%! TEX root = AG.tex % vim: tw=50 % 09/02/2024 12PM Still to prove that if $W \subseteq \AA^n$ is closed, then $\varphi^{-1}(W) \subseteq U = U_0$ is \gls{pclosed}. We have $W = \Z(T')$ for some set $T' \subseteq \polyA = \KK[Y_1, \ldots, Y_n]$. Then \[ \varphi^{-1}(W) = \Z(\beta(T')) \cap U \] ($\beta$ is homogenisation as mentioned earlier). Indeed, if $g \in T'$, \begin{align*} g(b_1, \ldots, b_n) = 0 &\iff \beta(g)(1, b_1, \ldots, b_n) = 0 \\ &\iff \beta(g)(\varphi^{-1}(b_1, \ldots, b_n)) = 0 \qedhere \end{align*} \end{proof} \begin{example*} $f : \P^1 \to \P^3$. \[ f(u : t)= (u^3, u^2 t, ut^2, t^3) \] which is well-defined. The image of this map is called the \emph{twisted cubic} (recall \es{1}). \textbf{Claim:} This is a projective variety. Proof: Consider the homomorphism \begin{align*} \phi : \KK[X_0, \ldots, X_3] &\to \KK[u, t] \\ X_0 &\mapsto u^3 \\ X_1 &\mapsto u^2 t \\ X_2 &\mapsto u t^2 \\ X_3 &\mapsto t^3 \end{align*} Let $I = \Ker \varphi$. If $g \in I$, then $g$ vanishes on the image of the map $f$. Thus $\Im(p) \le \IZ(I)$. Conversely, note that \[ X_0 X_3 - X_1 X_2, X_1^2 - X_0 X_2, X_2^2 - X_1 X_3 \in I .\] Let $p = (a_0 : a_1 : a_2 : a_3) \in \IZ(I)$. 4 cases: \begin{itemize} \item $a_0 \neq 0$. So take $a_0 = 1$. \[ a_3 - a_1 a_2 = 0, \qquad a_1^2 - a_2 = 0, \qquad a_2^2 - a_1 a_3 = 0 .\] Then $p = (1, a_1, a_2^2, a_1^3) = f(1 : a_1)$. Thus $p \in \Im(f)$. \end{itemize} Similarly check cases $a_1 \neq 0$, $a_2 \neq 0$ and $a_3 \neq 0$. The conclusion is $p \in \Im(f)$ in all $4$ cases, so $\Im f \supseteq \IZ(I)$. Therefore $\IZ(I) = \Im f$. Thus the twisted cubic is an \gls{Palgset} set. \end{example*} \vspace{-1em} \textbf{Exercise:} Given $X \subseteq \P^n$ an \gls{Palgset}, define its \emph{ideal} $I(X)$ to be the ideal in $S = \KK[X_1, \ldots, X_n]$ generated by \gls{homog} polynomials vanishing on $X$. Then show that $X$ is \gls{irredsub} if and only if $I(X)$ is prime. For the twisted cubic, $X = \Im(F)$, $I(X) = I = \Ker(\varphi)$. But \[ \frac{\KK[X_0, \ldots, X_3]}{\Ker \varphi} \] is a subring of the integral domain $\KK[u, t]$. Hence it is an integral domain, hence $\Ker \varphi$ is prime. Therefore $X$ is a \gls{projvty}. \begin{flashcard}[proj-regf-defn] \begin{definition*}[Projective regular function] \glsadjdefn{pregf}{regular}{function} \cloze{Let $X \subseteq \P^n$ be a \gls{projvty}. A \emph{regular function} on $U \subseteq X$ \gls{popen} is a function $f : U \to \KK$ such that for every $p \in U$, there exists an \gls{popen} neighbourhood $V \subseteq U$ of $p$ and $g, h \in S$ \gls{homog} of the same degree with $h$ nowhere vanishing on $V$, and with $f|_V = \frac{g}{h}$.} \end{definition*} \end{flashcard} \begin{flashcard}[quasi-variety-defn] \begin{definition*}[Quasi-variety] \glsnoundefn{qaffvty}{quasi-affine variety}{quasi-affine varieties} \glsnoundefn{qprojvty}{quasi-projective variety}{quasi-projective varieties} \cloze{A \emph{quasi-affine variety} is an open subset of an \gls{affvty}. A \emph{quasi-projective variety} is an open subset of a \gls{projvty}.} \end{definition*} \end{flashcard} \vspace{-1em} \glsadjdefn{gregf}{regular}{function} These types of varieties also have (the same) notion of \gls{regf} functions. \glsnoundefn{vty}{variety}{varieties} A \emph{variety} means an \glsref[affvty]{affine}, \glsref[qaffvty]{quasi-affine}, \glsref[projvty]{projective} or \glsref[qprojvty]{quasi-projective} variety. \begin{flashcard}[morphism-varieties-defn] \begin{definition*}[Morphism between varieties] \glsnoundefn{gmorph}{morphism}{morphisms} \cloze{A \emph{morphism} $\varphi : X \to Y$ between \glspl{vty} is a continuous function $\varphi$ such that $\forall V \subseteq Y$ open, $f : V \to \KK$ \gls{gregf}, $f \circ \varphi : \varphi^{-1}(U) \to \KK$ is \gls{gregf}.} \end{definition*} \end{flashcard} \begin{remark*} If $X$ is projective, then in fact \[ \OX_X(X) = \{X \to \KK \text{ \gls{gregf}}\} \] is $\KK$. Thus finding \glspl{gmorph} from a \gls{projvty} becomes much harder, and this is a lot of what Algebraic Geometry is about. \end{remark*} \subsubsection*{Example} Let $Q \subseteq \P^3$ be given by $\Z(xy - zw)$. This is a quadric surface \begin{center} \includegraphics[width=0.6\linewidth]{images/347df02ba61f4aba.png} \end{center} \textbf{Important feature:} For $(a : b) \in \P^1$, $Q$ contains the line \[ ax = bz, by = aw \] (if $a \neq 0$, can take $a = 1$, $(bz) y - z(by) = 0$, if $a = 0$, $z = 0$, $y = 0$, so $xy - zw = 0$). This gives a family of lines in $Q$ parametrized by $(a : b) \in \P^1$> We also have $ax = bw$, $by = az$ for $(a : b) \in \P^1$ contained in $Q$. If we take a line from one family and a line from the other, they meet at one point: \[ ax = bz, by = aw \] \[ cx = dw, dy = cz \] has a unique solutoin up to scaling: $(bd, ac, ad, bc)$.