%! TEX root = AG.tex % vim: tw=50 % 14/02/2024 12PM \begin{enumerate}[(1)] \item[] \begin{proof} A line through $0$ can be parametrised by $l : \AA^1 \to \AA^n$, \[ l(t) = (a_1t, \ldots, a_nt) \] for some $a_1, \ldots, a_n$ not all $0$. For $t \neq 0$, \begin{align*} \varphi^{-1}(a_1 t, \ldots, a_n t) &= ((a_1 t,\ldots, a_n t), (a_1 t : \cdots : a_n t)) \\ &= ((a_1 t, \ldots, a_n t), (a_1 : \cdots : a_n)) \end{align*} Thus the lift of $L \setminus \{0\}$ is given parametrically by $t \mapsto ((a_1 t, \ldots, a_n t), (a_1 : \cdots : a_n))$, $\AA^1 \setminus \{0\} \to \varphi^{-1}(\AA^n \setminus \{0\}) \subseteq X$. This extends to all of $\AA^1$ and also $\ol{\varphi^{-1}(L \setminus \{0\})}$ is the image of this parametrisation. \begin{center} \includegraphics[width=0.6\linewidth]{images/d3d0264dbb604fcf.png} \end{center} \end{proof} \setcounter{enumi}{3} \item $X$ is \gls{irredsub}. \begin{proof} $X = (X \setminus \varphi^{-1}(0)) \cup \varphi^{-1}(0)$. The first set being homeomorphic to $\AA^n \setminus \{0\}$, and hence is irreducible. (An open subset of an irreducible space is irreducible). But every point of $\varphi^{-1}(0)$ is in the closure of $X \setminus \varphi^{-1}(0)$, by the proof of (3), so $X \setminus \varphi^{-1}(0)$ is dense in $X$. \textbf{Claim}: If $U \subseteq X$ is a dense open set and $U$ is \gls{irredsub}, then $X$ is \gls{irredsub}. Proof: If $X = Z_1 \cup Z_2$, $Z_1, Z_2$ closed, then $U = (Z_1 \cap U) \cup (Z_2 \cap U)$, so $U = Z_1 \cap U$ say. So $U \subseteq Z_1$, so $\ol{U} \subseteq Z_1$. But $\ol{U} \subseteq Z_1$. But $\ol{U} = X$ by density of $U$. SO $Z_1 = X$. Thus the blowup $X$ is \gls{irredsub}. \end{proof} \end{enumerate} \begin{flashcard}[blowing-up-defn] \begin{definition*}[Blowing up] \glsnoundefn{blowup}{blow up}{N/A} \cloze{If $Y \subseteq \AA^n$ is a closed subvariety with $0 \in Y$, we define the \emph{blowing up} of $Y$ at $0$ to be \[ \tilde{Y} \defeq \ol{\varphi^{-1}(Y \setminus \{0\})} \subseteq X ,\] where $X = \IZ(\{x_i y_j - x_j y_i \st 1 \le i < j \le n\}) \subseteq \AA^n \times \P^{n - 1}$, $\varphi : X \to \AA^n$ is given by projection of the first $n$ coordinates.} \end{definition*} \end{flashcard} \subsubsection*{Example} Let $Y \subseteq \AA^2$ be given by \[ Y = \Z(\ub{x_2^2 - (x_1^3 + x_1^2)}_{x_2^2 - x_1^2 (x_1 + 1)}) \] $X \subseteq \AA^2 \times \P^1$, $x_1 y_2 - x_2 y_1 = 0$. Work in two coordinate patches: \[ U_1 = \{y_1 \neq 0\}, \qquad U_2 = \{y_2 \neq 0\} \] In $U_2$, we set $y_2 = 1$, and the equation for $X$ becomes $x_1 = x_2 y_1$. Then \[ \varphi^{-1}(Y) \cap U_2 = \Z(x_2^2 - (x_1^3 + x_1^2), x_1 - x_2 y_1) \subseteq \AA^2 \times \AA^1 = \AA^3 .\] This is isomorphic to \[ \Z(x_2^2 - (x_2^3 y-1^3 + x_2^2 y_1^2)) \subseteq \AA^2 .\] In terms of coordinate rings, \[ \frac{\KK[x_1, x_2, y_1]}{\langle x_2^2 - (x_1^3 + x_1^2), x_1 - y_1 x_2 \rangle} \cong \frac{\KK[x_2, y_1]}{\langle x_2^2 - (x_2^3 y_1^2 + x_2^2 y_1^2) \rangle} \] Note \[ x_2^2 - (x_2^2 y_1^2 + x_2^2 y_1^2) = x_2^2 (1 - x_2 y_1^2 - y_1^2) \] \begin{center} \includegraphics[width=0.3\linewidth]{images/fc7e7722f4e94e4a.png} \end{center} Noet $\varphi^{-1}(0) \cap U_2 = \Z(x_2)$. The blowup $\tilde{Y} \cap U_2 = \ol{\varphi^{-1}(Y \setminus \{0\})} \cap U_2$ is now given by the equation $1 - x_2 y_1^2 - y_1^2$ in $\AA^2$ ($x_2, y_1$). \begin{center} \includegraphics[width=0.6\linewidth]{images/18387955ede4437b.png} \end{center} For thoroughness, we will also consider $\tilde{Y} \cap U_1$, where $y_1 = 1$, $x_2 = x_1 y_2$, so can eliminate $x_2$ from equation to get \[ x_1^2 y_2^2 - (x_1^3 + x_1^2) = x_1^2(y_2^2 - x_1 - 1) \] $\tilde{Y} \cap U_1$ has equation $y_2^2 - x_1 - 1 = 0$. \subsubsection*{Rational maps} \begin{flashcard}[rational-map] \begin{definition*}[Rational map] \glssymboldefn{ratmap}{$\dashrightarrow$}{$\dashrightarrow$} \glsnoundefn{ratmap}{rational map}{rational maps} \glsadjdefn{rat}{rational}{map} \cloze{Let $X, Y$ be \glspl{vty}. Consider the equivalence relation on pairs $(U, f)$ where $U \subseteq X$ open, and $f : U \to Y$ a \gls{gmorph}, with $(U, f) \sim (V, g)$ if $f|_{U \cap V} = g|_{U \cap V}$. \fcscrap{\textbf{Exercise:} Check that this is an equivalence relation.} A \emph{rational map} $f : X \dashrightarrow Y$ is an equivalence class of a pair.} \end{definition*} \end{flashcard} \begin{example*} If $X$ is affine, $\varphi = \frac{f}{g} \in \K(X)$, then we have a morphism $\varphi : X \setminus \Z(g) \to \AA^1$. This defines a \glsref[ratmap]{rational} \gls{gmorph} to $\AA^1$. \end{example*}