%! TEX root = AG.tex % vim: tw=50 % 19/01/2024 12PM % Prerequisites: % - GRM: % - commutative rings, % - ideals % - prime ideals, maximal ideals % - fields % - Basic topology. Need to know what a % topological space is and what continuous maps % are. \subsubsection*{What is Algebraic Geometry?} Study of solution sets to systems of polynomial equations. For example: \begin{itemize} \item $\{(x, y) \in \RR^2 \st x^2 + y^2 = 1\}$ \begin{center} \includegraphics[width=0.6\linewidth]{images/42e6552d5beb4585.png} \end{center} \item $\{(x, y) \in \RR^2 \st y^2 = x^3 - x\}$ \begin{center} \begin{asy} import graph; size(5cm); real f(real x) { return sqrt(x^3 - x); } real g(real x) { return -sqrt(x^3 - x); } draw(graph(f,-1,0)); draw(graph(f,1,3)); draw(graph(g,-1,0)); draw(graph(g,1,3)); \end{asy} \end{center} % \begin{center} % \includegraphics[width=0.6\linewidth]{images/854adfa01e704a81.png} % \end{center} \end{itemize} We could look for solutions over $\CC$: \[ \{(x, y) \in \CC^2 \st y^2 = x^3 - x\} \] `Looks like' a torus with one point removed. \begin{center} \includegraphics[width=0.6\linewidth]{images/5fe4b95a19b8406a.png} \end{center} $\RR^3$: $x^2 + y^2 + z^2 = 1$ \begin{center} \includegraphics[width=0.6\linewidth]{images/b1110b9b7749439d.png} \end{center} $\{(x, y, z) \in \CC^3 \st x^3 + y^3 + z^3 = 1\} = X$. $X$ contains $27$ lines: \begin{align*} \text{9 lines} &: \begin{cases} x = -\xi^j y \\ z = \xi^k \end{cases} \\ \text{9 lines} &: \begin{cases} x = -\xi^j z \\ y = \xi^k \end{cases} \\ \text{9 lines} &: \begin{cases} y = -\xi^j z \\ x = \xi^k \end{cases} \end{align*} (where $\xi = e^{2\pi i / 4}$). \newpage \section{Affine Varieties} \subsection{Basic setup} \glssymboldefn{K}{K}{K}% Fix a field $\KK$. \begin{flashcard}[affine-n-space-defn] \begin{definition*}[Affine $n$-space] \glssymboldefn{A}{A}{A} \cloze{Affine $n$-space over $\KK$ is $\AA^n = \KK^n$.} \end{definition*} \end{flashcard} \begin{flashcard}[zero-set-defn] \begin{definition*}[Zero set] \glsnoundefn{zero_set}{zero set}{zero sets}% \glssymboldefn{Z}{$Z(S)$}{$Z(S)$} \glssymboldefn{polyA}{$A$}{$A$} \cloze{ Let $\polyA \defeq \KK[X_1, \ldots, X_n]$, $S \subset \polyA$ a subset. Define \begin{align*} Z(S) &\defeq \text{``zero set of $S$''} \\ &= \{(a_1, \ldots, a_n) \in \AA^n \st f(a_1, \ldots, a_n) = 0 ~\forall f \in S\} \end{align*}} \end{definition*} \end{flashcard} \begin{flashcard}[zero-set-topology-properties] \begin{proposition*} \glssymboldefn{cdotset}{$\cdot$}{$\cdot$} Basic properties of the zero set: \begin{enumerate}[(a)] \item \cloze{$\Z(\{0\}) = \AA^n$.} \item \cloze{$\Z(\polyA) = \emptyset$.} \item \cloze{$\Z(S_1 \cdot S_2) = \Z(S_1) \cup \Z(S_2)$ where \[ S_1 \cdot S_2 = \{f \cdot g \st f \in S_1, g \in S_2\} .\]} \item \cloze{Let $I$ be an index set and suppose for each $i \in I$, we are given $S_i \subset \polyA$. Then \[ \bigcap_{i \in I} \Z(S_i) = \Z \left( \bigcup_{i \in I} S_i \right) .\]} \end{enumerate} \end{proposition*} \end{flashcard} \begin{proof} \phantom{} \begin{enumerate}[(a)] \item Obvious \item Obvious \item If $p \in \Z(S_1) \cup \Z(S_2)$, then either $f(p) = 0 ~\forall f \in S_1$ or $g(p) = 0 ~\forall g \in S_2$. Thus $(f \cdot g)(p) = 0$ for all $f \in S_1$, $g \in S_2$. So $p \in \Z(S_1 \cdotset S_2)$. Conversely, suppose $p \in \Z(S_1 \cdotset S_2)$, and suppose $p \notin \Z(S_1)$. So there exists $f \in S_1$ with $f(p) \neq 0$. But $(f \cdot g)(p) = 0 ~\forall g \in S_2$ and $(f \cdot g)(p) = f(p) \cdot g(p)$, so $g(p) = 0 ~\forall g \in S_2$. Thus $p \in \Z(S_2)$. Thus $\Z(S_1 \cdotset S_2) \subseteq \Z(S_1) \cup \Z(S_2)$. \item If $p \in \Z(S_1) ~\forall i$, then $p \in \Z \left( \bigcup_{i \in I} S_i \right)$. Conversely, if $p \in \Z \left( \bigcup_{i \in I} S_i \right)$, then $p \in \Z(S_i) ~\forall i$, so $p \in \bigcap_{i \in I} \Z(S_i)$. \qedhere \end{enumerate} \end{proof} \textbf{Moral:} This says that sets of the form $\Z(S)$ form the closed sets of a topology on $\AA^n$ \textbf{Moral:} This says that sets of the form $\Z(S)$ form the closed sets of a topology on $\AA^n$. \begin{flashcard}[algebraic-subset-defn] \begin{definition*}[Algebraic subset] \glsadjdefn{zclosed}{Zariski closed}{set} \glsadjdefn{zzclosed}{closed}{set}% \glsadjdefn{algset}{algebraic}{set} \cloze{A subset of $\AA^n$ is \emph{algebraic} (or \emph{Zariski closed}) if it is of the form $\Z(S)$ for some $S \subset \polyA$.} \end{definition*} \end{flashcard} \begin{flashcard}[zariski-open-subset-defn] \begin{definition*}[Zariski open subset] \glsadjdefn{zopen}{Zariski open}{set}% \glsadjdefn{zzopen}{open}{set} A \emph{Zariski open subset} of $\AA^n$ is a set of the form $\AA^n \setminus \Z(S)$ for some $S \subseteq \polyA$. This defines the Zariski topology on $\AA^n$. \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item If $K = \CC$, \gls{zopen} or \glsref[zclosed]{closed} subsets are also open and closed in the ``usual'' topology. \item For any $\KK$, consider $\AA^1$, $\polyA = \KK[X]$, $S \subseteq \KK[X]$ containing a non-zero element. Then $\Z(S)$ is finite. So \gls{zclosed} sets are $\AA^1$ and all finite sets. \gls{zopen} sets are $\emptyset$ and ``co-finite sets''. \end{enumerate} \end{example*} \vspace{-1em} \textbf{Recall:} If $A$ is a commutative ring, $S \subseteq A$ a subset, the \emph{ideal generated by $S$} is the ideal $\langle S \rangle \subseteq A$ given by \begin{align*} \langle S \rangle &= \left\{ \sum_{i = 1}^q f_i g_i \st q \ge 0, f_i \in S, g_i \in A \right\} \\ &= \text{the smallest ideal of $A$ containing $S$} \end{align*} \begin{flashcard}[zero-set-equals-zero-ideal-lemma] \begin{lemma*} Let $S \subseteq \polyA = \KK[X_1, \ldots, X_n]$, $I = \langle S \rangle$. Then \[ \Z(S) = \Z(I) .\] \end{lemma*} \begin{proof} If $p \in \Z(S)$, $f_1, \ldots, f_q \in S$, $g_1, \ldots, g_q \in A$, then \[ \sum_{i = 1}^q (f_i g_i)(p) = \sum_{i = 1}^q \ub{f_i(p)}_{=0} g_i(p) = 0 .\] Thus $\Z(S) \subseteq \Z(I)$. Conversely, since $S \subseteq I$, $\Z(I) \subseteq \Z(S)$. \end{proof} \end{flashcard}