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What is Algebraic Geometry?

Study of solution sets to systems of polynomial equations.
For example:

o {(z,y) eR? |22 +94% =1}

-
%

o {(z,y) eR? | y? =23 -z}

We could look for solutions over C:
{(z,y) e C* | y* =2’ — x}

‘Looks like’ a torus with one point removed.


https://notes.ggim.me/AG#lecturelink.1

R%: 2% +y* 4+ 22 =1

{(z,y,2) € C3 | 23+ y3 + 23 =1} = X. X contains 27 lines:

— _ 7
9linesz{x &y

9 lines :
{yzﬁ’“
— _¢J
9lines:{y ]fz
r=¢£

(where & = 2™/4).



1 Affine Varieties

1.1 Basic setup

Fix a field K.

Definition (Affine n-space). Affine n-space over K is A" = K".

Definition (Zero set). Let A :=K[X7,...,X,], S C A a subset. Define

Z(S) = “zero set of S”
={(a1,...,an) € A" | f(a1,...,a,) =0Vf € S}

Proposition. Basic properties of the zero set:
(a) Z({0}) = A™.

(b) Z(A) = 0.

(c) Z(S1-S2) = Z(S1)U Z(S2) where

S1-S2={f-g|f€51,9¢€ 85}

(d) Let I be an index set and suppose for each i € I, we are given S; C A. Then

(2(S) =2 (U SZ-) :

i€l el

Proof.
(a) Obvious
(b) Obvious

(c) If p € Z(S1) U Z(S2), then either f(p) = 0 Vf € Sy or g(p) = 0 Vg € Sy. Thus
(f-g9)(p)=0forall feS1,ge S Sope Z(S;-S2).

Conversely, suppose p € Z(S - S2), and suppose p ¢ Z(S1). So there exists f € Sy
with f(p) # 0. But (f - g)(p) = 0 Vg € Sz and (f - g)(») = f(p) - 9(p), s0 g(p) =



0Vg € Ss5. Thus p € Z(SQ) Thus Z(Sl . SQ) C Z(Sl) U Z(Sg)
(d) If p e Z(Sy) Vi, thenp € Z (Uiel SZ-).

Conversely, if p € Z (Uie[ SZ-), then p € Z(S;) Vi, so p € (ic; Z(5:). O

Moral: This says that sets of the form Z(S) form the closed sets of a topology on A™

Moral: This says that sets of the form Z(S) form the closed sets of a topology on A™.

Definition (Algebraic subset). A subset of A™ is algebraic (or Zariski closed) if it
is of the form Z(S) for some S C A.

Definition (Zariski open subset). A Zariski open subset of A™ is a set of the form
A"\ Z(S) for some S C A. This defines the Zariski topology on A"™.

Example.

(1) If K = C, Zariski open or closed subsets are also open and closed in the “usual”
topology.

(2) For any K, consider A!, A = K[X], S C K[X] containing a non-zero element.
Then Z(S) is finite. So Zariski closed sets are A! and all finite sets. Zariski
open sets are () and “co-finite sets”.

Recall: If A is a commutative ring, S C A a subset, the ideal generated by S is the ideal
(S) C A given by

q
(S) = {Zfigﬂqzo,fie&giefl}

i=1

= the smallest ideal of A containing S

Lemma. Let S C A =K[Xy,...,X,], I =(S). Then
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Proof. If p e Z(S), fi,..., f4 €S, 91,-..,94 € A, then

q

> (figi)(p) = Z L) 9i(p) = 0.

i=1 ~
Thus Z(S) C Z(I).

Conversely, since S C I, Z(I) C Z(S5).

Definition (Ideal of a set). Let X C A™ be a subset. Define

I(X)={fe A=K[X1,...,Xn] | f(p) =0 Vp € X).

J

p
Remark. I(X) is an ideal: if f,g € I(X), then f+¢g € I(X). If fe€ A, g € I(X)
then f-g € I(X).

~

- J
( N
Remark. If S; C Sy C A, then Z(Sg) - Z(Sl). If X1 € Xo C A", then I(XQ) -

1(X1).
- J

Question: Given an ideal I, what is the relationship between I and I(Z(I))?

Example. I = (22) < K[X].

Z()={0y CA',  I(Z(D) = I({0}) = (X) £ L.

Definition (Radical of an ideal). Let I C A be an ideal in a commutative ring A.
The radical of I is

VI:={feA|f" el for somen > 0}.

Lemma. /7 is an ideal.

Proof. Suppose f,g € VI, say f*,g" € I. Then

ni+na+1
(f +g)n1+n2+1 — 1i <’I’L1 + ng +

=0

1 1 _ni+no+1—1i
; )f g
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For each i, either ¢ > n; or (n; +ng + 1) — i > na. So each term lies in I, hence
(f + gyttt c I Thus f+g e VI. If f € VI, g € A, then f* € I for some n, so
(fg)" €Iso fge VI O

Proposition.
(a) If X C A™ is algebraic, then
Z(I(X))=X.

(b) If I C A is an ideal, then
VI C I(Z(I)).

Proof.

(a) Since X is algebraic, X = Z(I) for some I. Certainly, I C I(X) by definition of Z
and I(X). Thus Z(I(X)) C Z(I) = X. But X C Z(I(X)) is obvious.

(b) Let f* € I. Then f™ vanishes on Z(I), and hence f vanishes on Z(I) also. So
f e I(Z(I)), hence VI C I(Z(I)). O

Theorem (Hilbert’s Nullstellensatz). Let K be an algebraically closed field. Then

VI = I(Z(I)).

Proof. Later. O

Example. K = R. [ = (X2 +Y2+1) C R[X,Y]. Then Z(I) = 0, I(Z(I)) =
RIX, Y] # VI

1.2 Irreducible Subsets

Definition (Irreducible subset). Let X be a topological space, and Z C X a closed
subset. We say Z is irreducible, if Z is non-empty, and whenever Z = Z; U Z with
Z1, 29 closed in X, then either Z = 71 or Z = Zs.




Remark. Bad notion in the Euclidean topology in C". Only irreducible sets are
points.

Example. A! is irreducible as long as K is infinite.

Definition (Affine algebraic variety). An (affine algebraic) variety in A™ is an
irreducible algebraic set.

How do we recognize irreducible algebraic sets algebraically?

Proposition. If X, Xs C A", then

I(X1 U Xp) = I(Xy) N I(X2)

Proof. Since X1, Xo C X7 U X3, we have I(Xl U X2) - I(Xl),I(XQ), SO I(Xl U X2) -
I(Xl) ﬂI(XQ)

Conversely, if f € I(X1) N I(X2), then f € I(X; U X2). O

Recall (from GRM): An ideal P C R is prime if P # R and whenever f - g € P, either
fePorgeP.

Lemma. Let P C A be a prime ideal, and let I1,...,1, C A be ideals. Suppose
P DO, I;. Then p O I; for some i. In particular, if p = (), I;, then P = I; for some
i.

Example. A =7, P = (p), p a prime number. Let I; = (n;). Then

mli = (Iem(ny,...,ng))

7

Then P D (;I; < p |lem(ni,...,ns), and the condition on the right implies
that p | n; for some i.

Proof. Suppose P 2 I; for any i. Thus we can find x; € I;, ; ¢ P. Then

n
[[zienncp,
=1
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so there exists ¢ with z; € P, a contradiction.

If P =, 1;, P C I for each i and since we know I; C P for some i, we have P = I; for
that . O

irreducible if and only if I(X) C A = K[X1,..., X,] is prime.

Proposition. Let K be algebraically closed. Then an algebraic set X C A" is |

irreducible if and only if I(X) is prime.

Proposition. Let K be algebraically closed. Then an algebraic set X C A" is |

Proof
= If f-g € I(X), then X C Z(f - g) = Z(f) U Z(g). Thus
X = (XN Z(f)U(XNZ()

By irreducibility of X we can assume X = X N Z(f), so X C Z(f), so f € I(X).

< If PC A=K[Xy,...,X,] is prime, suppose Z(P) = X; U Xy with X, X5 closed.
Then
I(X1) NI(Xs) = I(X, U Xy) = I(Z(P)) = VP.

The last equality is by Hilbert’s Nullstellensatz. But VP = P: if f* € P then
f € P by primality of P. Thus I(X;) NI(X32) = P, so by the lemma, P = I(X;)
or P = I(X3). Thus Z(P) = X; or Z(P) = X5. Thus Z(P) is irreducible and
I(Z(P)) = P. O

We now have a 1 — 1 correspondence (if K is algebraically closed):

10
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Proposition. Any algebraic set in A™ can be written as a finite union of varieties.

Proof. Let R be the set of all algebraic sets in A™ which can’t be written as a finite
union of varieties. If R # (), I claim it has a minimal element. Otherwise there exists
X1, X0, X3,... € R with

X1 D2XoD X532

SO
I(X1) CI(Xs) CI(X3) C -+ CA=K[Xy,...,Xn]
This contradicts A being Noetherian (GRM).

Let X € R be minimal. X can’t be irreducible, since then X is itself a variety. Otherwise,
we can write X = X; U Xqe with X € X, Xy C X with X, Xy algebraic. Then
X1,X5 ¢ R, hence can be written as a union of irreducible sets. So X can also be
written as a finite union of irreducibles, so X ¢ R, contradiction. O

Definition (Irreducible components). If X = X; U---U X, with X, X; algebraic,
X, irreducible and X; € X; for any ¢ # j, then we say X1, ..., X, are the irreducible
components of X.

Example.

(1) In A%, A=K[X1,Xo], X = Z(X1 - Xa) = Z(X1) U Z(X2).

(2) More generally, A = K[X1,...,X,] is a UFD. If 0 # f € A, we can write
f =11/ with f; irreducible. Since A is a UFD, (f;) is prime. Thus Z(f;) is

irreducible (assuming K is algebraically closed). Thus Z(f) = Z(f1)U---UZ(fs)
is the irreducible decomposition of Z(f).

(3) Z(X2 — X3} + X,) is irreducible.

1.3 Regular and rational functions

In Algebraic Geometry, polynomial functions are natural. Let X C A™ be an algebraic
set. f € A= K[Xy,...,X,]. This gives a function f : A" — K, (a1,...,a,) —
f(ai,...,a,) € K. Then get f|lx : X — K.

If f,g € A, and f|x = g|x, then f- vanishes on X. So f-g € I(X).

11
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So it is natural to think of A/I(X) as being the set of polynomial functions on X.

Definition (Coordinate ring). Let X C A™ be an algebraic set. The coordinate ring
of X is
AX):=A/I(X)

(sometimes written K[X]).

Definition (Regular function). Let X C A™ be an algebraic set, U C X an open
subset. A function f: U — K is regular if Vp € U, there exists an open neighbour-
hood V' C U of p and functions g, h € A(X) with h(q) # 0 for any ¢ € V and f = {

onV.

Example. Any f € A(X) defines a regular on X.

Notation. We write

Ox(U) :={f:U — K| f is regular}.

s N
Note. Ox(U) is aring if f,g € Ox(U), then f+g,f-g € Ox(U). This is also a
K-algebra.

Definition (Algebra). If A, B are rings, then an A-algebra structure on B is
the data of a ring homomorphism ¢ : A — B. This turns B into an A-module
via
a-b:=¢(a)-b
So K — Ox(U) is given by a € K being mapped to the constant function with value
. J
Reminders:

« X CA™

. AX) = AJI(X).

12
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e We defined the notion of regular function on an open subset U C X.

e Ox(U):={f:U—-K| fis regular on U}

Lemma. Ox(X) = A(X).

Proof. Later (we will prove this after proving Hilbert’s Nullstellensatz). O

Recall from GRM: Let A be an integral domain. Then the field of fractions of A (or
fraction field of A) is

{glﬁgeAg#O}/N

with 5 ~ Jgf—: if fg = f'g.

We define addition and multiplication using:
ff _fd+gf ff_ff
T T T ad T ad
g9 g 99 949 99

and we observe that this is a field since

is an inverse whenever f # 0.

Remark. If X C A" is an affine variety, then A(X)
domain. (This is because for any ring R and ideal P
domain if and only if P is prime — see GRM).

A/I(X) is an integral
R, R/P is an integral

Nl

Definition (Function field). If X C A" is a variety, its function field is K(X), the
fraction field of A(X). Elements of K(X) are called rational functions on X. Note
§ € K(X) induces a regular function on X \ Z(h).

1.4 Morphisms

13
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N
Definition (Morphism). A map f : X — Y between affine varieties is called a
morphism if:

(1) f is continuous in the induced Zariski topology on X and Y (Z C X C A" is
closed in X if and only if it is closed in A").

(2) VV C Y be an open subset, ¢ : V — K a regular function, we have that
o f:f~YV)— Kis a regular function on f~1(V).

Observation: Let f : X — Y be a morphism. Then for any ¢ € A(Y), we get
pof: X — Karegular function. Assuming K is algebraically closed, Ox (X ) = A(X), so
pof € A(X). This gives a map f# : A(Y) — A(X). This is a K-algebra homomorphism.
We first check that it is indeed a ring homomorphism:

1+ p2) = (pr+pa)o f
=p1of+p0f
= [*(p1) + [*(2)

FFp1-02) = (p-pa)o f
=(p10f) (p20f)
= f#(e1) - 7 (2)
Ay =1

Now we check multiplication by elements of K. For a € K,

fla-o)=a-f*(p)

So this is a K-algebra homomorphism.

Theorem. For K algebraically closed, there is a 1 — 1 correspondence between
morphisms f : X — Y and K-algebra homomorphisms f# : A(Y) — A(X).

Proof. We have already constructed f# from f. Suppose X C A" Y C A™. Then

K[X1,. .., X]
I(X)

K[Yi,. .., V)]

A= 1)

A(Y) =

A”QX(ﬁ%{m)YgAm—HK

Yi

fi = yi o f. Suppose given f# : A(Y) — A(X). Set f; = f7(y;) (¥, is the image of y; in
A(Y)). We now define f: X — A™ by f(p) = (f1(p),-- - fm(p))-

14



Claim: f(X)CY.
Proof: Let g € I(Y), and p € X. We need to show that g(f(p)) = 0. This will show
f(p) € Y. Consider the map
Viia
K[Y1,..., Y] = AY) = A(X)
Y=Y f;
Thus

g(Yl,...,Ym) %g(?l,...,ym) I—)g(fl,...,fm)

The right arrow uses f# being a K-algebra. The middle expression is the image of g
under quotient map, hence 0 since g € I(Y). Thus g(f(p)) = 9(f1,---, fm)(p) = 0.

Thus f(X) C Y. This completes the proof of the claim.
Note: If ¢ € A(Y), can write p = g(Y1,...,Y ) and f#(p) = g(f1,..., fm) =@ o f.
Claim: f is a morphism:

(1) f is continuous: We will show f~1(Z) is closed for Z C Y closed. Note I(Z) D I(Y),

so I[(Z) = % C A(Y) is an ideal in A(Y"). Then define

Z(fF1(Z)) ={p € X | ¢(p) = 0 Vyp € [#(I(Z))}
This is a closed subset of X since it coincides with
Z(mx (1 (1(2))))
where 7x : K[X71,...,X,] = A(X). But
Z(FPI(Z) ={pe X |¢pof=0vpel(2)}

={peX|flp) e}
=f12)

Thus f~(Z) is closed.

(2) Let U C Y be an open subset, ¢ € Oy(U). We need to show ¢ o f: f~1(U) - K
is regular. Let p € f~1(U), and let V C U be an open neighbourhood of f(p) for
which we can write f = ¥, g,h € A(Y'), h nowhere vanishing on V. Then

of _f*
oo llyon = 1ot = ey

Now f#(g), f#(h) lie in A(X), and f#(h) = ho f doesn’t vanish on f~(V). Thus
po f is regular. O

15
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lecture 5 Exercise: Check that this gives a 1 — 1 correspondence. We checked
f*e [ [,

so it remains to check that

fe e

Moral. A morphism f : A" O X — Y C A™ is given by choosing polynomial
functions f1,..., fm € K[X1,...,X,] and defining f by

flp) = (fr(p);-- -, fm(p))-

Example.
fiAl = A?
t s (t,1°)
The image of this map is Y = Z(X? —Y). This defines a morphism f : Al — Y.
Then
K[X,Y]
o K[
Xt
Y - t?

This is an isomorphism!

Definition (Isomorphism of affine varieties). Two affine varieties are isomorphic
if there exist morphisms f: X — Y, g:Y — X such that go f =idx, fog =idy.

J

Theorem. If X,Y are affine varieties, then X is isomorphic to Y if and only if
A(X) =2 A(Y) as K-algebra.

Example. A' = Z(X%2 -Y) C A%

16
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N
Remark. A K-algebra A is finitely generated if there exists a surjective K-algebra

homomorphism

K[X1,...,Xn] = A
Xﬂ—)ai

i.e. every element of A can be written as a polynomial in a, ..., a, with coefficients
in K. If I is the kernel of this map then

A2K[Xy,. .., X,/

SUppose further that A is an integral domain. Then [ is a prime ideal of K[ X7, ..., X,],

" A= A(X)

where X = Z(I).

17



2 The proof of Hilbert’s Nullstellensatz

Goal: We want to prove Hilbert’s Nullstellensatz. That is, if K is algebraically closed,
we want to show I1(Z(I)) = /1.

Definition (Transcendental). Let F'/K be a field extension. We say an element
z € F is transcendental over K if it is not algebraic, i.e. Af € K[X] with f # 0,

f(z)=0.

Definition (Algebraically independent elements). We say z1,...,z4 € F are alge-
braically independent over K if Af € K[X1,..., Xy4] with f #0, f(z1,...,2q) = 0.

N
Definition (Transcendence basis). A transcendence basis for F/Kisaset z1,...,zq €
F algebraically independent over K and such that F' is algebraic over K(z1, ..., z4).

Example. If X is a variety, K(X) is a field extension of K, and it usually has lots
of transcendentals.

K(A™) = {g | f,geK[Xl,...,Xn],wo}/fv
:K(X1>7Xn)

= field of rational functions in Xi,..., X,

X1,..., X, form a transcendence basis.

Definition (Finitely generated field extension). If F'/K is a field extension, we say
F is finitely generated over K if F' =K(zy,...,z,) for some zi,...,z, € F.

Example. K(X)/K is finitely generated. If X C A", then K(X) is the fraction
field of A(X) = K[Xy,...,X,]/I and hence K(X) is generated by the images of
X1, X,

18



Proposition. Every finitely generated field extension F/K has a transcendence
basis, and any two transcendence bases have the same number of elements.

Further, if FF = K(z1,...,2y), then there is a transcendence basis {Y1,...,Y,} C
{Zla"'va}'

Proof. Write F' = K(z1,...,2n). If 21, ..., 2, are algebraically independent, then z1, ..., 2z,
is a transcendence basis. If z1,..., 2y are algebraic over K, then the transcendence ba-
sis can be taken to be empty. Otherwise, assume {zi,...,z4} is a maximal subset of
algebraically independent elements of {z1,...,2,}. I claim z1,..., 24 is a transcendence
basis, i.e. F' is algebraic over K(z1,...,z2q). It is neough to show z; is algebraic of
K(z1,...,2q) for any j > d.

By assumption, z1,...,2q,2; are not algebraically independent, i.e. there exists f; €
K[Xl, e, Xg, Xj] such that fj(zl, . ,Zd,Zj) =0.

Write f; = ZI fji(Xl, e ,Xd)XJZ‘». Then

0# fi(z1 - za, X) = fiilz1, ., 2a) X €Kz, za)[X]

(the polynomial is non-zero since z1, ..., zq are algebraically independent). Then since
fi(#1,...,24,25) = 0, we have z; algebraic over K(z1,...,2q). Thus f is algebraic
over K(z1,...,24), S0 21,...,24 is a transcendence basis. Now suppose z1,...,2q and
wi, ..., W are both transcendence bases. Suppose d < e. First w; is algebraic over
K(z1,...,2q) since wy € F. Then there exists a polynomial f € K[Xy,..., Xy, Dg1i]
such that f(z1,...,24,w1) = 0. This is obtained by clearing denominators of a polyno-
mial g € K(z1, ..., 24)[Xas1] with g(w1) = 0. Since w; is not algebraic over K, f must
involve at least one of X1,..., Xy, say X1. Thus 2z is algebraic. So z; is algebraic over
K(wi, 22, ..., 24) (as witnessed by f). So F' is algebraic over K(wy, 22, ..., 24). Repeat:
wy is algebraic over K(wy, ..., 22,...,24) and not algebraic over K(w;). So one can find
Oneqg € K[X1,..., X4+1] such that g(ws, 22, ..., 24, w2) = 0 and further g involves one
of Xo,...,Xg: say it involves Xs5. Thus 29 is algebraic over K(wq, ws, 23, ..., 24). Con-
tinuing, eventually we find F' is algebraic over K(wy, ..., wg). But if e > d, then w, is
algebraic over K(wy,...,wy), contradicting w1, ..., we being a transcendence basis. [

Start of
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Lemma. Let M be a finitely generated A module for A a commutative ring I C A,
¢: M — M an A-module homomorphism such that

pM)CI-M=(a-m|acl,eM),

where (---) represents the submodule of M generated by those elements. Then
there exists an equation

" +ai "+ t+an=0

with a; € I. Interpretation: a; represents the homomorphism m — a;m.

Proof. Let x1,...,2, € M be a set of generators for M. Then each ¢(z;) € I - M, so
can write

n
Slzi) =) aij -
j=1
with a;; € 1, i.e.

(0ij¢ — aij)zj =0
1

n

J
¢—ay1  —aip - x1
—az1 ¢ —ax - N
Tn
Multiplying by the adjoing matrix, we get
det((05j¢ — aij))z; =0 Vj

But det(d;j¢ — a;;) is a degree n polynomial in ¢ annihiliting each x;, hence annihilating
every element in M. The leading term in ¢ is ¢" and all other coefficients involve a;;’s,
hence lie in 1. O

Integrality

Definition (Integral element). Let A C B be integral domains. An element b € B
is integral over A if f(b) = 0 for a monic polynomial f(X) € A[X]. (recall that
monic means that the leading coefficient is 1).

20
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Proposition. b € B integral over A if and only if there is a subring C C B
containing A[b] with C' a finitely generated A-module.

Proof.

= Suppose b™ + a;b" ! + .-+ a, = 0. Then since A[b] is generated as an A-module
by 1,b,b%,b%,.... Tt is also generated by 1,...,b" 1. So A[b] is ginitely generated,
and can take C' = A[b].

< If C is finitely generated, let ¢ : C' — C be given by ¢(z) = b-x. Apply the above
Lemma to the finitely generated A-module C with I = A. We get ¢" +ay¢" !+
a, =0 or b" + a;b" ! + .- + a,, acting by multiplication on C, is the zero map.
Since C' is an integral domain, we have

V' +ab” 4 +a, =0 o

Lemma 1. Let A < B be an inclusion of integral domains, and assume the fraction
field K of A is contained in B. If b € B is algebraic over K, then there exists p € A
non-zero such that pb is integral over A.

Proof. Suppose g € K[X] with g(b) = 0, g # 0. By clearing denominators, we can
assume g € A[X]. Write

9(X)=anX" + -+ ao, an # 0,a; € A.
Note
N-1

an g = (anX)" +an_1(ANX)N Tt +ay_san - (anX)V T2 4 4 agaly

This is a monic polynomial in ayX. Thus taking X = b, we thus have a monic polyno-
mial killing anb. So anb is integral over A and we take p = ay. O

Lemma 2. Let A be a UFD with fraction field K. Then if o € K is integral over
A, we have a € A.

Proof. If a € K is integral over A, write a = 7,

We have g (%) = ( for some monic polynomial g, say

with a,b having no commmon factor.

g X)=X"+a X"+ +an.
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We have

am an—l
b7+a1bn 1 + +an—0
in K. So
a4+ a1ba™  + -+ a,b” =0
in A. So b | a, so b must be a unit in A. Thus § € A. O

Lemma 3. Let A < B be integral domains, and S C B the set of all elements in B
integral over A. Then S is a subring of B.

Proof. 1f by,by € S, then A[bi] is a finitely generated A-module. Also, by is integral
over A, and hence is integral over A[by]. Thus A[b;][b2] = A[b1, b2] is a finitely generated
Albi]-module. Thus A[by, bs] -s a finitely generated A-module. Since A[by £bs|, A[b1-ba] C
Alb1, be], we have by & be, by - by € S by the proposition.

We also have 0,1 € S since A C S. O

Lemma 4 (Hilbert’s Nullstellensatz, Version 0). Let K be an algebraically closed
field, and F/K a field extension which is finitely generated as a K-algebra (i.e. 3 a
surjective K-algebra homomorphism K[X7, ..., X4] — F). Then F =K.

Proof. Suppose « € F is algebraic over K, say with irreducible polynomial f(X) € K[X].
Then f is linear since K is algebraically closed, hence of the form ¢(X — a). So a € K.

Suppose we are given a surjective map

K[X1,..., X4 = F
T,z € F

Then z1, ...,z generate F as a field extension of K. Assume z1, ..., z, form a transcen-
dence basis for F//K. Note that if F' # K, we must have e > 1. Let R = K[z1,..., 2| < F
(note that this really is a polynomial ring since z1, .. ., z. are algebraically independent).
Then w1 = zey1,...,Wq—e = zq are algebraic over L = K(z1,...,2.). Let S < F be
the set of elements of F' integral over R. S is a subring of F' by Lemma 3. By Lemma
1, there exists p1,...,dq_. € R with t; := p;w; integral over R. In particular, t; € S.
Choose 5 € K(z1,...,2¢) = L, f,g € R, with f, g relatively prime. Then g is relatively

prime to p1,...,p4_e. Here, we assume e > 1. Thus
71 nd—ei K
pl "'pd,€ q ¢ [21,...,26]
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for any ni,...,ne_q > 0. Since z1,...,zq generate F' as a K-algebra there exists ¢ €
K[X71,...,X4] such that

R ()

yoe ey
b1 Pd—e
Ze+1 Zd

7ZQ(217"‘7zd):q Zly ey Re,
g

Let m; be the highest power of X.,; appearing in ¢. Multiplying by Hj p?j clears
denominators on RHS of (x). So we have

Nd—e f

Pyt i q'(z1,. . Zest1, s te) (s5)
The RHS of (xx) lies in S as z1,...,2. € S, t1,...,t4_e € S. Thus LHS lies in S. But
LHS lies in K(z1,...,2.) and hence by Lemma 2, lies in K[z1,..., z¢|, a contradiction.
Thus e = 0, and F' is algebraic over K, so F' = K since K is algebraically closed. O
Start of
lecture 8 Theorem (Nullstellensatz I). Let K be algebraically closed. Then any maximal

ideal M C K[X1,...,X,] is of the form

M=(Xi1—-a,...,Xn—an)

for some ay,...,a, € K.

Proof. Note we have an isomorphism
K[Xy,..., X,]
<X1 —al,...,Xn —an)
X, — q;

=K

Recall M C A is a maximal ideal if and only if A/M is a field. Thus (X7 —ay,..., Xp—ay)

is a maximal ideal.

Conversely, let M C K[X1,...,X,] be a maximal ideal. Then
K[X1,..., X,
M

for some field F' which is finitely generated as a K-algebra by Xi,...,X,. Thus FF =K
by Lemma 4. We thus have an isomorphism

=F

CK[X,. ., X

. =K
L4 M
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Let a; = ¢(X;). Then
o(Xi —a;) = o(X;) —a; =a; —a; = 0.
Thus X; — a; € M for each i. So
(X1 —a1,..., X, —a,) C M.

But we have already seen that (X; — aj,..., X, — a,) is maximal, so we must in fact
have equality. O

Example. (X2 + 1) < R[X] is a maximal ideal, but (X2 + 1) # (X — a) for any
a €R.

Theorem (Nullstellensatz IT). Let K be algebraically closed, and I = (fi,..., fr) C
K[X1,...,X,]. Then either:

1) I =K[X1,...,Xy], or

(2) Z(I) # 0.

Proof. Suppose 1 ¢ I, i.e. not in case (1). Then there exists a maximal ideal M
K[X1,...,X,] with I € M. Thus Z(M) C Z(I). Then by Nullstellensatz I, M
(X1—aq,...,Xn—ay,),and hence Z(M) = {(a1,...,a,)}. So Z(M) # 0, s0 Z(I) # 0.

O N

Theorem (Nullstellensatz III). Let K be algebraically closed, I C K[X7,...,X,]
an ideal. Then

I(Z(I)) = VI.

Proof. /I C I(Z(I)) in any event.
Let g € K[X1,...,X,]. Define
V,=Z(Zg(X1,...,Xpn) — 1) C A™H!

with coordinates X1, ..., X,, Z. Projecting V, via (X1,..., Xy, 2Z) — (X1,...,X,) gives
the set

D(g) :== A"\ Z(g).
Now suppose g € I(Z(I)). Then D(g)NZ(I) = 0. If I = (f1,..., fr), consider J =
(fiy.o s fry Zg— 1) C K[X1,...,X,,Z]. Then Z(J) =0, so J = K[Xy,...,X,, Z] by
Nullstellensatz II.
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Thus we can write

1= Zhi(Xla ey X, D) fi( Xy oo X)) Fh( Xy X, 2)(9(X ., X)) Z — 1)
with h;, h € K[X1,..., X,, Z]. Substitute Z = %. We get

1
1=>"hi (Xl,...,Xn,g> fi(X1, .., Xn).

Multiplying by a high power of g clears denominators, giving:
gV =Ri(Xy,... X)) fi €1,

for some h}. Thus g" € I, so g = V1. O

Recall we need the proof of:

Proposition. If X C A" is an affine variety, then Ox(X) = A(X).

Lemma. Let f,g: X — K be regular functions on X an affine variety, and suppose
there exists open U C X non-empty with f|y = g|y. Then f = g.

Proof. Consider the map ¢ = (f,g) : X — A% This is a morphism (exercise: check
this!). Let A = {(a,a) € A’ |a € K}, A = Z(X —Y). Since ¢ is continuous, p~(A) is
closed. But U C ¢~ 1(A), and U is a dense subset of X (otherwise X =U U X \ U is a
union of two proper closed subsets, violating irreducibility of X). Thus U CU = X C
e H(A), so o HA) = X. O

Proof of Proposition. We know A(X) C Ox(X). Solet f : X — K be a regular function.

So there exists an open cover {U;} of X with f is given on U; by fly, = }%, with

gi, hi € A(X) and h; nowhere vanishing on U;. Then
Z({hi}) = 2(hs) < X\ U = X\ |JU; = 0.

Thus Z({h;}) = 0. Thus we can find e¢; € A(X) (Remark: Pull back to K[X7,...,X,]
and Nullstellensatz II to see this) such that 1 =), e;h;. Note on U; N Uj, % = }%, SO

gihj = g;h; on U; N Uj, so by the Lemma, g;h; = gjh; on X. Thus % = Z—; in K(X).
Thus we have the equality in K(X)

F=3ten) (2 = S 4() s

i
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lecture 9 Remark. In proof of previous propositions, we had a statement Z({h;}) = ), and
hence by Nullstellensatz II, 1 € ({h;}), and hence we can write 1 = > ., e;h; for I
a finite index set.
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3 Projective Varieties

Definition (P"). Let K be a field. We define
P" = (K"7'\ {(0,...,0)})/ ~
where (zg,...,2n) ~ (Axg, ..., A\x,) for any A € K* :=K\ {0}.

Alternatively, this is the set of one-dimensional sub-vector spaces of K"+1,

( N
Remark. If K = R, then P* = S/ ~, with z,, ~ —z (5" C R*"! is the unit
sphere).

- J

For arbitrary K: Consider P'. For (zq : z1) € P!, if 21 # 0, then

(xole)w(f”oﬂ)eAl

z1

(since there is a unique representative with seconc coordinate 1). The missing points are
of the form (g : 0) ~ (1:0). Thus we view P! as

Pl =A'U{(1:0)}.

=00

This is the Riemann sphere if K = C.

Now P2: for (wg : 21 : x2) € P?, if 29 # 0, then

(:cozaclza:g)w(m:xl:l)eAZ.
T2 T2

If 2o = 0, we get a point (xq : o1 : 0) € PL. Thus
P? = AU P!
where P! can be viewed as the ‘line at infinity’.

Algebraic subsets of P*? When does f(xo, ..., z,) = 0 make sense?

N
Definition (Homogeneous). f € S = Kz, ..., zy] is homogeneous if every term
of f is of the same degree, or equivalently,

fzo, ..., A\xn) = X f(zo, ..., Tn)

for some d > 0, where d is the degree of d.
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Example. z} + 7173 is homogeneous of degree 3. z3 + x? is not homogeneous.

Definition (Zero set of f in P™). If T C S is a set of homogeneous polynomials,
define
Z(T) :={(ao,...,an) € P*| f(ao,...,an) =0Vf €T}

Definition (Homogeneous ideal). An ideal I C S is homogeneous if I is generated
by homogeneous polynomials.

Definition (Zero set of ideal). For I a homogeneous ideal, we define

Z(I) ={(ao,...,a,) € P"| f(ao,...,an) =0 Vf € I homogeneous}.

Definition (Algebraic subset of P™). A subset of P" is algebraic if it is of the form
Z(T) for some T.

Example. Z(agzo + a121 + asxz) C P2 ag,a1,a2 € K. In the A2 C P? where
T9 = 1, we get the equation agxg + a1x1 + a2 = 0. If xo = 0, we get the equation
aoro + ajr; = 0, which has the solution (a1 : —ag) € P! (assuming not both ag = 0,
a1 = 0, since otherwise just have xo = 0, the line at oo)

&— ‘ML a\— oo

Exercise: Check the algebraic sets in P” form the closed sets of a topology on P™. This
is the Zariski topology on P™.
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Definition (Projective variety). A projective variety is an irreducible closed subset
of P™.

The standard open affine cover of P"

Define U; C P™ by
Ui =P"\ Z(z;),
an open subset of P". Note |J;_; U; = P". We have a bijection ¢; : U; — A", given by
Zo 57? T,
or(xg:. . iy = (,...,,...,)
€Ty X1 ZT;

(hat means this is omitted).

Proposition. With U; carrying the topology induced from P, and A" the Zariski
topology, ; is a homeomorphism.

Proof. Since ¢; is a bijection, enough to show ¢; identifies closed sets of U; with closed
sets of A". Can take ¢ = 0, ¢ = @o, U = Uy. Let S = K[Xy,...,X,], S* be the set
of homogeneous polynomials in S. Let A = K[Y1,...,Y,]. Define maps o : 8" — A,
B:A— S"by a(f(xo,...,xn)) = f(L,y1,...,Yyn). If g € A of degree e (highest degree

term is degree e), then define
X1 In
=z59—,...,—
B(9) 09 <x0 1‘0)

Remark: This is a process known as homogenisation. For example, y3 — y3 — y1 + 192
becomes

2 3
3 [ T3 xy x1 122 2 3 2
Ty —2——3——+ 5 = XpTy; — T] — TpT1 + Tox1T2.
xq Ty X0 s

under 5.

If Y C U is closed, then Y is the intersection Y N U where Y C P" is a closed subset,
which we can take to be the closure of Y. Y = Z(T) for some T C S". Let T' = o(T).
Then ¢(Y) = Z(a(T)).

Check:
#(ao an) = 0, (ag £ 0) <= f(fz(l) ZZ):()
= Gl (2.2
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lecture 10 Still to prove that if W C A" is closed, then o~ '(W) C U = Uy is closed. We have
W = Z(T") for some set 7" C A = K][Y1,...,Y,]. Then

(W) = Z(B(T") U
(8 is homogenisation as mentioned earlier). Indeed, if g € T”,

g(b1,...,by) =0 <= B(g9)(1,b1,...,b,) =0
= Bg) (@ (b, b)) =0 0

30
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Example. f:P! — P3.
flu:t) = (ud,u?t,ut? t3)

which is well-defined. The image of this map is called the twisted cubic (recall
Example Sheet 1).

Claim: This is a projective variety.
Proof: Consider the homomorphism
gb 8 K[XQ, 500 ,Xg] — K[u,t}
Xg+— u3
X1 — u2t

X2 — ut2
X3 t3

Let I = kerg. If g € I, then g vanishes on the image of the map f. Thus Im(p) <
Z(I).

Conversely, note that
XoX3 — X1 X0, X? — XoX0, X2 - X1 X3¢ I
Let p=(ag:ai:az:a3) € Z(I). 4 cases:
e ag # 0. So take ag = 1.
az —aijas =0, a% —ag =0, a% —ajaz = 0.
Then p = (1,a1,a3,a3) = f(1: a1). Thus p € Im(f).

Similarly check cases a1 # 0, az # 0 and a3 # 0. The conclusion is p € Im(f) in
all 4 cases, so Im f O Z(I). Therefore Z(I) = Im f. Thus the twisted cubic is an
algebraic set.

Exercise: Given X C P" an algebraic, define its ideal I(X) to be the ideal in S =
K[X1,...,X,] generated by homogeneous polynomials vanishing on X. Then show
that X is irreducible if and only if 7(X) is prime.

For the twisted cubic, X = Im(F), I(X) = I = ker(p). But

K[X07 ) X3]
ker ¢

is a subring of the integral domain K[u,t]. Hence it is an integral domain, hence ker ¢
is prime. Therefore X is a projective variety.
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Definition (Projective regular function). Let X C P" be a projective variety. A
reqular function on U C X open is a function f : U — K such that for every p € U,
there exists an open neighbourhood V' C U of p and g, h € S homogeneous of the

same degree with h nowhere vanishing on V', and with f|y, = £.

Definition (Quasi-variety). A quasi-affine variety is an open subset of an affine
variety.

A quasi-projective variety is an open subset of a projective variety.

These types of varieties also have (the same) notion of regular functions.

A wvariety means an affine, quasi-affine, projective or quasi-projective variety.

Definition (Morphism between varieties). A morphism ¢ : X — Y between va-
rieties is a continuous function ¢ such that YV C Y open, f : V — K regular,
fop:p 1 (U)— K is regular.

s N
Remark. If X is projective, then in fact

Ox(X)={X — K regular}
is K. Thus finding morphisms from a projective variety becomes much harder, and

this is a lot of what Algebraic Geometry is about.
- J

Example

Let Q C P2 be given by Z(xy — zw). This is a quadric surface
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Important feature: For (a:b) € P!, Q contains the line
axr = bz, by = aw

(if @ # 0, can take a = 1, (bz)y — z(by) =0, if a =0, 2 =0, y = 0, so zy — zw = 0).
This gives a family of lines in @ parametrized by (a : b) € P!> We also have az = bw,
by = az for (a : b) € P! contained in Q.

If we take a line from one family and a line from the other, they meet at one point:
ar = bz, by = aw

cx =dw,dy = cz

has a unique solutoin up to scaling: (bd, ac, ad, bc).
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//b b <~ AW
A z, (2\0‘)6(?4-

(JDJ\-' ac. a(x ‘~ EC\

This suggests we define a map ¥ : P! x P! — P3,
Y((a:b),(c:d)) = (bd: ac: ad : bc)

Claim: ¥ is a bijection with Q = Z(zy — zw).

Proof. Note (bd) - (ac) — (ad) - (bc) = 0, so ¥ has image in (). Injection: suppose a,c # 0,
S0
Y((1:5),(1:d)=(bd:1:d:b)

so clearly injective on the set where a,c # 0. If a = 0,
E((0:0),(c:d))=(bd:0:0:bc) =(d:0:0:¢)

doesn’t coincide with any of the previous points and is injective on the locus where a = 0.
Ifa=c=0,
Y((0:1),(0:1))=(1:0:0:0)

Ifa#0,¢c=0,
Y((a:0),(0:1)) =(b;0:a:0)

so % is injective.

Surjective: Suppose (ag : a1 : ag : ag) € Q, i.e. apar — azaz = 0. If ag # 0, can take
ag = 1, SO a1 = a2a3. So

(ap:ay:a2:a3)=(1l:agas:az:a3)=%((ag:1),(az:1))

Similar arguments work in the charts where a; # 0, a2 # 0 or ag # 0. O
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- N
Moral. P! x P! is not a projective variety, but can be given a variety structure by
identifying it with Q, i.e. closed sets of P! x P! are of the form ©71(Z) for Z C Q
closed.

Exercise: Check this is not the product topology on P! x P'.
L J

regular functions on U = X ~1(V) for V C @Q open, are functions on U of the form po ¥
with ¢ : V — K regular.

A generalisation:
The Segre embedding is the map

e ]P)n % ]P)m N ]P)(n+1)(m+1)fl
given by

S((wo: - n), (Yo i 2 Ym)) = (24y)) 0<i<n
0<j<m

Theorem. Y is injective and its image is an algebraic variety.

Thus P™ x P™ acquires the structure of an algebraic variety.

Theorem. If X C P" Y C P™ are projective varieties, then ¥(X,Y’) is a projective
variety in P+ (m+1)—1,

( N
Moral. This allows us to thin of X x Y as a projective variety.

L J
e N
Remark. We can also think of the geometry of P™ x P™ by thinking about biho-

mogeneous polynomials in K[xg, ..., Zn, Yo, ., Ym], i.6. polynomials f satisfying

f()‘x()a EEX) Anwna/’by& coog Mym) = Adﬂef(ona - Tnsy Yo, - - y'm)

We say f is bidegree (d,e). f = 0 makes sense as an equation in P" x P™.
- J

Remark.lf Xiand Y are quasi-projective, X < X CP',Y CY C P™ then
X XY C X xY defines an open subset of X x Y (check!). This allows us to view
X x Y as a quasi-projective variety.
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Example: The blowup of A"

By the Remark, A" x P"~! is a quasi-projective variety.

Let
X =Z({ziy; —zjyi | 1 <i<j<n}) CA" xP" L

Let ¢ : X — A™ be given by

(@1, @), (Y1t yn)) = (215, Tn),
the projection. This is a morphism.
Observations:

(1) If p € A"\ {0}, then ¢~ !(p) consists of one point.

Proof. Let p = (a1, ...,ay), say a; # 0. If

((ala ) an)7 (bl s bn)) € @_l(p)7
then for j # 1, a;b; —a;b; =0, or b; = ?szbl So by,...,b, are completely determined
up to scaling. Taking b; = a;, we see
e ) = {((a1,- - an), (a1 : - 2 an)) ) O
Defining ¢ : A"\ {0} — X by ¥(a1,...,an) = ((a1,...,ayn),(a1 : -+ : ay)) is an

inverse to ¢|x\,-1(0) : X \ ©~1(0) — A"\ {0}.

(2) ¢71(0) = {0} x P

(3) The points of ¢ ~1(0) are in 1 — 1 correspondence with the lines through the origin
in A”. n = 2 picture:
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Proof. A line through 0 can be parametrised by I : Al — A",

I(t) = (ait,. .., ant)

for some ay,...,a, not all 0. For t # 0,
o Hart,...,ant) = ((a1t,...,ant), (a1t : - : ant))
= ((a1t,...,ant), (a1 : -+ : ap))
Thus the lift of L\ {0} is given parametrically by t — ((ait,...,ant), (a1 : -+ : ay)),

A\ {0} — ¢~ 1(A™\ {0}) C X. This extends to all of Al and also p=1(L\ {0}) is
the image of this parametrisation.

X is irreducible.

Proof. X = (X \ ¢1(0)) U ~1(0). The first set being homeomorphic to A"\ {0},
and hence is irreducible. (An open subset of an irreducible space is irreducible).
But every point of ¢ ~1(0) is in the closure of X \ ¢~1(0), by the proof of (3), so
X\ ¢71(0) is dense in X.

Claim: If U C X is a dense open set and U is irreducible, then X is irreducible.

Proof: If X = Z1 U Zy, Z1, Zs closed, then U = (Z1NU)U (Z2NU),s0 U = Z1NU
say. SoU C Z1,s0 U C Z;. But U C Z;. But U = X by density of U. SO Z; = X.

Thus the blowup X is irreducible. ]
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Definition (Blowing up). If Y C A" is a closed subvariety with 0 € Y, we define
the blowing up of Y at 0 to be

¥ =5 (Y \ (0] C X,

where X = Z({zjy; —zjyi | 1 <i<j<n}) CA" xP" 1 ©:X — A" is given by
projection of the first n coordinates.

Example
Let Y C A? be given by

Y = Z(z3 — (23 + 27))

|y —
w3 —af(1+1)
X C A? x P, x1y2 — x2y1 = 0. Work in two coordinate patches:
U = {y1 # 0}, Uz = {y2 # 0}
In Us, we set yo = 1, and the equation for X becomes x1 = xoy;. Then
e X Y)NUy = Z(x3 — (23 + 27), 21 — zoy1) C A% x Al = A3,

This is isomorphic to
Z(x3 — (a3y — 1° + ajy?)) C A%,

In terms of coordinate rings,

K[l'h@,yl] ~ K[x27y1]

(@3 — (2 +21). 21 —y1za) (23 — (237 +2391))

Note

25 — (23y} + 23y7) = 23(1 — 22y} — ¥7)

Noet ¢~ 1(0) N Uy = Z(x2). The blowup Y NUs = o~ 1(Y \ {0}) N Uy is now given by the
equation 1 — zoy? — y? in A% (29,71).
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X

For thoroughness, we will also consider Y NU 1, where y; = 1, o = 21y, so can eliminate
x9 from equation to get

iy; — (@ +a3) =2t(ys — 21— 1)

Y N U, has equation ys —x —1=0.

Rational maps

Definition (Rational map).Let X, Y be varieties. Consider the equivalence relation
on pairs (U, f) where U C X open, and f : U — Y a morphism, with (U, f) ~ (V, g)
if flunv = glunv-

Exercise: Check that this is an equivalence relation.

A rational map f: X --+ Y is an equivalence class of a pair.

Example. If X is affine, p = 5 € K(X), then we have a morphism ¢ : X \ Z(g) —
A'. This defines a rational morphism to Al

Definition (Birational map). A birational map is a rational map f : X --» Y with
a rational inverse ¢ : Y --» X such that fog = idy and go f = idx as rational
maps.
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Remark. We can’t always compose rational maps. Suppose given f : X --» Y
g:Y - Z f:U—=Y, g:V = Z 1If f(U) CY\V, we can’t compose.
If this is not the case, then f~1(Y \ V) C U is a proper subset of U, and then
gof:U\ f~1(Y\V)— Z defines a rational map go f : X --» Z. Note the ability
to compose may depend on the representative for f,g.

Remark. One can show that if f : X --» Y is a birational map, then U C X,
V CY such that f is defined on U, f(U) CV and f: U — V is an isomorphism.

Definition (Birationally equivalent). We say varieties X,Y are birationally equiv-
alent if there exists a birational map f : X --» Y. Equivalently, 3U C X, V C Y
open subsets with U = V.

Example. ¢ : X — A" the blow up of A" at 0 € A™. This is a birational
map (morphism) since it induces an isomorphism ¢ : = 1(A™ \ {0}) — A"\ {0}.
¢ 1 A" -5 X is not a morphism, only defined on A"\ {0}.

Definition (Dominant). We say that f : X --» Y is a dominant rational map if
whenever f: U — Y is a representative for f, then f(U) is dense in Y.

Definition (Function field of a variety). The function field of a variety X is
K(X)={(U,f)| f:U — Kis aregular function}/ ~,

where (U, f) ~ (V,g) if flunv = glunv. In particular, if X is affine variety, then
this is the field of fractions of A(X). If f is dominant, we obtain

ffK(Y)— K(X)
Vo) = (F7H(V)NU,p0 f)

Note f~1(V)NU is non-empty since V N f(U) # @ by density of f(U).
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( I
Note. If f: X --» Y is a birational map, with birational inverse g : Y --+ X, each

are dominant since they induce isomorphisms between open subsets. Thus we get

7 K(Y)— K(X), g"  K(X) = K(Y)

inverse maps, so K(X) =2 K(Y).

- J

Fact: If K(X) = K(Y), then X and Y are birational to each other, i.e. 3f : X --» Y
birational.

Example. 0 €Y C A", Y — Y the blow up of Y at 0 is a birational morphism:

/

41



4 Tangent spaces, singularities and dimension

Recall: Gvien an equation f(Xi,...,X,) = 0 in R", X the solution set, p € X, the
tangent space to X is the orthogonal complement to (V f)(p), i.e. the tangent space to

X at pis

=1

T,X = {(vl,...,vn) eR"

This is a vector subspace of R"”.

Definition (Tangent space). If X C A" is an affine variety with I = I(X) =
(fiye s o)y f1s- oy fr € K[Xq,...,X,], then we define, for p € X the tangent space
to X at p by

T,X = {(vl,...,vn) e K"

Zvigg(f)zo,lqw}.

=1

The derivative is defined using the standard differentiation rules for polynomials.
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Example. [ = (23 — 23) C K[z1,22], X = Z(I), p = (a1, az2).

aS

T,X = {(v1,v2) € K* | v1(—3a?) + va(2az) = 0}

1 p#(0,0)

dimg T, X =
e {2 p=(0,0)

(assuming char K # 2, 3).

Definition (Dimension of an affine variety). Let X C A" be an affine variety. Then
the dimension of X is

dim X = min{dimg T, X | p € X}.

We say X is singular at p if dimg 7, X > dim X.

~

Lemma. {p € X | dimg 7T}, X > K} is a closed subset of X.

Proof.
oh ... %A
ox1 0Tn
Tp,X =ker | i :
ofr ... Ofr
o1 OTn
Kn—K”
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where I(X) = (f1,..., fr). But dimker M + rank M = n (rank-nullity). So

dimTpX > K <= n —rank > K
<— rank<n-—K
If Ais an r X n matrix, then rank(A) > k + 1 if and only if thereis a (k+ 1) x (k+1)
submatrix of A whose determinant is non-zero. So rankJ < n — k if and only if all
(n—k+1) x (n—k+ 1) minors (determinants of (n — k + 1) x (n — k + 1) matrices)
vanish. Thus the set:
{pe X |dmT,X >k} =Z(f1,...,fr, all (n —k+1) x (n — k+ 1) minors of J).

Hence this set is closed. O

Recall: p € X is singular if dimg 7, X > dim X = inf{dim 7', X }.

The above lemma tells us that the set of singular points of X is a proper closed subset.

Example. yp — 2% =0, J = (2y, —32?)

vanishes when z = y = 0.
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Example. 22 +y? — 22 =0, J = (2z, 2y, —22), vanishing at the origin.

Intrinsic characterisation of the tangent space

Let X be an affine variety. For p € X, define ¢, : A(X) — K to be the K-algebra
homomorphism given by ¢,(f) = f(p).

Definition (Derivation centred at p). A derivation centred at p is a map D :
A(X) — K such that

(1) D(f +9g) = D(f) + D(9)

(2) D(fg) = ¢p(£)D(9) + D(f)pp(g) (the RHS can also be written as f(p)D(g) +
g(p)D(f)). (Leibniz rule).

(3) D(a) =0 for a € K.

Denote Der(A(X),p) to be the set of derivations centred at p.

( I
Note. Der(A(X),p) is a K-vector space (check D; + Ds, aD are derivations if

Dy, Dy, D are derivations).
L y

Theorem. T, X = Der(A(X),p) as K-vector spaces for p € X.
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Proof. Given (v1,...,v,) € TpX, so if I(X) = (f1,..., fr), D vzafj( ) = 0 for all j.
Define

Kz, ..., x5 = Kf szjvzga{l(p)

This vanishes on elements of I(X), which are of the form f = Z;:1 g;fj for g; €
K[z1,...,2y]. Then

0 dg;
f»—)ZvZ Z(a“jj gj+aij.fj> (p) (fj(p) =0 for all j, since p € X)

-3 (wgea)
DI porst sy
J

=0

Thus we get a well-defined K-linear map

Klz1, ..., )

D, : (%)

Check easily that this is a derivation. Given D € Der(A(X),p), define v; = D(x;). By
repeated use of the Leibniz rule,

Example:

D(z122) = D(21) - 22(p) + 21(p) D(22)
= v122(p) + v2w1(p)
— 8(x1a:2) v 8(:01332)

=u o1, (p) 287362(27)

Thus D(f;) = >, vlafj( ), but f; € I(X), so D(f;) =0. Thus }_, Uz%(p) = 0 for all
j,so(vl,.. )GTX O

[ Remark. Singular points and tangent spaces are intrinsic to affine varieties. }
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~

Definition (Local ring). Let X be a variety, p € X. We define the local ring to X
at p to be

Oxp={(U, f) | U is an open neighbourhoof of p, f : U — K a regular function}/ ~

where (U, f) ~ (V,g) if flunv = gunv. This is a subring of K(X), the field of
fractions.

Example.

(1) X C A™ is an affine variety,

OX@ = {g S K(X)

gp) #0,f,g¢€ A(X)}-

(2) X CP" a projective variety. Then

-’

which is a subring of

f,gEK[xl,...,xn]/I(X),g(p);ﬁo, }

f,g homogeneous of the same degree

g homogeneous of the same degree

K(X)= {g | B f,9€K[zo,....xn] /I1(X),970 }

Remark. The definition of Ox , makes it intrinsic, i.e. not dependent on the
embedding.

-
Remark. Ox , is a ring (U, f) + (V,g) = (U NV, flunv + glunv) etc). We define
mp ={(U, f) € Ox, | f(p) = 0}.
This is an ideal, and every element of Ox ,,\ m, is invertible. Thus m,, is the unique
maximal ideal of Oy .
J

Definition (Local ring). A ring A with a unique maximal ideal is called a local
ring.
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Theorem. If X C A" is an affine variety then T X = (m,/m2)* where V* is the
dual of the K-vector space V.

Proof. Note that there is an isomorphism

O)(,p/mp — K

f= fp)

This map is surjective since constants are regular functions, and injective by definition of
my. Thus we can define the K-vector space on my/ mg by identifying K with Ox ,/my,
and

(f +mp) - (g +my) = (f - g+ my).
We will show Der(A(X),p) = (my,/m2)*. Given D € Der(A(X),p), we define

oD : mp/mf) —K

defined as follows: for f,g € A(X), g(p) #0, f(p) =0, (X \ Z(g), g) € mpOx p. Set
(ol
g g

D(f

9(p)

~—

since f(p) = 0. Note if i%, g—z € my, then

o (i) = () * e () =0

Thus ¢p(m3) = 0, so we obtain a well-defined map ¢p : my,/m2 — K.

Conversely, if given ¢ : mp/mg - K, p=(a1,...,a,) € X C A" Note z; — a; € m,, for
all 4, and we define
Dy(zi — a;) = p(z; — a;).

This is sufficient to determine D, as before. O
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Example. Suppose X = A" p =0. Then

mp/m]% = (1,...,2) (1, ..., 2,)>
—_——
QK[ml,...,zn]

(exercise).

N
Definition (Zariski tangent space). If X is any variety, and p € X, then the Zariski

tangent space to X at p is
2
TpX = (mp/my)",

where mp C Oy, is the maximal ideal.

Theorem. Any variety has an open cover by affine varieties (i.e. open subsets
isomorphic to affine varieties).

Note. If X C P" is projective, {U;N X |0 <i<n} (U; =P"\ Z(z;)) is a cover of
X by affines.

Proof. Consider the most general case where X is a quasi-projective variety, X C P".
Each U; N X is a quasi-affine variety. So enough to show each quasi-projective variety
is covered by affine varieties. Let p € X C A" Will find an affine neighbourhood of
pin X. Then X C A", the closure, is an affine variety, and Z = X \ X is closed in
X. Choose f € I(Z) with f(p) # 0. Then (f) C I(X), so Z(f) 2 Z(I(Z)) = Z, so
peEX\Z(f) CX\Z=X. But X\ Z(f) can be identified with the closed subset of
A"l given by Z(I(X),yf — 1) as in Example Sheet 1. O

e N
Remark. The definition of dimension of singular points goes through unchanged

with the Zariski tangent space.
dim X = inf{dim T, X | p € X}.

p € X is singular if dim X < dim7,X. By applying the above theorem, in fact
the set of singular points of an arbitrary variety X is closed in X. This also shows
dimension and singularity are intrinsic to X.
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Alternative definitions of dimension (we won’t prove stuff here)

Definition (Transcendence degree). If F/K is a finitely generated field extension,
then the transcendence degree of F/K, written Trdegy F' is the cardinality of any
transcendence basis.

Definition (Krull dimension of a ring). If A is a ring, the Krull dimension of A is
the largest n such that there exists a chain of prime ideals

Py,CP C---CP, CA.

Definition (Krull dimension of a topological space). If X is a topological space, the
Krull dimension of X is the largest n such that there exists a chain of irreducible
subsets

021 C---CZ, CX.

Remark. If K is algebraically closed, then dim K[z1, ..., z,] agrees with the Krull
dimension of A". If X C A™ is an affine variety, then dim A(X) equals the Krull
dimension of X (check: there exists a 1 — 1 correspondence between prime ideals of
A(X) and irreducible subsets of X).

Theorem. If X is a variety, then
dim X = Trdegy K(X) = Krull dimension of X = Krull dimension of Ox

for p € X.

Proof. “Dimension theory” — non-examinable proof.

Example. In Example Sheet 1, we showed that if X = Z(f) C A2, then the clsoed
subsets of X are X and finite subsets of X. Thus the Krull dimension of X is 1.
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5 Curves

~

Definition (Algebraic curve). An (algebraic) curve is a variety C' with dim C' = 1.

J

Definition. Let C C P" be a projective non-singular curve. We define Div C' to
be the free abelian group generated by the points of C'. This is called the group of
divisors of C.

An element of Div C' is of the form Y7 ; a;p;, a; € Z, p; € C.

Example. Consider C' = P!. An element of K(C) is the raito % where f, g

are homogeneous polynomials of the same degree. we can write

[ TLibizo — ajzy)™

g II;(djzo — cjzr)™

Ymi=d=> n;. Let P, = (a;:b;), Q; = (¢j : dj). 5 has a zero of order m; at P;

and a pole of order n; at ;. The divisors of zeroes and poles of 5 is

<§> = ZmlPZ — anQj.
i J

Definition (Principal divisor). We call a divisor D € Div C principal if it is of the
form (5) Let Prin C' C Div C be the subgroup of principal divisors and define the

class group of C to be
DivC

Uo= PrinC"’

Example. We see C1P! = Z.

Goal: Given any non-singular curve, f € K(X), want to define the order of 0 or pole
at p € X.

Lemma. Let A be aring, M a finitely generated A-module and I C A an ideal such
that I - M = M. Then there exists x € A such that x =1 (mod I) and z- M = 0.

o1



Proof. Recall if we have ¢ : M — M an A-module homomorphism with ¢(M) C IM,
then there exists a1, ..., a, € I such that

¢" +a1g" 4t a, = 0.
Take ¢ to be the identity map. So this means multiplication by
l1+a+ay+---+ay

is the zero homomorphism of M. Then taking this to be z, x =1 (mod I) and zM =
0. O

Theorem (Nakayama’s lemma). Let A be a local ring with maximal ideal m. Let
I € m be an ideal. Let M be a finitely generated A-module. Then I - M = M
implies M = 0.

Proof. There exists x € A with - M =0and z =1 (mod I), so z =1 (mod m). So
x ¢ m. But this implies z is invertible: otherwise, (x) # A and hence (x) C m. Then
M=x"1 (zM)=0. O

Corollary. Let A be a local ring with maximal ideal m, M a finitely-generated
A-module, I C m an ideal. Then if M = IM + N for a submodule N C M, we have
M=N.

Proof. Note M /N satisfies

7 M I M —|— N
N
IfM—IM%—NwegetI(%):%,so%: O
Corollary. Let A be a local ring with m its maximal ideal. Let x1,...,2, € M be
a set of elements of a finitely generated module M such that the images T1,...,T, €
M /mM form a basis for M /mM as an A/m-vector space. Then z1,...,z, generate
M as an A-module.
( I

Remark. A/m is a field since m is maximal. Further, M/mM is a vector space
over A/m via

(a+m)(a+mM) = aa+mM,
which is well-defined.

. J
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Proof. Let N C M be the submodule of M generated by x1,...,2,. Then the compo-

sition
N — M — M/mM
is surjective. Thus M = N +mM. So by the previous Corollary, M = N. O
Start of
lecture 17 Corollary. Let C' C P" be a non-singular projective curve. Then m, C O¢,, is a

principal ideal.

Proof. We begin by proving O¢, is Noetherian. Replace C' by an open affine neighbour-
hood of p € C, C'. This does not change Oc¢y, i.e. Ocyp = O¢rp. Then

Ocry={ 1 | f.9e aen =l c e,

It J g OC’,p, then
J = {Z ’ feA)NJgeAC),q(p) # 0)} C Ocry.

Prove C: if f/g € J, then g- (g) —feJ, sofeAC)NJ. Prove 2: if f € A(C')N J,
then £ =1. e s (if g(p) #=0).

Now K[z, ..., xy] is Noetherian by Hilbert’s basis theorem. Hence A(C") = Kz, ..., x,]/I(C")
is Noetherian. Hence A(C’)N.J is finitely generated, and by the equation for J, the set of
generators of A(C”) generate J as an ideal in O¢r . Since C'is non-singular of dimension
1

Y

1=dimT,C = dim(mp/mg)*.

Also, O¢p/my = K, f+mp — f(p). Thus m,/ m% is a 1-dimensional vector space over
Oc¢,p/myp, hence by the previous Corollorary to Nakayama’s lemma, m, is generated
by the lift of a 1 element basis of m,/ m%. Thus m,, is principal (we need m,, finitely
generated here!). O
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-

Remark. Let t € m;, be a generator. We get a chain of ideals
- C (%) € (%) S () = myp C Ocyp.

Notice if (t+1) = (#*), then m,, - (t*) = (t*). But then Nakayama’s lemma tells us
that (tF) = 0. But t* # 0 since O¢,, is an integral domain.

Also, consider I = (7, (tF). Clearly t-I =1I,s0m,-I=1,so0 I =0.

Consequence: If f € O¢,;,\ {0}, then there exists a unique v > 0 such that f € (¥)
but f ¢ (t“*1). Define v : Ocy \ {0} — Z by v(f) = v as above.

Remark.
e v(f-g)=v(f)+v(g).
o U(f + g) 2€ {v(f), v(g)} with equality if v(f) # ().
Can extend v to a map
v K(C)\ {0} = K(C)* > Z
by
o (L) = vt - vio.

g

v is an example of a discrete valuation.

Definition (Discrete valuation). Let K be a field. A discrete valuation on K is a
function v : K* — Z such that

(1) v(f-g)=v(f)+v(g).

(2) v(f +g) > min{v(f), v(g)} with equality if v(f) # v(g).

o4



Definition (Discrete valuation ring). Given a discrete valuation, we define the
corresponding discrete valuation ring (DVR) by

R={feK"|v(f)=0}u{0}
which is a subring of K. We also define
m={fe K" |v(f) 21}U{0}.

Note m is the unique maximal ideal of R: if f € R\m, then v(f) =0, s0v(f~1) =0,
so f~!' €R.

Example.
(1) R=0¢y, C K = K(C). v the discrete valuation we defined.

(2) Let p € Z be prime, K = Q. Any rational number can be written as {p” with
(a,p) =1, (byp) = 1. Then define

o (37) =

This is a discrete valuation, with discrete valuation ring

Z(p)z{%EQ“?J[b}.

(((e-arl) =

where f, g are relatively prime to x —a. Here the discrete valuation ring is Oy1 ,.

(3) K =K(z), a € K. Define

(4) Let K = K(x),
v <f) =degg — deg f.
g
This is the “order of 0 at oo™
Setup: C C P" a projective non-singular curve. Each point p € C gives a discrete

valuation v, : K(C)* — Z with discrete valuation ring O¢ . For f € K(C)*, we define
the divisor of zeroes and poles of f to be

(f) = Z vp(f)p

peC
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Next time: need to check that this is a finite sum!

Let C be a projective non-singular curve.

Definition (Divisor of zeroes and poles). For f € K(C)\ {0}, the divisor of zeroes

and poles of f is
(F) = _wlf)»

peC

s N
Remark. Note f is represented on some open subset U C C' by %, g, h homogeneous

polynomials. We shrink U by removing Z(g), Z(h). Now, if pe U, f = { € O¢, is
a regular function with f(p) # 0, so vp(f) = 0. Thus the sum defining (f) is a sum
over points of C'\ U, which is a finite set.

(Here we use dim C' = 1, so that irreducible sets are C' and singleton sets).
L J

Definition (Group of principal divisors). The group of principal divisors on C is

PrinC = {(f) | f € K(C)\ {0}}.

This is a subgroup since:

« (fr9) =)+

Definition (Divisor class group). The (divisor) class group is

DivC
PrinC’

ClC =

Definition (Linearly equivalent). If D, D" € DivC satisfy D — D’ = (f) for some
f € K(C)*, then we say D is linearly equivalent to D', and write

D~ D.

J

Digression: Extending morphisms to projective space. C' a projective non-singular
curve, ) # U C C an open subset. fo, ..., f, regular functions on U without a common
Zero.

o6
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Then we obtian a morphism

f:U—=P"
p= (fop) i1 fu(p))

Theorem. f:U — P" extends to a morphism f: C — P".

Proof. Suppose either f; has a pole at p € C (i.e. vp(fi) < 0) or all f; are zero at p. Let
m = min{v,(f;) | 0 <i < n}.

Let t be a local parameter at p, i.e. a generator of m, C Ocyp. So v,(t) = 1. Then
vp(t™" fi) = vp(fi) — m. Thus vp(t™™f;) = 0 for some ¢ and v, (7™ f;) > 0. Thus
™" fo,...,t7" fn € O¢,p, and these functions don’t simultaneously vanish at p. Hence
in some neighbourhood V' of p, we obtain a morphism f, : V. — P" given by ¢q
(™™ fo)(p) = -+ : (t7™fn)(p)). This agrees with f on U NV by rescaling. O

Proposition. Let f : X — Y be a non-constant morphism between projective
non-singular curves. Then

(1) f~%(q) is a finite set for all ¢ € Y’

(2) f induces an inclusion K(Y) < K(X) such that [K(X) : K(Y)] is finite. We
call [K(X): K(Y)] the degree of f.

Proof.

(1) f7'(q) € X is closed, and since dim X = 1, either f~1(q) is finite, or f~1(¢q) = X.
The latter contradicts f being non-constant.

(2) If ¢ € K(Y), then ¢ defines a regular function on some open U C Y. ¢ : U — K.
o f makes sense provided f(X) € Y\U. But f(X) is irreducible (point set topology
exercise), so f is constant if f(X) C Y \ U. Thus ¢ o f makes sense as a rational
function on X. Thus K(Y) — K(X) exists and is automatically an injection since
both are fields. Omit proof of finiteness. O
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N
Definition (Degree of ramification). Suppose f : X — Y is a non-constant mor-
phism between projective non-singular curves. Let p € Y, my, = (t) C Oy, t a local
parameter. Let ¢ € f~!(p). Then to f € Ox,,. Define

eq i=14(to f),

the degree of ramification of f at q.

Theorem. Let f : X — Y anon-constant morphism between projective non-singular
curves. Then for p € Y,
Z eq = deg f

q€f~(p)

is the degree of f.

Proof. Omitted, but the theorem statement is crucial. O

Example.

(1) charK # 2, f : P — P! (u,v) — (u? : v?). Setting v = 1, this gives a
morphism A! — A! given by u+— u?. If p € A', t = u — p is a local parameter
at p. tof =u?—p= (u—q)(u+q) where ¢> = p. Then e¢; = e_, = 1. We have
degf=eq+e_4=2.

(2) If p =0, f~1(p) = {0}, eo = p(u?) = 2. Function fields, K(P') = K(u),
K(u) — K(y), u + u? degree 2.

(3) charK=p, f: P! - Pl (u:v) = (uP:0P). Set v =1, u— uP. f~1(q) = {r}
with 7 = ¢, ¢ € A'. Thent =u —q. tof=uP —q= (u—r)P.

Application: Let X be a projective non-singular curve, f € K(X)*. This gives a
morphism U — P! where U is the open set in which f is singular. This extends to
f: C — P! non-constant as long as f ¢ K.

Let C be a projective non-singular curve, and f € K(C)*. f:C — P! pws (f(p) : 1),
or writing f = %, g, h homogeneous polynomials of the same degree, then f : C — P!,
p+ (g(p) : h(p)).

o8
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Then

(f) = Z Epp — Z €q4-

pES~1((0:1)) q€f~1((1:0))
Thus, if we define
deg Z app - Z apu
peC peC

then deg(f) = deg f — deg f = 0. Thus every principal divisor is degree 0.

Thus the homomorphism deg : DivC — Z descends to deg : C1C — Z, and this is
surjective as degp = 1.

Linear systems

Definition (Effective divisor). Let D € DivC, D = ). n;p;. We say D is effective
if n; > 0 for all ¢. Define

L(D)={fe€ K(C)|D+(f) is effective} U {0}.

Lemma. £(D) is a vector space.

Proof. f € L(D) implies c¢f € L(D) for ¢ € K, ¢ # 0, since (f) = (cf) = (¢) + (f). If
fyg € L(D), f,g non-zero, f + g # 0, then

(f+9)=> vp(f+a)p

and vp(f + ¢g) > min{v,(f),vp(g)}. Thus if D + (f), D + (g) are effective, then so is
D+ (f+g). O

Theorem. L£(D) is a finite dimensional vector space and £(0) = K. Furthermore,
dimg £(D) < deg D + 1.

Proof. Induction on deg D. If deg D < 0, then there are no effective divisors linearly
equivalent to D, so £(D) = 0. Suppose deg D > 0, write D = ) n;p; and pick
p € C\{p1,...,pn}. Consider the map

A: L(D) =K, f= fp).
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which makes sense since v,(f) > 0 for f € L£(D), since otherwise the coefficient of p in
D+(f) is negative. If f € ker A, then f € m;, C O¢p, so vp(f) > 1. Thus f € L(D—P).
Note also £L(D — D) C L(D), since if D — P + (f) is effective then so is D — (f). Thus
L(D — P) = ker\, and 7325 C K. Thus dimg £(D) < dim £(D — P) + 1. Thus by
induction, dimg £(D) < deg D + 1.

Thus dim £(0) < 1, but K C £(D) since 0+ (¢) = 0. So dim £(0) = 1. O

Remark. £(0) = {f : C — Kregular}, and hence regular functions on C are
constant.

N
Definition (Complete linear system). Given a divisor D, we define the complete
linear system associated to D to be

|D| = {D’ € DivC | D' effective, D' ~ D}

_LD)\ {0} T

~

= P(L(D))

a projective space.

Morphisms to projective space

Let D be a divisor, fo,...,fn € L(D) with not all f; being 0. This gives a morphism
f:C =P p— (folp):-: fulp)).

~

Definition (f*H). Let f : C' — P" be a morphism. Let H C P"™ be a hyperplane
with f(C) € H. We define f*H € Div X as follows. Let H = Z(p) with ¢ a linear

homogeneous polynomial and choose ¢ linear homogeneous so that H' = Z(1)
satisfies f~1(H) N f~1(H') = (. Define

fH= Y up@of)p

pEf~(H)
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Remark. This is independent of the choice of . For example

o oY

TRV

Relations to morphisms

Let fo,..., fn € L(D) to have the properties:
(1) The f; aren’t all 0.
(2) ¥p e C, 3ao,...,a, € Ksuch that the coefficient of p in D + (>°, a;f;) is 0.

As above, we get a morphism f : C — P". Let H C P" be given by an equation
Zi a;x; = 0.

Theorem. f*H =D+ (>, a;fi).

Proof. Let p € f~Y(H). Suppose the coefficient of p in D is 0. Let ¢ = >, a;x;. Let
bo,...,b, be such that p ¢ Z(>", bjx;). Let ¢» = >, bjx;. Then the coefficient of p in

f*H is
¥
vp| =of
(544)
Necessarily, fo, ..., fn do not have a pole at p, since otherwise D + (f;) has a negative
coefficient for p. Thus, fy,..., f, are regular on a neighbourhood of p, so we can write
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f="(fo:...: fn) in this neighbourhood. Now

' Zz aifi)
12 — O =V = a; T:
(Fer) o (857) o (Do
since ), b; f; is non-vanishing and regular at p. But v, (3_, a; fi) is the coefficient of p in
D+ (>, aifi). If p appears in D with coefficient m< then

Vp (Z bifi) > —m

for any by, ...,b, € K. There is also some choice of by, ..., b, with v, (>, bifi) = —m
by assumption (2). In a neighbourhood of p, the morphism f is given by

f=@"fo:t"fp)

where t is a local parameter at p. The coefficient of p in f*H is

Vp % =) (Zaitmfi> =m+vp (Za’ﬂ) '

—_———

vp=0
which is the coefficient of p in D + (3", aif;). Thus f*H = D + (>, ai fi). O

Picture so far: fo,..., f, span a subspace V' C L(D). This gives a linear subspace

p-Y I\KfO} _ B(V) C |D| = P(L(D)).

We call D the linear system.

Definition (Support of a divisor). For a divisor D = Y_!" | a;p; with a; # 0, we
define the support of D to be Supp(D) = {p1,...,pn}

Definition (Base-point free). We say D = P(V) is base-point free if Vp € C,
3D’ € D (where we identify [f] € D with D + (f)) with p ¢ Supp D’.

J

(This is assumption (2): Vp € C, there exists by,...,b, such that p ¢ Supp(D +

(22 0ifi)))-
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In this case, the theorem applies, and we obtain f : C'— P™ with the property that
D= {f*H | HC P" hyperplane}.

Converse: Suppose f : L — P" is a morphism. Set D = f*Z(xg). (Assume f(C) C
Z(x0)). Let fi € K(C) be given by

€1
Tiziofv
Zo

a rational function on C' which is regular on C'\ f~1(Z(x¢)). Then f = (fo: f1: - : fn)
on C'\ f~1(Z(z0)) and hence f is induced by the linear system D C |D|, D = P(V) with
V spanned by fo,..., fn € L(D).

By the previous theorem, f*Z(>", a;x;) = D+ (>, aifi;) € D. Note D is base-point free,
since given p € C, can find a hyperplane H C P with f(p) ¢ H, so p ¢ Supp f*H, while
f*H € D.

Remark. If f : C' — P" is an embedding, then f*H can be viewed as “H N C' iwth
multiplicaion”, and

D={HnNC |H CP" hyperplane}.

Remark. Can also pull-back hypersurfaces H C P", with H = Z(p), ¢ a homoge-
neous polynomial of degree d, as follows. For p € f~(H), choose a homogeneous
polynomial 1) which doesn’t vanish at f(p) and take the coefficient of p in f*H to

be
Vp <;’Zof>

Definition (Degree of a curve morphism). Let f : C'— P" be a morphism, L C P"
a hyperplane, f(C) € L. The degree of f is the degree of the divisor f*L. This is
well-defined since f*L, f*L’ are linearly equivalent and linearly equivalent divisors
have the same defgree.

Example. Let f : C — P? identify C' with Z(yp) where ¢ has degree d. In this
case, the degree of f is d. (Check this: need to compare coefficients in f*L with the
multiplicativity of zeroes of ¢|r).
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Theorem. Let f : C — P" be a morphism. H C P" a hypersurface with f(C) Z H.
H = Z(p). degyp = e. Then deg f*H = (deg f) - e.

2

Proof. Choose some z; such that f(C) € Z(x;). Then £ is a rational function in P"
C) = 0. Then

and % o f is a rational function on C. Assume HNLN f

(5o)- 5 w(5-0 5, (30

! pEf~H(H) ! pEf~H(L)
= f*H —ef*L
Since the degree of a principal divisor is 0, we get deg f*H = e -deg f*L. O
( I

Remark. This is known as Bézout’s Theorem. This is usually expressed as follows:

Let C,C’" C P? be curves of degrees d and e respectively. Then the number of points
in CNC’ (assuming C' # C') “counted with multiplicities” is d - e.

For example, if C' is non-singular, f : C < P? an embedding, then d = deg f and
deg f*C" =d-e. Soif p € C N, its multiplicity is the coefficient of p in f*C’. If

C is singular, need a more subtle definition of multiplicity.
N\ J

In general, given a divisor D on a projective non-singular curve C, we would like to
understand when |D| induces an embedding C' in projective space.

In other words, suppose |D| is base-point free, i.e. Vp € C, there exists D’ € |D| with
p ¢ Supp D’. Then by choosing fo, ..., fn, € L(D) spanning £(D), we obtain a morphism
f=(-:fn): C— P" When is this an embedding? We can alsu use a sub-linear
system D =P(V) C |D| =P(L(D)) and choose fo, ..., fn € V a spanning set.

Theorem. Suppose a linear system D C |D| is base-point free. Then the induced
morphism f : C — P™ is an embedding if and only if

(1) D separates points: i.e. VP, Q € C distinct, there exists a D’ € D such that
P € Supp D' and @ ¢ Supp D’. (This is equivalent to injectivity of f).

(2) D separates vectors: i.e. VP € C, 3D’ € D such that the coefficient of P in D’
is 1.
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T
MO ﬂ7

/%

.
Definition (Very ample divisor). We say a divisor D is very ample if |D| induces
an embedding into some projective space.

Theorem. D is very ample if VP, Q) € C, not necessarily distinct, we have

dim |D — P — Q| = dim |D| — 2.

Proof. Recall dim |D| = dim £(D) — 1. For any P € C, we have a map £(D) — K. This
is constructed as follows. Suppose the coefficient of P in D is n. Then if f € £(D), then
vp(t" - f) =n+wv,(f) >0, where t is a local parameter at p. So t" - f € Ocy. Thus we
define

evp: L(D) - K
f= (- f)p)
If f € ker(evy), we have vp(t" - f) > 1, so v,(f) > —n. Hence the coefficient of p in
D = (f) is at least 1. Thus (D — p) + (f) is effective, so f € L(D — P). Conversely,
if f e L(D—P), (D — P)+ (f) is effective, so vp(f) > —n+1, so vp(t" - f) > 1, so
f € ker(ev,). Thus L(D — P) = kerev,. If |D| is base-point free, then ev, : £L(D) = K
is surjective Vp and conversely. So

dim|D — P|=dim £(D — P) — 1 = dim £(D) — 2 = dim |D| — 1

for all p if and only if |D| is base-point free. Now |D| separates points and tangent
vectors if and only if |D — P| is base-point free Vp € C. Indeed, if D' € |D — P| does
not have @ in its support, then D’ + P separatest P and Q if Q # P. If P = @, and
P ¢ Supp D', then D’ 4+ P has coefficient 1 for P. Now

dim|D—P—Q|=dim|D—P|=1

if and only if |D — P| is base-point free so |D| is very ample and base-point free if and
only if
dim|D—-P—-Q|=dim|D — P|—1=dim|D| —2 VP, Q. O
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[ Moral. If we can control dim £(D), then we know a lot about embeddings.
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6 Differentials and the Riemann-Roch Theorem

Definition (Q2p/4). Let B be a ring and A C B a subring. We define

free B-module generated by symbols db for b € B

9] =
B/A submodule R of relations

where R is the submodule with generators:

d(bb') — bdb' — b'db Vb, b € B
d(b+1b") —db—db vb, b € B
da Va € A

Example. Qgp,j/x For f € Kz], df = f'(z)dz. Thus Qg is the free Kz]-
module with one generator dx.

Similarly Qg /x, f € K(z), df = f'(z)dz. Thus Qg(,)/k is the 1-dimensional
vector space over K(z) with basis dz.

Proposition. If L/K is a separable algebraic field extension, then Qy,/x = 0.

A field extension L/K is separable algebraic if everything in L is a solution to some
irreducible polynomial equation f(z) = 0 with f(a) € K[X], and f'(a) # 0, ie. a is
not a multiple root.

Proof. Given a € L, f(z) € K[z] with f(a) = 0, f'(a) # 0, then 0 = f(«) implies
0=d(f(e)) = f(a)da, so da = 0 since f'(a) # 0. O

Lemma. Let C be a curve, p € C, and t a local parameter for C' at p. Then

Qx o)k = K(C)dt.

Proof. t local parameter implies ¢ is not a constant function, and hence defines a non-
constant map t : C — P!, inducing a finite field extension K (P!) = K(t) — K(C). This
extension is separable (proof omitted, not required if char K = 0. The idea is that if the
extension is not separable, then charK | eq for all Q € C. However, since t is a local
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parameter at p, e, = 1). If « € K(C), then there exists f € K(¢)[z] such that f(«) =0,
1 (@) = 0. Write

fle)=>_ fi(t)a’

>0
for some f(t) € K(t). Then

0=d(f(a)) =d (Z ﬁ-(t)o/’)

1>0

= | A | df + | D ifi)a " | da

i>0 i>

—/(@)#0
Thus we can solve for da, getting da = gdt € K(C)dt. O

Definition (v(w)). Let C be a projective non-singular curve, w € Qg )k, p € C.
We define vp(w) as follows. Let ¢t € O¢,, a local parameter and write w = fdt for
f € K(C). Define

vp(w) = vp(f).
We define div(w) = 3 o vp(w)p € DivC. We say w is regular at p if vp(w) > 0.

Lemma.
(1) feOcp, = vp(df) >0.

(2) If ¢ is another local parameter at p, then v,(dt’) = 0 and v,(fdt") = v, (f) +
vp(dt’) is independent of ¢.

(3) If f € K(C) and v,(f) # 0 in K (i.e., char K | vp(f)) then v,(df) = vp(f) — 1.

Proof.

(1) Let pe C CP*, p e CNU;, where U; = P*\ Z(x;). Work on U; N C, where rational
functions are just ratios of polynomials. If f = g/h, h(p) # 0, we have

_hdg — gdh

S Z yid;

df

with v; € O¢yp. So

vp(df) > min{vp(ydz;)1 <i <n} > min{y,(dz;) | 1 <i < n}.
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Thus vp(df) is bounded below independently of f. Choose f € Oc, such that
vp(df) is minimal, ¢ a local parameter at p € C. Then v,(f — f(p)) > 1, so can write

f— f(p) =tfi, for some f1 € Oc,p. So

df =d(f - f(»))
=d(ft1)
= fidt +tdfy (*)

If vp(df) < 0, note vp,(fi1dt) > 0, and hence (x) implies
vp(df) = vp(tdfi) = vp(t) + vp(dfi) =1+ vp(df1).
So vp(dfi) < vp(df). This contradicts the minimality of v,(df). Thus v,(df) > 0.

(2) We may write ¢’ = u - ¢ for u a unit, u € OF, (the group of units). Then dt’ =
udt + tdu. du = g - dt for some g with vp(g) > 0 by (1). So

dt’ = (u+ tg) dt,
——

vp=0
so vp(dt’) = 0 by definition. If fdt = hdt’ = h(u + tg)dt, then
vp(h(u+tg)) = vp(h) + vp(u+tg) = vp(h).
Hence v, is independent of choice of ¢.

3) Suppose f = t"u where n = v ,u € OF . Then df = nt" tudt + t"du. If
p C,p
char K 1 n, then

vp(f) > min{v,(nt" tudt), "du} = min{n — 1,n} =n -1

and equality holds since n # n — 1. Thus v,(df) = v, (f) — 1. O

Proposition. If w € Qg (o /k, then v,(w) = 0 for all but a finite number of p.

Proof. Omitted. O

Thus div(w) € Div(C).

Start of

lecture 23 Proposition. Let w,w’ € Qg (¢y/x. Then div(w) and div(w’) are linearly equivalent.
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Proof. For t a local parameter at some point p € C, w = fdt, w’ = f'dt, then w = fT/ ‘W
Then

div(w) = div(w') + ("?) : O

Definition (Canonical class). The canonical class of a projective non-singular curve
C is the linear equivalence class of divw in C1C, for any 0 # w € Qg (c)/x. We
write the canonical class as K¢.

Definition (Genus). The genus of C' is dimg L£(K(¢).

If K = C and we use the Euclidean topology rather than the Zariski topology, then
this is the usual notion of genus!

Example. C = P!, K(C) = K(t), t = m9/x1. Note when z; = 1, t = pg is a local
parameter for C' at po = (po : 1) € PL. Thus dt = d(t — po) and v, (d(t — pg)) = 0.
Thus v, (dt) = 0 for all pg € PL\ Z(x;). At t = oo, look at Al = P\ Z(zy), so
s = x1/x0 is a local parameter at ¢ = (1:0). Note t = s~ !, so

ds

52

dt =d(1/s) =
so v4(dt) = —2. So K¢ ~ —2q where ~ means linearly equivalent. Thus L(K¢) =

L(—2q) = 0. Thus
9(C) =dim L(K¢) = 0.
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Example. Plane cubic
v = (z = M)z — Ao)(z — A3)

in A2 or
Y2z = (x — M2)(x — Ao2)(z — A32)

A1, A2, A3 € K distinct. w = df, 2ydy = f'(z)dzx.

SO
2dy dj

Fle) oy
In fact, div(w) = 0. Hardest part: ¢ = (0: 1:0). Thus K¢ ~ 0, and L(K¢) = £(0),
so g(C) = dim £(0) = 1.

Theorem (Riemann-Roch Theorem). Write (D) := dimg £(D) for D € Div(C).
Then
I(D)—l(Kc—D)=degD+1—g

where g is the genus of C.

Proof. Omitted. This is far beyond the scope of this course; this theorem is not even

proved in part III. O

Consequences:

(1) f D=0then (D)=1,801—I(K¢)=0+1—gor l(K¢) =g, the definition of g.
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(2) If D = K¢, then
(Kc)—1(0)=degKc+1—g
—_———

So‘dech :29—2‘.

(3) If deg D > 2g — 2, then deg K¢ — D = 2g — 2 — deg D, 0. Thus (K¢ — D) =0 and

(D) = degD+1—g].

Remark. For 0 < deg D < 2g — 2, behaviour of [(D) can be complicated and
unpredictable.

(4) If deg D > 2g, then VP, Q € C,
(D—P—-Q)=1D)-2

by (3). Hence |D| induces an embedding of C' in some P".

Example. If C' has genus 0, then every positive degree divisor induces an em-
bedding.

For example, if P € C, |P| is very ample, [(P) = 2, so we get an embedding of
C in P'. Thus C = P!,
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Example. g = 1. If deg D = 3, then D is very ample, and [(D) =3+1—1 = 3.
So |D| induces an embedding of C in P2. Thus in particular C is isomorphic to a
curve of degree 3 in P2. Can show C' = Z(f) for some homogeneous polynomial
of degree 3. More specifically, fix Py € C, and embed using |3F|. Let D € DivC
be degree 0. Then

I(D+ PRy) —l(Kc— D — Py) =deg(D+ Py))+1—g.

The second term of RHS is 0 since deg K¢ — D — Py = —1. Then since deg(D +
Py) =1and g =1, we get (D + Fy) = 1. So there exists an effective divisor
linearly equivalent to D + Py, necessarily D 4+ Py ~ P for some P € C. Thus
P — Py~ D. Note P is unique: if P — Py ~ P' — Py, then P ~ P’, soif P # P/,
dim|P| > 1, so I(P) > 2. But I(P) = 1 by Riemann-Roch Theorem.

Conclusion: every divisor class on C of degree 0 can be represented uniquely
by P — Py for some P € C, i.e. C — ker(deg : C1C — Z)), p — p—pp is a
bijection. This gives a group structure on C, i.e. P+ Q = R for P,Q, R € C if

(P—P)+(Q—F)~R-F.

Geometric description: P,Q € C <i> P?2. Let L be the line joining P and Q
(tangent line to C' at P if P = Q). Then

“LNC"=4L=P+Q+S.
(possibly S =P or S =@Q). Now P+ Q + S ~ 3P, or
(P—Py)+(Q—Fy)+ (S— Fy) ~0.
Next let L' be the line joining S with Py. Then
“'NC”"=4#L' =8+ Py+ R~ 3P,.
So (S—Py)+(R—Py) ~0or (S—PF)~—(R—BR). Thus
(P—P)+(Q—F)~(R-H)

so P+ Q@ =R.
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Example.
y* = (z = M) (A2)(X3)
Take Pp = (0:1:0).

Py okt

Example. Let C have genus 2. Then deg Ko =29 —2 =2, [(K¢) = 2.

Claim: |K (| is base-point free, hence induces a morphism f : C — P!

Lemma. Let C be a projective non-singular curve. If there exist P,Q € C,
P+#Q, P~Q,then C =P

Proof. Consider the linear system |P|. Since Q € |P|, dim |P| > 1, so I(P) > 2.
But we have an upper bound dim £(D) < degD + 1 < 2. Thus I(P) = 2. If
Q, R € C then dim L(P — Q — R) = 0 since deg(P — @ — R) = 1. Thus |P| induces
an embedding of C into P!. So C = P*. O

Proof of Claim. If |K¢| is not base-point free, then there exists P € C such that
I(Kc — P) = l(K¢) = 2. Since deg Ko — P = 1, this means there exists @, R €
|Kc — P|, Q # R, with Q ~ R. Hence C = P!, contradiction, since P! has genus
0. O

Thus if g = 2, we obtain a degree 2 morphism f : C — P! induces by |Kc¢|.
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Definition (Hyperelliptic). A projective non-singular curve C' is hyperelliptic if
there exists a degree 2 morphism f : C' — PL.

Thus all genus 2 curves are hyperelliptic.

Theorem. Let C be a projective non-singular curve of genus g > 3. Then either:
(1) C is hyperelliptic, or

(2) |K¢| induces an embedding C' < P9~1.

Proof. |K¢| induces an embedding in P{Ec)-1 = pg—1 if and only if VP,Q € C,
(Ke—P-Q)=l(Kc)—2=g-2.
In any event,
(P4+Q)—l(Kc—P—-Q)=deg(P+Q)+1—g=3—gy.

Thus |K¢| induces an embedding if and only if [(P + Q) = 1 for all P,@ € C. Now
suppose |K¢| does not induce an embedding. Then there exist P, € C such that
I(P+Q)>1 If(P+Q) > 3, then for R € C, I(P+ Q — R) > 2. So there exists
P1,P, € |P+ @ — R| distinct. Thus C = P! by the lemma, a contradiction. Thus
(P4 @) = 2. Note similarly {(P+Q — R) =1 for all R € C. Thus |P+ Q)] is base-point
free and induces a degree 2 morphism f : C' — P!. So C is hyperelliptic. O

Theorem (Riemann-Hurwitz formula). Let f : X — Y be a non-constant mor-
phism between projective non-singular curves, with charK = 0 (or K(Y) C K(X)
is a separable field extension). Then

2 —2g(X) = (deg f)(2 - 29(Y)) = D) _(ep — 1).

peX

(ep = vp(t- f) where t is a local parameter at f(p)).

Proof. Omitted. O
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Example. X = C hyperelliptic, Y = P!, Y = P!, f: C — P! degree 2. Then

2-29(C)=2-(2-2-0)— ) (e —1).
A peC

Thus the number number of points p € C with e, > 1is }_ (e, — 1) = 29(C) + 2,
degg = pes-1(q) -

O o 2
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Krull dimension 50

Krull dimension 50
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linearly equivalent 56, 59, 63, 69, 70, 72

local ring 46, 47, 52

morphism 13, 14, 15, 16

v b3, 54, 55, 56, 57, 9, 60, 61, 62, 63, 64, 65, 68, 69
closed 28, 30

Ab, 6,710, 11, 12, 13, 16, 23, 30

I(X) 7,8,9,10, 11, 12, 13, 14, 15, 18, 24, 42, 43, 45, 46, 47, 49, 53
open 28, 31

regular 31, 35

principal 51, 59

projective variety 28, 31, 32, 34, 35, 47

quasi-affine variety 32, 49

quasi-projective variety 32, 35, 49

Qp/4 67, 68, 69, 70

sqrtl 7, 8, 10, 18, 24, 25

rational 39

rational map 39, 40

--+ 39, 40, 41

div(w) 68, 69, 70

regular 12, 13, 14, 15, 25, 32

f# 14, 15, 16

singular 43, 44, 46, 49, 51, 53, 55, 56, 57, 58, 64, 68, 70, 74, 75
support 62

Supp(D) 62, 63, 64, 65
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transcendental 18

transcendence basis 18, 19, 22, 50
tangent space 42, 46

T,X 42, 43, 44, 45, 46, 48, 53
very ample 65, 72

©p 45

variety 32, 34, 39, 40, 46, 49, 50, 51
Zariski closed 6

zero set 5

Zariski open 6, 13, 29

T,X 49

closed 6, 15, 44

open 6, 12, 15, 25
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