \cloze{Let $X \subseteq \AA^n$ be an \gls{affvty}. Then the \emph{dimension} of $X$ is \[ \dim X = \min \{\dim_{\KK} \tspace_p X \st p \in X\} .\] \glsadjdefn{sing}{singular}{at a point} We say $X$ is \emph{singular} at $p$ if $\dim_{\KK} \tspace_p X > \dim X$.} \end{definition*} \end{flashcard} \begin{flashcard}[dim-tspace-ineq-closed-lemma] \begin{lemma*} $\{p \in X \st \dim_{\KK} \tspace_p X \ge K\}$ is a closed subset of $X$. \end{lemma*} \begin{proof} \cloze{\[ \tspace_p X = \Ker \ub{\begin{pmatrix} \pfrac{f_1}{x_1} & \cdots & \pfrac{f_1}{x_n} \\ \vdots & \ddots & \vdots \\ \pfrac{f_r}{x_1} & \cdots & \pfrac{f_r}{x_n} \end{pmatrix}}_{\KK^n \to \KK^r} \] where $\I(X) = \langle f_1, \ldots, f_r \rangle$. But $\dim \Ker M + \rank M = n$ (rank-nullity). So \begin{align*} \dim \tspace_p X \ge K &\iff n - \rank \ge K \\ &\iff \rank \le n - K \end{align*} If $A$ is an $r \times n$ matrix, then $\rank(A) \ge k + 1$ if and only if there is a $(k + 1) \times (k + 1)$ submatrix of $A$ whose determinant is non-zero. So $\rank J \le n - k$ if and only if all $(n - k + 1) \times (n - k + 1)$ minors (determinants of $(n - k + 1) \times (n - k + 1)$ matrices) vanish. Thus the set: \[ \{p \in X \st \dim \tspace_p X \ge k\} = \Z(f_1, \ldots, f_r, \text{ all $(n - k + 1) \times (n - k + 1)$ minors of $J$}) .\] Hence this set is closed.} \end{proof} \end{flashcard}