%! TEX root = AG.tex % vim: tw=50 % 12/02/2024 12PM \begin{center} \includegraphics[width=0.6\linewidth]{images/13553c3e5f4a4fe0.png} \end{center} This suggests we define a map $\Sigma : \P^1 \times \P^1 \to \P^3$, \[ \Sigma((a : b), (c : d)) = (bd : ac : ad : bc) \] \textbf{Claim:} $\Sigma$ is a bijection with $Q = \PZ(xy - zw)$. \begin{proof} Note $(bd) \cdot (ac) - (ad) \cdot (bc) = 0$, so $\Sigma$ has image in $Q$. Injection: suppose $a, c \neq 0$, so \[ \Sigma((1 : b), (1 : d)) = (bd : 1 : d : b) \] so clearly injective on the set where $a, c \neq 0$. If $a = 0$, \[ \Sigma((0 : b), (c : d)) = (bd : 0 : 0 : bc) = (d : 0 : 0 : c) \] doesn't coincide with any of the previous points and is injective on the locus where $a = 0$. If $a = c = 0$, \[ \Sigma((0 : 1), (0 : 1)) = (1 : 0 : 0 : 0) \] If $a \neq 0$, $c = 0$, \[ \Sigma((a : b), (0 : 1)) = (b ; 0 : a : 0) \] so $\Sigma$ is injective. Surjective: Suppose $(a_0 : a_1 : a_2 : a_3) \in Q$, i.e. $a_0 a_1 - a_2 a_3 = 0$. If $a_0 \neq 0$, can take $a_0 = 1$, so $a_1 = a_2 a_3$. So \[ (a_0 : a_1 : a_2 : a_3) = (1 : a_2 a_3 : a_2 : a_3) = \Sigma((a_2 : 1), (a_3 : 1)) \] Similar arguments work in the charts where $a_1 \neq 0$, $a_2 \neq 0$ or $a_3 \neq 0$. \end{proof} \begin{moral*} $\P^1 \times \P^1$ is not a \gls{projvty}, but can be given a \gls{vty} structure by identifying it with $Q$, i.e. closed sets of $\P^1 \times \P^1$ are of the form $\Sigma^{-1}(Z)$ for $Z \subseteq Q$ closed. \textbf{Exercise:} Check this is not the product topology on $\P^1 \times \P^1$. \end{moral*} \vspace{-1em} \gls{gregf} functions on $U = \Sigma^{-1}(V)$ for $V \subseteq Q$ open, are functions on $U$ of the form $\varphi \circ \Sigma$ with $\varphi : V \to \KK$ \gls{pregf}. A generalisation: \begin{flashcard}[Segre-embedding] The \emph{Segre embedding} is the map\cloze{ \[ \Sigma : \P^n \times \P^m \to \P^{(n + 1)(m + 1) - 1} \] given by \[ \Sigma((x_0 : \cdots : x_n), (y_0 : \cdots : y_m)) = (x_i y_j)_{\substack{0 \le i \le n \\ 0 \le j \le m}} \] \begin{theorem*} $\Sigma$ is injective and its image is an algebraic variety. \end{theorem*} \vspace{-1em} Thus $\P^n \times \P^m$ acquires the structure of an algebraic variety. \begin{theorem*} If $X \subseteq \P^n$, $Y \subseteq \P^m$ are \glspl{projvty}, then $\Sigma(X, Y)$ is a \gls{projvty} in $\P^{(n + 1)(m + 1) - 1}$. \end{theorem*} \begin{moral*} This allows us to thin of $X \times Y$ as a \gls{projvty}. \end{moral*}} \end{flashcard} \begin{remark*} We can also think of the geometry of $\P^n \times \P^m$ by thinking about \emph{bihomogeneous} polynomials in $\KK[x_0, \ldots, x_n, y_0, \ldots, y_m]$, i.e. polynomials $f$ satisfying \[ f(\lambda x_0, \ldots, \lambda_n x_n, \mu y_0, \ldots, \mu y_m) = \lambda^d \mu^e f(x_0, \ldots, x_n, y_0, \ldots, y_m) .\] We say $f$ is bidegree $(d, e)$. $f = 0$ makes sense as an equation in $\P^n \times \P^m$. \end{remark*} \begin{remark*} If $X$ and $Y$ are \glsref[qprojvty]{quasi-projective}, $X \subseteq \ol{X} \subseteq \P^n$, $Y \subseteq \ol{Y} \subseteq \P^m$, then $X \times Y \subseteq \ol{X} \times \ol{Y}$ defines an open subset of $\ol{X} \times \ol{Y}$ (check!). This allows us to view $X \times Y$ as a \gls{qprojvty}. \end{remark*} \subsubsection*{Example: The blowup of $\AA^n$} By the Remark, $\AA^n \times \P^{n - 1}$ is a \gls{qprojvty}. Let \[ X = \PZ(\{x_i y_j - x_j y_i \st 1 \le i < j \le n\}) \subseteq \AA^n \times \P^{n - 1} .\] Let $\varphi : X \to \AA^n$ be given by \[ \varphi((x_1, \ldots, x_n), (y_1 : \cdots : y_n)) = (x_1, \ldots, x_n) ,\] the projection. This is a \gls{gmorph}. \textbf{Observations:} \begin{enumerate}[(1)] \item If $p \in \AA^n \setminus \{0\}$, then $\varphi^{-1}(p)$ consists of one point. \begin{proof} Let $p = (a_1, \ldots, a_n)$, say $a_1 \neq 0$. If \[ ((a_1, \ldots, a_n), (b_1 : \cdots : b_n)) \in \varphi^{-1}(p) ,\] then for $j \neq i$, $a_i b_j - a_j b_i = 0$, or $b_j = \frac{a_j}{a_i}b_i$. So $b_1, \ldots, b_n$ are completely determined up to scaling. Taking $b_i = a_i$, we see \[ \varphi^{-1}(p) = \{((a_1, \ldots, a_n), (a_1 : \cdots : a_n))\} . \qedhere \] \end{proof} Defining $\psi : \AA^n \setminus \{0\} \to X$ by $\psi(a_1, \ldots, a_n) = ((a_1, \ldots, a_n), (a_1 : \cdots : a_n))$ is an inverse to $\varphi|_{X \setminus \varphi^{-1}(0)} : X \setminus \varphi^{-1}(0) \to \AA^n \setminus \{0\}$. \item $\varphi^{-1}(0) = \{0\} \times \P^{n - 1}$ \item The points of $\varphi^{-1}(0)$ are in $1-1$ correspondence with the lines through the origin in $\AA^n$. $n = 2$ picture: \begin{center} \includegraphics[width=0.6\linewidth]{images/72632e47e5c646e8.png} \end{center} \end{enumerate}