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Start of

lecture 1
What is Algebraic Geometry?

Study of solution sets to systems of polynomial equations.

For example:

• {(x, y) ∈ R2 | x2 + y2 = 1}

• {(x, y) ∈ R2 | y2 = x3 − x}

We could look for solutions over C:

{(x, y) ∈ C2 | y2 = x3 − x}

‘Looks like’ a torus with one point removed.
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R3: x2 + y2 + z2 = 1

{(x, y, z) ∈ C3 | x3 + y3 + z3 = 1} = X. X contains 27 lines:

9 lines :

{
x = −ξjy
z = ξk

9 lines :

{
x = −ξjz
y = ξk

9 lines :

{
y = −ξjz
x = ξk

(where ξ = e2πi/4).
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1 Affine Varieties

1.1 Basic setup

Fix a field K.

Definition (Affine n-space). Affine n-space over K is An = Kn.

Definition (Zero set). Let A := K[X1, . . . , Xn], S ⊂ A a subset. Define

Z(S) := “zero set of S”
= {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 ∀f ∈ S}

Proposition. Basic properties of the zero set:

(a) Z({0}) = An.

(b) Z(A) = ∅.

(c) Z(S1 · S2) = Z(S1) ∪ Z(S2) where

S1 · S2 = {f · g | f ∈ S1, g ∈ S2}.

(d) Let I be an index set and suppose for each i ∈ I, we are given Si ⊂ A. Then

⋂
i∈I

Z(Si) = Z

(⋃
i∈I

Si

)
.

Proof.

(a) Obvious

(b) Obvious

(c) If p ∈ Z(S1) ∪ Z(S2), then either f(p) = 0 ∀f ∈ S1 or g(p) = 0 ∀g ∈ S2. Thus
(f · g)(p) = 0 for all f ∈ S1, g ∈ S2. So p ∈ Z(S1 · S2).

Conversely, suppose p ∈ Z(S1 · S2), and suppose p /∈ Z(S1). So there exists f ∈ S1
with f(p) 6= 0. But (f · g)(p) = 0 ∀g ∈ S2 and (f · g)(p) = f(p) · g(p), so g(p) =
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0 ∀g ∈ S2. Thus p ∈ Z(S2). Thus Z(S1 · S2) ⊆ Z(S1) ∪ Z(S2).

(d) If p ∈ Z(S1) ∀i, then p ∈ Z
(⋃

i∈I Si
)
.

Conversely, if p ∈ Z
(⋃

i∈I Si
)
, then p ∈ Z(Si) ∀i, so p ∈

⋂
i∈I Z(Si).

Moral: This says that sets of the form Z(S) form the closed sets of a topology on An

Moral: This says that sets of the form Z(S) form the closed sets of a topology on An.

Definition (Algebraic subset). A subset of An is algebraic (or Zariski closed) if it
is of the form Z(S) for some S ⊂ A.

Definition (Zariski open subset). A Zariski open subset of An is a set of the form
An \ Z(S) for some S ⊆ A. This defines the Zariski topology on An.

Example.

(1) If K = C, Zariski open or closed subsets are also open and closed in the “usual”
topology.

(2) For any K, consider A1, A = K[X], S ⊆ K[X] containing a non-zero element.
Then Z(S) is finite. So Zariski closed sets are A1 and all finite sets. Zariski
open sets are ∅ and “co-finite sets”.

Recall: If A is a commutative ring, S ⊆ A a subset, the ideal generated by S is the ideal
〈S〉 ⊆ A given by

〈S〉 =

{
q∑

i=1

figi | q ≥ 0, fi ∈ S, gi ∈ A

}
= the smallest ideal of A containing S

Lemma. Let S ⊆ A = K[X1, . . . , Xn], I = 〈S〉. Then

Z(S) = Z(I).
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Proof. If p ∈ Z(S), f1, . . . , fq ∈ S, g1, . . . , gq ∈ A, then
q∑

i=1

(figi)(p) =

q∑
i=1

fi(p)︸ ︷︷ ︸
=0

gi(p) = 0.

Thus Z(S) ⊆ Z(I).

Conversely, since S ⊆ I, Z(I) ⊆ Z(S).

Start of

lecture 2 Definition (Ideal of a set). Let X ⊆ An be a subset. Define

I(X) = {f ∈ A = K[X1, . . . , Xn] | f(p) = 0 ∀p ∈ X}.

Remark. I(X) is an ideal: if f, g ∈ I(X), then f + g ∈ I(X). If f ∈ A, g ∈ I(X)
then f · g ∈ I(X).

Remark. If S1 ⊆ S2 ⊆ A, then Z(S2) ⊆ Z(S1). If X1 ⊆ X2 ⊆ An, then I(X2) ⊆
I(X1).

Question: Given an ideal I, what is the relationship between I and I(Z(I))?

Example. I = 〈x2〉 ≤ K[X].

Z(I) = {0} ⊆ A1, I(Z(I)) = I({0}) = 〈X〉 6= I.

Definition (Radical of an ideal). Let I ⊆ A be an ideal in a commutative ring A.
The radical of I is

√
I := {f ∈ A | fn ∈ I for some n > 0}.

Lemma.
√
I is an ideal.

Proof. Suppose f, g ∈
√
I, say fn1 , gn2 ∈ I. Then

(f + g)n1+n2+1 =

n1+n2+1∑
i=0

(
n1 + n2 + 1

i

)
f ign1+n2+1−i
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For each i, either i ≥ n1 or (n1 + n2 + 1) − i ≥ n2. So each term lies in I, hence
(f + g)n1+n2+1 ∈ I. Thus f + g ∈

√
I. If f ∈

√
I, g ∈ A, then fn ∈ I for some n, so

(fg)n ∈ I so fg ∈
√
I.

Proposition.

(a) If X ⊆ An is algebraic, then

Z(I(X)) = X.

(b) If I ⊆ A is an ideal, then √
I ⊆ I(Z(I)).

Proof.

(a) Since X is algebraic, X = Z(I) for some I. Certainly, I ⊆ I(X) by definition of Z
and I(X). Thus Z(I(X)) ⊆ Z(I) = X. But X ⊆ Z(I(X)) is obvious.

(b) Let fn ∈ I. Then fn vanishes on Z(I), and hence f vanishes on Z(I) also. So
f ∈ I(Z(I)), hence

√
I ⊆ I(Z(I)).

Theorem (Hilbert’s Nullstellensatz). Let K be an algebraically closed field. Then
√
I = I(Z(I)).

Proof. Later.

Example. K = R. I = 〈X2 + Y 2 + 1〉 ⊆ R[X,Y ]. Then Z(I) = ∅, I(Z(I)) =
R[X,Y ] 6=

√
I.

1.2 Irreducible Subsets

Definition (Irreducible subset). Let X be a topological space, and Z ⊆ X a closed
subset. We say Z is irreducible, if Z is non-empty, and whenever Z = Z1 ∪ Z2 with
Z1, Z2 closed in X, then either Z = Z1 or Z = Z2.
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Remark. Bad notion in the Euclidean topology in Cn. Only irreducible sets are
points.

Example. A1 is irreducible as long as K is infinite.

Definition (Affine algebraic variety). An (affine algebraic) variety in An is an
irreducible algebraic set.

How do we recognize irreducible algebraic sets algebraically?

Proposition. If X1, X2 ⊆ An, then

I(X1 ∪X2) = I(X1) ∩ I(X2)

Proof. Since X1, X2 ⊆ X1 ∪X2, we have I(X1 ∪X2) ⊆ I(X1), I(X2), so I(X1 ∪X2) ⊆
I(X1) ∩ I(X2).

Conversely, if f ∈ I(X1) ∩ I(X2), then f ∈ I(X1 ∪X2).

Recall (from GRM): An ideal P ⊆ R is prime if P 6= R and whenever f · g ∈ P , either
f ∈ P or g ∈ P .

Lemma. Let P ⊆ A be a prime ideal, and let I1, . . . , In ⊆ A be ideals. Suppose
P ⊇

⋂
i Ii. Then p ⊇ Ii for some i. In particular, if p =

⋂
i Ii, then P = Ii for some

i.

Example. A = Z, P = 〈p〉, p a prime number. Let Ii = 〈ni〉. Then⋂
i

Ii = 〈lcm(n1, . . . , ns)〉

Then P ⊇
⋂

i Ii ⇐⇒ p | lcm(n1, . . . , ns), and the condition on the right implies
that p | ni for some i.

Proof. Suppose P 6⊇ Ii for any i. Thus we can find xi ∈ Ii, xi /∈ P . Then
n∏

i=1

xi ∈ ∩n
i=1Ii ⊆ P,
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so there exists i with xi ∈ P , a contradiction.

If P =
⋂

i Ii, P ⊆ Ii for each i and since we know Ii ⊆ P for some i, we have P = Ii for
that i.

Proposition. Let K be algebraically closed. Then an algebraic set X ⊆ An is
irreducible if and only if I(X) ⊆ A = K[X1, . . . , Xn] is prime.

Start of

lecture 3 Proposition. Let K be algebraically closed. Then an algebraic set X ⊆ An is
irreducible if and only if I(X) is prime.

Proof.

⇒ If f · g ∈ I(X), then X ⊆ Z(f · g) = Z(f) ∪ Z(g). Thus

X = (X ∩ Z(f)) ∪ (X ∩ Z(f))

By irreducibility of X we can assume X = X ∩ Z(f), so X ⊆ Z(f), so f ∈ I(X).

⇐ If P ⊆ A = K[X1, . . . , Xn] is prime, suppose Z(P ) = X1 ∪X2 with X1, X2 closed.
Then

I(X1) ∩ I(X2) = I(X1 ∪X2) = I(Z(P )) =
√
P .

The last equality is by Hilbert’s Nullstellensatz. But
√
P = P : if fn ∈ P then

f ∈ P by primality of P . Thus I(X1) ∩ I(X2) = P , so by the lemma, P = I(X1)
or P = I(X2). Thus Z(P ) = X1 or Z(P ) = X2. Thus Z(P ) is irreducible and
I(Z(P )) = P .

We now have a 1− 1 correspondence (if K is algebraically closed):
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Proposition. Any algebraic set in An can be written as a finite union of varieties.

Proof. Let R be the set of all algebraic sets in An which can’t be written as a finite
union of varieties. If R 6= ∅, I claim it has a minimal element. Otherwise there exists
X1, X2, X3, . . . ∈ R with

X1 ) X2 ) X3 ) · · ·

so
I(X1) ( I(X2) ( I(X3) ( · · · ⊆ A = K[X1, . . . , Xn]

This contradicts A being Noetherian (GRM).

LetX ∈ R be minimal. X can’t be irreducible, since thenX is itself a variety. Otherwise,
we can write X = X1 ∪ X2 with X1 ( X, X2 ( X with X1, X2 algebraic. Then
X1, X2 /∈ R, hence can be written as a union of irreducible sets. So X can also be
written as a finite union of irreducibles, so X /∈ R, contradiction.

Definition (Irreducible components). If X = X1 ∪ · · · ∪Xn with X, Xi algebraic,
Xi irreducible and Xi 6⊆ Xj for any i 6= j, then we say X1, . . . , Xn are the irreducible
components of X.

Example.

(1) In A2, A = K[X1, X2], X = Z(X1 ·X2) = Z(X1) ∪ Z(X2).

(2) More generally, A = K[X1, . . . , Xn] is a UFD. If 0 6= f ∈ A, we can write
f =

∏
faii with fi irreducible. Since A is a UFD, 〈fi〉 is prime. Thus Z(fi) is

irreducible (assuming K is algebraically closed). Thus Z(f) = Z(f1)∪· · ·∪Z(fs)
is the irreducible decomposition of Z(f).

(3) Z(X2
2 −X3

1 +X1) is irreducible.

1.3 Regular and rational functions

In Algebraic Geometry, polynomial functions are natural. Let X ⊆ An be an algebraic
set. f ∈ A = K[X1, . . . , Xn]. This gives a function f : An → K, (a1, . . . , an) 7→
f(a1, . . . , an) ∈ K. Then get f |X : X → K.

If f, g ∈ A, and f |X = g|X , then f · vanishes on X. So f · g ∈ I(X).

11
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So it is natural to think of A/I(X) as being the set of polynomial functions on X.

Definition (Coordinate ring). Let X ⊆ An be an algebraic set. The coordinate ring
of X is

A(X) := A/I(X)

(sometimes written K[X]).

Definition (Regular function). Let X ⊆ An be an algebraic set, U ⊆ X an open
subset. A function f : U → K is regular if ∀p ∈ U , there exists an open neighbour-
hood V ⊆ U of p and functions g, h ∈ A(X) with h(q) 6= 0 for any q ∈ V and f = g

h
on V .

Example. Any f ∈ A(X) defines a regular on X.

Notation. We write

OX(U) := {f : U → K | f is regular}.

Note. OX(U) is a ring if f, g ∈ OX(U), then f ± g, f · g ∈ OX(U). This is also a
K-algebra.

Definition (Algebra). If A, B are rings, then an A-algebra structure on B is
the data of a ring homomorphism ϕ : A → B. This turns B into an A-module
via

a · b := ϕ(a) · b

So K → OX(U) is given by a ∈ K being mapped to the constant function with value
a.

Start of

lecture 4 Reminders:

• X ⊆ An.

• A(X) = A/I(X).
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• We defined the notion of regular function on an open subset U ⊆ X.

• OX(U) := {f : U → K | f is regular on U}

Lemma. OX(X) = A(X).

Proof. Later (we will prove this after proving Hilbert’s Nullstellensatz).

Recall from GRM: Let A be an integral domain. Then the field of fractions of A (or
fraction field of A) is {

f

g
| f, g ∈ A, g 6= 0

}
/ ∼

with f
g ∼ f ′

g′ if fg′ = f ′g.

We define addition and multiplication using:

f

g
+
f ′

g′
=
fg′ + gf ′

gg′
f

g

f ′

g′
=
ff ′

gg′

and we observe that this is a field since(
f

g

)−1

=
g

f

is an inverse whenever f 6= 0.

Remark. If X ⊆ An is an affine variety, then A(X) = A/I(X) is an integral
domain. (This is because for any ring R and ideal P ⊆ R, R/P is an integral
domain if and only if P is prime – see GRM).

Definition (Function field). If X ⊆ An is a variety, its function field is K(X), the
fraction field of A(X). Elements of K(X) are called rational functions on X. Note
g
h ∈ K(X) induces a regular function on X \ Z(h).

1.4 Morphisms

13
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Definition (Morphism). A map f : X → Y between affine varieties is called a
morphism if:

(1) f is continuous in the induced Zariski topology on X and Y (Z ⊆ X ⊆ An is
closed in X if and only if it is closed in An).

(2) ∀V ⊆ Y be an open subset, ϕ : V → K a regular function, we have that
ϕ ◦ f : f−1(V ) → K is a regular function on f−1(V ).

Observation: Let f : X → Y be a morphism. Then for any ϕ ∈ A(Y ), we get
ϕ◦f : X → K a regular function. Assuming K is algebraically closed, OX(X) = A(X), so
ϕ◦f ∈ A(X). This gives a map f# : A(Y ) → A(X). This is a K-algebra homomorphism.
We first check that it is indeed a ring homomorphism:

f#(ϕ1 + ϕ2) = (ϕ1 + ϕ2) ◦ f
= ϕ1 ◦ f + ϕ2 ◦ f
= f#(ϕ1) + f#(ϕ2)

f#(ϕ1 · ϕ2) = (ϕ · ϕ2) ◦ f
= (ϕ1 ◦ f) · (ϕ2 ◦ f)
= f#(ϕ1) · f#(ϕ2)

f#(1) = 1

Now we check multiplication by elements of K. For a ∈ K,

f#(a · ϕ) = a · f#(ϕ)

So this is a K-algebra homomorphism.

Theorem. For K algebraically closed, there is a 1 − 1 correspondence between
morphisms f : X → Y and K-algebra homomorphisms f# : A(Y ) → A(X).

Proof. We have already constructed f# from f . Suppose X ⊆ An, Y ⊆ Am. Then

A(X) =
K[X1, . . . , Xn]

I(X)
A(Y ) =

K[Y1, . . . , Ym]

I(Y )

An ⊇ X
(f1,...,fm)−→

f
Y ⊆ Am →

yi
K

fi = yi ◦ f . Suppose given f# : A(Y ) → A(X). Set fi = f#(yi) (yi is the image of yi in
A(Y )). We now define f : X → Am by f(p) = (f1(p), . . . , fm(p)).
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Claim: f(X) ⊆ Y .

Proof: Let g ∈ I(Y ), and p ∈ X. We need to show that g(f(p)) = 0. This will show
f(p) ∈ Y . Consider the map

K[Y1, . . . , Ym] → A(Y )
f#

→ A(X)

Yi 7→ Yi 7→ fi

Thus
g(Y1, . . . , Ym) 7→ g(Y 1, . . . , Y m) 7→ g(f1, . . . , fm)

The right arrow uses f# being a K-algebra. The middle expression is the image of g
under quotient map, hence 0 since g ∈ I(Y ). Thus g(f(p)) = g(f1, . . . , fm)(p) = 0.

Thus f(X) ⊆ Y . This completes the proof of the claim.

Note: If ϕ ∈ A(Y ), can write ϕ = g(Y 1, . . . , Y m) and f#(ϕ) = g(f1, . . . , fm) = ϕ ◦ f .

Claim: f is a morphism:

(1) f is continuous: We will show f−1(Z) is closed for Z ⊆ Y closed. Note I(Z) ⊇ I(Y ),
so I(Z) = I(Z)

I(Y ) ⊆ A(Y ) is an ideal in A(Y ). Then define

Z(f#(I(Z))) = {p ∈ X | ϕ(p) = 0 ∀ϕ ∈ f#(I(Z))}

This is a closed subset of X since it coincides with

Z(π−1
X (f#(I(Z))))

where πX : K[X1, . . . , Xn] → A(X). But

Z(f#(I(Z))) = {p ∈ X | ψ ◦ f = 0 ∀ψ ∈ I(Z)}
= {p ∈ X | f(p) ∈ Z}
= f−1(Z)

Thus f−1(Z) is closed.

(2) Let U ⊆ Y be an open subset, ϕ ∈ OY (U). We need to show ϕ ◦ f : f−1(U) → K
is regular. Let p ∈ f−1(U), and let V ⊆ U be an open neighbourhood of f(p) for
which we can write f = g

h , g, h ∈ A(Y ), h nowhere vanishing on V . Then

ϕ ◦ f |f−1(V ) =
g ◦ f
h ◦ f

=
f#(g)

f#(h)
.

Now f#(g), f#(h) lie in A(X), and f#(h) = h ◦ f doesn’t vanish on f−1(V ). Thus
ϕ ◦ f is regular.
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Start of

lecture 5 Exercise: Check that this gives a 1− 1 correspondence. We checked

f# 7→ f 7→ f#,

so it remains to check that
f 7→ f# 7→ f.

Moral. A morphism f : An ⊇ X → Y ⊆ Am is given by choosing polynomial
functions f1, . . . , fm ∈ K[X1, . . . , Xn] and defining f by

f(p) = (f1(p), . . . , fm(p)).

Example.

f : A1 → A2

t 7→ (t, t2)

The image of this map is Y = Z(X2 − Y ). This defines a morphism f : A1 → Y .
Then

f# :
K[X,Y ]

(Y −X2)
→ K[t]

X 7→ t

Y 7→ t2

This is an isomorphism!

Definition (Isomorphism of affine varieties). Two affine varieties are isomorphic
if there exist morphisms f : X → Y , g : Y → X such that g ◦ f = idX , f ◦ g = idY .

Theorem. If X,Y are affine varieties, then X is isomorphic to Y if and only if
A(X) ∼= A(Y ) as K-algebra.

Example. A1 ∼= Z(X2 − Y ) ⊆ A2.

16
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Remark. A K-algebra A is finitely generated if there exists a surjective K-algebra
homomorphism

K[X1, . . . , Xn] → A
Xi 7→ ai

i.e. every element of A can be written as a polynomial in a1, . . . , an with coefficients
in K. If I is the kernel of this map then

A ∼= K[X1, . . . , Xn]/I.

SUppose further thatA is an integral domain. Then I is a prime ideal of K[X1, . . . , Xn],
so

A = A(X)

where X = Z(I).
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2 The proof of Hilbert’s Nullstellensatz

Goal: We want to prove Hilbert’s Nullstellensatz. That is, if K is algebraically closed,
we want to show I(Z(I)) =

√
I.

Definition (Transcendental). Let F/K be a field extension. We say an element
z ∈ F is transcendental over K if it is not algebraic, i.e. @f ∈ K[X] with f 6= 0,
f(z) = 0.

Definition (Algebraically independent elements). We say z1, . . . , zd ∈ F are alge-
braically independent over K if @f ∈ K[X1, . . . , Xd] with f 6= 0, f(z1, . . . , zd) = 0.

Definition (Transcendence basis). A transcendence basis for F/K is a set z1, . . . , zd ∈
F algebraically independent over K and such that F is algebraic over K(z1, . . . , zd).

Example. If X is a variety, K(X) is a field extension of K, and it usually has lots
of transcendentals.

K(An) =

{
f

g
| f, g ∈ K[X1, . . . , Xn], g 6= 0

}
/ ∼

= K(X1, . . . , Xn)

= field of rational functions in X1, . . . , Xn

X1, . . . , Xn form a transcendence basis.

Definition (Finitely generated field extension). If F/K is a field extension, we say
F is finitely generated over K if F = K(z1, . . . , zn) for some z1, . . . , zn ∈ F .

Example. K(X)/K is finitely generated. If X ⊆ An, then K(X) is the fraction
field of A(X) = K[X1, . . . , Xn]/I and hence K(X) is generated by the images of
X1, . . . , Xn.

18



Proposition. Every finitely generated field extension F/K has a transcendence
basis, and any two transcendence bases have the same number of elements.

Further, if F = K(z1, . . . , zN ), then there is a transcendence basis {Y1, . . . , Yn} ⊆
{z1, . . . , zN}.

Proof. Write F = K(z1, . . . , zN ). If z1, . . . , zn are algebraically independent, then z1, . . . , zn
is a transcendence basis. If z1, . . . , zN are algebraic over K, then the transcendence ba-
sis can be taken to be empty. Otherwise, assume {z1, . . . , zd} is a maximal subset of
algebraically independent elements of {z1, . . . , zn}. I claim z1, . . . , zd is a transcendence
basis, i.e. F is algebraic over K(z1, . . . , zd). It is neough to show zj is algebraic of
K(z1, . . . , zd) for any j > d.

By assumption, z1, . . . , zd, zj are not algebraically independent, i.e. there exists fj ∈
K[X1, . . . , Xd, Xj ] such that fj(z1, . . . , zd, zj) = 0.

Write fj =
∑

I fji(X1, . . . , Xd)X
i
j . Then

0 6= fj(z1, . . . , zd, X) =
∑
i

fji(z1, . . . , zd)X
i ∈ K(z1, . . . , zd)[X]

(the polynomial is non-zero since z1, . . . , zd are algebraically independent). Then since
fj(z1, . . . , zd, zj) = 0, we have zj algebraic over K(z1, . . . , zd). Thus f is algebraic
over K(z1, . . . , zd), so z1, . . . , zd is a transcendence basis. Now suppose z1, . . . , zd and
w1, . . . , we are both transcendence bases. Suppose d ≤ e. First w1 is algebraic over
K(z1, . . . , zd) since w1 ∈ F . Then there exists a polynomial f ∈ K[X1, . . . , Xd, Dd+i]
such that f(z1, . . . , zd, w1) = 0. This is obtained by clearing denominators of a polyno-
mial g ∈ K(z1, . . . , zd)[Xd+1] with g(w1) = 0. Since w1 is not algebraic over K, f must
involve at least one of X1, . . . , Xd, say X1. Thus z1 is algebraic. So z1 is algebraic over
K(w1, z2, . . . , zd) (as witnessed by f). So F is algebraic over K(w1, z2, . . . , zd). Repeat:
w2 is algebraic over K(w1, . . . , z2, . . . , zd) and not algebraic over K(w1). So one can find
0neqg ∈ K[X1, . . . , Xd+1] such that g(w1, z2, . . . , zd, w2) = 0 and further g involves one
of X2, . . . , Xd: say it involves X2. Thus z2 is algebraic over K(w1, w2, z3, . . . , zd). Con-
tinuing, eventually we find F is algebraic over K(w1, . . . , wd). But if e > d, then we is
algebraic over K(w1, . . . , wd), contradicting w1, . . . , we being a transcendence basis.

Start of

lecture 6
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Lemma. Let M be a finitely generated A module for A a commutative ring I ⊆ A,
φ :M →M an A-module homomorphism such that

φ(M) ⊆ I ·M = 〈a ·m | a ∈ I,∈M〉,

where 〈· · · 〉 represents the submodule of M generated by those elements. Then
there exists an equation

φn + aiφ
n−1 + · · ·+ an ≡ 0

with ai ∈ I. Interpretation: ai represents the homomorphism m 7→ aim.

Proof. Let x1, . . . , xn ∈ M be a set of generators for M . Then each φ(xi) ∈ I ·M , so
can write

φ(xi) =

n∑
j=1

aij · xj

with aij ∈ I, i.e.
n∑

j=1

(δijφ− aij)xj = 0

So φ− a11 −a12 · · ·
−a21 φ− a22 · · ·
...

...
. . .


x1...
xn

 = 0

Multiplying by the adjoing matrix, we get

det((δijφ− aij))xj = 0 ∀j

But det(δijφ−aij) is a degree n polynomial in φ annihiliting each xj , hence annihilating
every element in M . The leading term in φ is φn and all other coefficients involve aij ’s,
hence lie in I.

Integrality

Definition (Integral element). Let A ⊆ B be integral domains. An element b ∈ B
is integral over A if f(b) = 0 for a monic polynomial f(X) ∈ A[X]. (recall that
monic means that the leading coefficient is 1).
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Proposition. b ∈ B integral over A if and only if there is a subring C ⊆ B
containing A[b] with C a finitely generated A-module.

Proof.

⇒ Suppose bn + a1b
n−1 + · · ·+ an = 0. Then since A[b] is generated as an A-module

by 1, b, b2, b2, . . .. It is also generated by 1, . . . , bn−1. So A[b] is ginitely generated,
and can take C = A[b].

⇐ If C is finitely generated, let φ : C → C be given by φ(x) = b · x. Apply the above
Lemma to the finitely generated A-module C with I = A. We get φn+a1φn−1 · · ·+
an ≡ 0 or bn + a1b

n−1 + · · · + an, acting by multiplication on C, is the zero map.
Since C is an integral domain, we have

bn + a1b
n−1 + · · ·+ an = 0

Start of

lecture 7 Lemma 1. Let A ≤ B be an inclusion of integral domains, and assume the fraction
field K of A is contained in B. If b ∈ B is algebraic over K, then there exists p ∈ A
non-zero such that pb is integral over A.

Proof. Suppose g ∈ K[X] with g(b) = 0, g 6= 0. By clearing denominators, we can
assume g ∈ A[X]. Write

g(X) = aNX
n + · · ·+ a0, an 6= 0, ai ∈ A.

Note

aN−1
N g = (aNX)n + aN−1(ANX)N−1 + aN−2aN · (aNX)N−2 + · · ·+ a0a

N−1
N .

This is a monic polynomial in aNX. Thus taking X = b, we thus have a monic polyno-
mial killing aNb. So aNb is integral over A and we take p = aN .

Lemma 2. Let A be a UFD with fraction field K. Then if α ∈ K is integral over
A, we have α ∈ A.

Proof. If α ∈ K is integral over A, write α = a
b , with a, b having no commmon factor.

We have g
(
a
b

)
= 0 for some monic polynomial g, say

g(X) = Xn + a1X
n−1 + · · ·+ an.
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We have
an

bn
+ a1

an−1

bn−1
+ · · ·+ an = 0

in K. So
an + a1ba

n−1 + · · ·+ anb
n = 0

in A. So b | a, so b must be a unit in A. Thus a
b ∈ A.

Lemma 3. Let A ≤ B be integral domains, and S ⊆ B the set of all elements in B
integral over A. Then S is a subring of B.

Proof. If b1, b2 ∈ S, then A[b1] is a finitely generated A-module. Also, b2 is integral
over A, and hence is integral over A[b1]. Thus A[b1][b2] = A[b1, b2] is a finitely generated
A[b1]-module. Thus A[b1, b2] -s a finitely generated A-module. Since A[b1±b2], A[b1·b2] ⊆
A[b1, b2], we have b1 ± b2, b1 · b2 ∈ S by the proposition.

We also have 0, 1 ∈ S since A ⊂ S.

Lemma 4 (Hilbert’s Nullstellensatz, Version 0). Let K be an algebraically closed
field, and F/K a field extension which is finitely generated as a K-algebra (i.e. ∃ a
surjective K-algebra homomorphism K[X1, . . . , Xd] → F ). Then F = K.

Proof. Suppose α ∈ F is algebraic over K, say with irreducible polynomial f(X) ∈ K[X].
Then f is linear since K is algebraically closed, hence of the form c(X − α). So α ∈ K.

Suppose we are given a surjective map

K[X1, . . . , Xd] → F

xi 7→ zi ∈ F

Then z1, . . . , zd generate F as a field extension of K. Assume z1, . . . , ze form a transcen-
dence basis for F/K. Note that if F 6= K, we must have e ≥ 1. Let R = K[z1, . . . , ze] ≤ F
(note that this really is a polynomial ring since z1, . . . , ze are algebraically independent).
Then w1 = ze+1, . . . , wd−e = zd are algebraic over L = K(z1, . . . , ze). Let S ≤ F be
the set of elements of F integral over R. S is a subring of F by Lemma 3. By Lemma
1, there exists p1, . . . , dd−e ∈ R with ti := piwi integral over R. In particular, t1 ∈ S.
Choose f

g ∈ K(z1, . . . , ze) = L, f, g ∈ R, with f, g relatively prime. Then g is relatively
prime to p1, . . . , pd−e. Here, we assume e ≥ 1. Thus

pn1
1 · · · pnd−e

d−e

f

g
/∈ K[z1, . . . , ze]
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for any n1, . . . , ne−d ≥ 0. Since z1, . . . , zd generate F as a K-algebra there exists q ∈
K[X1, . . . , Xd] such that

f

g
= q(z1, . . . , zd) = q

z1, . . . , ze, t1p1︸︷︷︸
ze+1

, . . . ,
td−e

pd−e︸ ︷︷ ︸
zd

 (∗)

Let nj be the highest power of Xe+j appearing in q. Multiplying by
∏

j p
nj

j clears
denominators on RHS of (∗). So we have

pn1
1 · · · pnd−e

d−e

f

g
= q′(z1, . . . , ze, t1, . . . , td−e) (∗∗)

The RHS of (∗∗) lies in S as z1, . . . , ze ∈ S, t1, . . . , td−e ∈ S. Thus LHS lies in S. But
LHS lies in K(z1, . . . , ze) and hence by Lemma 2, lies in K[z1, . . . , ze], a contradiction.
Thus e = 0, and F is algebraic over K, so F = K since K is algebraically closed.

Start of

lecture 8 Theorem (Nullstellensatz I). Let K be algebraically closed. Then any maximal
ideal M ⊂ K[X1, . . . , Xn] is of the form

M = 〈X1 − a1, . . . , Xn − an〉

for some a1, . . . , an ∈ K.

Proof. Note we have an isomorphism

K[X1, . . . , Xn]

〈X1 − a1, . . . , Xn − an〉
∼=−→ K

Xi 7−→ ai

Recall M ⊆ A is a maximal ideal if and only if A/M is a field. Thus 〈X1−a1, . . . , Xn−an〉
is a maximal ideal.

Conversely, let M ⊆ K[X1, . . . , Xn] be a maximal ideal. Then

K[X1, . . . , Xn]

M
∼= F

for some field F which is finitely generated as a K-algebra by X1, . . . , Xn. Thus F = K
by Lemma 4. We thus have an isomorphism

ϕ :
K[X1, . . . , Xn]

M

∼=−→ K.
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Let ai = ϕ(Xi). Then

ϕ(Xi − ai) = ϕ(Xi)− ai = ai − ai = 0.

Thus Xi − ai ∈M for each i. So

〈X1 − a1, . . . , Xn − an〉 ⊆M.

But we have already seen that 〈X1 − a1, . . . , Xn − an〉 is maximal, so we must in fact
have equality.

Example. 〈X2 + 1〉 ≤ R[X] is a maximal ideal, but 〈X2 + 1〉 6= 〈X − a〉 for any
a ∈ R.

Theorem (Nullstellensatz II). Let K be algebraically closed, and I = 〈f1, . . . , fr〉 ⊆
K[X1, . . . , Xn]. Then either:

(1) I = K[X1, . . . , Xn], or

(2) Z(I) 6= ∅.

Proof. Suppose 1 /∈ I, i.e. not in case (1). Then there exists a maximal ideal M ⊆
K[X1, . . . , Xn] with I ⊆ M . Thus Z(M) ⊆ Z(I). Then by Nullstellensatz I, M =
〈X1−a1, . . . , Xn−an〉, and hence Z(M) = {(a1, . . . , an)}. So Z(M) 6= ∅, so Z(I) 6= ∅.

Theorem (Nullstellensatz III). Let K be algebraically closed, I ⊆ K[X1, . . . , Xn]
an ideal. Then

I(Z(I)) =
√
I.

Proof.
√
I ⊆ I(Z(I)) in any event.

Let g ∈ K[X1, . . . , Xn]. Define

Vg = Z(Zg(X1, . . . , Xn)− 1) ⊆ An+1

with coordinates X1, . . . , Xn, Z. Projecting Vg via (X1, . . . , Xn, Z) 7→ (X1, . . . , Xn) gives
the set

D(g) := An \ Z(g).

Now suppose g ∈ I(Z(I)). Then D(g) ∩ Z(I) = ∅. If I = 〈f1, . . . , fr〉, consider J =
〈f1, . . . , fr, Zg − 1〉 ⊆ K[X1, . . . , Xn, Z]. Then Z(J) = ∅, so J = K[X1, . . . , Xn, Z] by
Nullstellensatz II.
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Thus we can write

1 =
∑
i

hi(X1, . . . , Xn, Z)fi(X1, . . . , Xn) + h(X1, . . . , Xn, Z)(g(X1, . . . , Xn)Z − 1)

with hi, h ∈ K[X1, . . . , Xn, Z]. Substitute Z = 1
g . We get

1 =
∑
i

hi

(
X1, . . . , Xn,

1

g

)
fi(X1, . . . , Xn).

Multiplying by a high power of g clears denominators, giving:

gN = h′i(X1, . . . , Xn)fi ∈ I,

for some h′i. Thus gn ∈ I, so g =
√
I.

Recall we need the proof of:

Proposition. If X ⊆ An is an affine variety, then OX(X) = A(X).

Lemma. Let f, g : X → K be regular functions on X an affine variety, and suppose
there exists open U ⊆ X non-empty with f |U = g|U . Then f = g.

Proof. Consider the map ϕ = (f, g) : X → A2. This is a morphism (exercise: check
this!). Let ∆ = {(a, a) ∈ A2 | a ∈ K}, ∆ = Z(X − Y ). Since ϕ is continuous, ϕ−1(∆) is
closed. But U ⊆ ϕ−1(∆), and U is a dense subset of X (otherwise X = U ∪X \ U is a
union of two proper closed subsets, violating irreducibility of X). Thus U ⊆ U = X ⊆
ϕ−1(∆), so ϕ−1(∆) = X.

Proof of Proposition. We know A(X) ⊆ OX(X). So let f : X → K be a regular function.
So there exists an open cover {Ui} of X with f is given on Ui by f |Ui = gi

hi
, with

gi, hi ∈ A(X) and hi nowhere vanishing on Ui. Then

Z({hi}) =
⋂
i

Z(hi) ≤
⋂
i

X \ Ui = X \
⋃
i

Ui = ∅.

Thus Z({hi}) = ∅. Thus we can find ei ∈ A(X) (Remark: Pull back to K[X1, . . . , Xn]
and Nullstellensatz II to see this) such that 1 =

∑
i eihi. Note on Ui ∩ Uj , gi

hi
=

gj
hj

, so
gihj = gjhi on Ui ∩ Uj , so by the Lemma, gihj = gjhi on X. Thus gi

hi
=

gj
hj

in K(X).
Thus we have the equality in K(X)

f =
∑
i

(eihi)

(
gi
hi

)
=
∑
i

gi ∈ A(X)
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lecture 9 Remark. In proof of previous propositions, we had a statement Z({hi}) = ∅, and
hence by Nullstellensatz II, 1 ∈ 〈{hi}〉, and hence we can write 1 =

∑
i∈I eihi for I

a finite index set.
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3 Projective Varieties

Definition (Pn). Let K be a field. We define

Pn = (Kn+1 \ {(0, . . . , 0)})/ ∼

where (x0, . . . , xn) ∼ (λx0, . . . , λxn) for any λ ∈ K× := K \ {0}.

Alternatively, this is the set of one-dimensional sub-vector spaces of Kn+1.

Remark. If K = R, then Pn = Sn/ ∼, with xn ∼ −x (Sn ⊆ Rn+1 is the unit
sphere).

For arbitrary K: Consider P1. For (x0 : x1) ∈ P1, if x1 6= 0, then

(x0 : x1) ∼
(
x0
x1

: 1

)
∈ A1

(since there is a unique representative with seconc coordinate 1). The missing points are
of the form (x0 : 0) ∼ (1 : 0). Thus we view P1 as

P1 = A1 ∪ {(1 : 0)︸ ︷︷ ︸
=∞

}.

This is the Riemann sphere if K = C.

Now P2: for (x0 : x1 : x2) ∈ P2, if x2 6= 0, then

(x0 : x1 : x2) ∼
(
x0
x2

:
x1
x2

: 1

)
∈ A2.

If x2 = 0, we get a point (x0 : x1 : 0) ∈ P1. Thus

P2 = A2 ∪ P1

where P1 can be viewed as the ‘line at infinity’.

Algebraic subsets of Pn? When does f(x0, . . . , xn) = 0 make sense?

Definition (Homogeneous). f ∈ S = K[x0, . . . , xn] is homogeneous if every term
of f is of the same degree, or equivalently,

f(λx0, . . . , λxn) = λdf(x0, . . . , xn)

for some d ≥ 0, where d is the degree of d.
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Example. x30 + x1x
2
2 is homogeneous of degree 3. x30 + x21 is not homogeneous.

Definition (Zero set of f in Pn). If T ⊆ S is a set of homogeneous polynomials,
define

Z(T ) := {(a0, . . . , an) ∈ Pn | f(a0, . . . , an) = 0 ∀f ∈ T}.

Definition (Homogeneous ideal). An ideal I ⊆ S is homogeneous if I is generated
by homogeneous polynomials.

Definition (Zero set of ideal). For I a homogeneous ideal, we define

Z(I) = {(a0, . . . , an) ∈ Pn | f(a0, . . . , an) = 0 ∀f ∈ I homogeneous}.

Definition (Algebraic subset of Pn). A subset of Pn is algebraic if it is of the form
Z(T ) for some T .

Example. Z(a0x0 + a1x1 + a2x2) ⊆ P2, a0, a1, a2 ∈ K. In the A2 ⊆ P2 where
x2 = 1, we get the equation a0x0 + a1x1 + a2 = 0. If x2 = 0, we get the equation
a0x0+ a1x1 = 0, which has the solution (a1 : −a0) ∈ P1 (assuming not both a0 = 0,
a1 = 0, since otherwise just have x2 = 0, the line at ∞)

Exercise: Check the algebraic sets in Pn form the closed sets of a topology on Pn. This
is the Zariski topology on Pn.
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Definition (Projective variety). A projective variety is an irreducible closed subset
of Pn.

The standard open affine cover of Pn

Define Ui ⊆ Pn by
Ui = Pn \ Z(xi),

an open subset of Pn. Note
⋃n

i=1 Ui = Pn. We have a bijection ϕi : Ui → An, given by

ϕ1(x0 : . . . : xn) =

(
x0
xi
, . . . ,

x̂i
x1
, . . . ,

xn
xi

)
(hat means this is omitted).

Proposition. With Ui carrying the topology induced from Pn, and An the Zariski
topology, ϕi is a homeomorphism.

Proof. Since ϕi is a bijection, enough to show ϕi identifies closed sets of Ui with closed
sets of An. Can take c = 0, ϕ = ϕ0, U = U0. Let S = K[X0, . . . , Xn], Sh be the set
of homogeneous polynomials in S. Let A = K[Y1, . . . , Yn]. Define maps α : Sn → A,
β : A → Sn by α(f(x0, . . . , xn)) = f(1, y1, . . . , yn). If g ∈ A of degree e (highest degree
term is degree e), then define

β(g) = xe0g

(
x1
x0
, . . . ,

xn
x0

)
Remark: This is a process known as homogenisation. For example, y22 − y31 − y1 + y1y2
becomes

x30

(
x22
x20

− x31
x30

− x1
x0

+
x1x2
x20

)
= x0x

2
2 − x31 − x20x1 + x0x1x2.

under β.

If Y ⊆ U is closed, then Y is the intersection Y ∩ U where Y ⊆ Pn is a closed subset,
which we can take to be the closure of Y . Y = Z(T ) for some T ⊆ Sh. Let T ′ = α(T ).
Then ϕ(Y ) = Z(α(T )).

Check:

f(a0 : . . . : an) = 0, (a0 6= 0) ⇐⇒ f

(
f,
a1
a0
, . . . ,

an
a0

)
= 0

⇐⇒ (α(f))

(
a1
a0
, . . . ,

an
a0

)
⇐⇒ α(f)(ϕ(a0, . . . , an)) = 0
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lecture 10 Still to prove that if W ⊆ An is closed, then ϕ−1(W ) ⊆ U = U0 is closed. We have
W = Z(T ′) for some set T ′ ⊆ A = K[Y1, . . . , Yn]. Then

ϕ−1(W ) = Z(β(T ′)) ∩ U

(β is homogenisation as mentioned earlier). Indeed, if g ∈ T ′,

g(b1, . . . , bn) = 0 ⇐⇒ β(g)(1, b1, . . . , bn) = 0

⇐⇒ β(g)(ϕ−1(b1, . . . , bn)) = 0
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Example. f : P1 → P3.
f(u : t) = (u3, u2t, ut2, t3)

which is well-defined. The image of this map is called the twisted cubic (recall
Example Sheet 1).

Claim: This is a projective variety.

Proof: Consider the homomorphism

φ : K[X0, . . . , X3] → K[u, t]

X0 7→ u3

X1 7→ u2t

X2 7→ ut2

X3 7→ t3

Let I = kerϕ. If g ∈ I, then g vanishes on the image of the map f . Thus Im(p) ≤
Z(I).

Conversely, note that

X0X3 −X1X2, X
2
1 −X0X2, X

2
2 −X1X3 ∈ I.

Let p = (a0 : a1 : a2 : a3) ∈ Z(I). 4 cases:

• a0 6= 0. So take a0 = 1.

a3 − a1a2 = 0, a21 − a2 = 0, a22 − a1a3 = 0.

Then p = (1, a1, a
2
2, a

3
1) = f(1 : a1). Thus p ∈ Im(f).

Similarly check cases a1 6= 0, a2 6= 0 and a3 6= 0. The conclusion is p ∈ Im(f) in
all 4 cases, so Im f ⊇ Z(I). Therefore Z(I) = Im f . Thus the twisted cubic is an
algebraic set.

Exercise: Given X ⊆ Pn an algebraic, define its ideal I(X) to be the ideal in S =
K[X1, . . . , Xn] generated by homogeneous polynomials vanishing on X. Then show

that X is irreducible if and only if I(X) is prime.

For the twisted cubic, X = Im(F ), I(X) = I = ker(ϕ). But

K[X0, . . . , X3]

kerϕ

is a subring of the integral domain K[u, t]. Hence it is an integral domain, hence kerϕ
is prime. Therefore X is a projective variety.
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Definition (Projective regular function). Let X ⊆ Pn be a projective variety. A
regular function on U ⊆ X open is a function f : U → K such that for every p ∈ U ,
there exists an open neighbourhood V ⊆ U of p and g, h ∈ S homogeneous of the
same degree with h nowhere vanishing on V , and with f |V = g

h .

Definition (Quasi-variety). A quasi-affine variety is an open subset of an affine
variety.

A quasi-projective variety is an open subset of a projective variety.

These types of varieties also have (the same) notion of regular functions.

A variety means an affine, quasi-affine, projective or quasi-projective variety.

Definition (Morphism between varieties). A morphism ϕ : X → Y between va-
rieties is a continuous function ϕ such that ∀V ⊆ Y open, f : V → K regular,
f ◦ ϕ : ϕ−1(U) → K is regular.

Remark. If X is projective, then in fact

OX(X) = {X → K regular}

is K. Thus finding morphisms from a projective variety becomes much harder, and
this is a lot of what Algebraic Geometry is about.

Example

Let Q ⊆ P3 be given by Z(xy − zw). This is a quadric surface
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Important feature: For (a : b) ∈ P1, Q contains the line

ax = bz, by = aw

(if a 6= 0, can take a = 1, (bz)y − z(by) = 0, if a = 0, z = 0, y = 0, so xy − zw = 0).
This gives a family of lines in Q parametrized by (a : b) ∈ P1> We also have ax = bw,
by = az for (a : b) ∈ P1 contained in Q.

If we take a line from one family and a line from the other, they meet at one point:

ax = bz, by = aw

cx = dw, dy = cz

has a unique solutoin up to scaling: (bd, ac, ad, bc).
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This suggests we define a map Σ : P1 × P1 → P3,

Σ((a : b), (c : d)) = (bd : ac : ad : bc)

Claim: Σ is a bijection with Q = Z(xy − zw).

Proof. Note (bd) · (ac)− (ad) · (bc) = 0, so Σ has image in Q. Injection: suppose a, c 6= 0,
so

Σ((1 : b), (1 : d)) = (bd : 1 : d : b)

so clearly injective on the set where a, c 6= 0. If a = 0,

Σ((0 : b), (c : d)) = (bd : 0 : 0 : bc) = (d : 0 : 0 : c)

doesn’t coincide with any of the previous points and is injective on the locus where a = 0.
If a = c = 0,

Σ((0 : 1), (0 : 1)) = (1 : 0 : 0 : 0)

If a 6= 0, c = 0,
Σ((a : b), (0 : 1)) = (b; 0 : a : 0)

so Σ is injective.

Surjective: Suppose (a0 : a1 : a2 : a3) ∈ Q, i.e. a0a1 − a2a3 = 0. If a0 6= 0, can take
a0 = 1, so a1 = a2a3. So

(a0 : a1 : a2 : a3) = (1 : a2a3 : a2 : a3) = Σ((a2 : 1), (a3 : 1))

Similar arguments work in the charts where a1 6= 0, a2 6= 0 or a3 6= 0.
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Moral. P1 × P1 is not a projective variety, but can be given a variety structure by
identifying it with Q, i.e. closed sets of P1 × P1 are of the form Σ−1(Z) for Z ⊆ Q
closed.

Exercise: Check this is not the product topology on P1 × P1.

regular functions on U = Σ−1(V ) for V ⊆ Q open, are functions on U of the form ϕ ◦Σ
with ϕ : V → K regular.

A generalisation:

The Segre embedding is the map

Σ : Pn × Pm → P(n+1)(m+1)−1

given by
Σ((x0 : · · · : xn), (y0 : · · · : ym)) = (xiyj) 0≤i≤n

0≤j≤m

Theorem. Σ is injective and its image is an algebraic variety.

Thus Pn × Pm acquires the structure of an algebraic variety.

Theorem. If X ⊆ Pn, Y ⊆ Pm are projective varieties, then Σ(X,Y ) is a projective
variety in P(n+1)(m+1)−1.

Moral. This allows us to thin of X × Y as a projective variety.

Remark. We can also think of the geometry of Pn × Pm by thinking about biho-
mogeneous polynomials in K[x0, . . . , xn, y0, . . . , ym], i.e. polynomials f satisfying

f(λx0, . . . , λnxn, µy0, . . . , µym) = λdµef(x0, . . . , xn, y0, . . . , ym).

We say f is bidegree (d, e). f = 0 makes sense as an equation in Pn × Pm.

Remark. If X and Y are quasi-projective, X ⊆ X ⊆ Pn, Y ⊆ Y ⊆ Pm, then
X × Y ⊆ X × Y defines an open subset of X × Y (check!). This allows us to view
X × Y as a quasi-projective variety.
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Example: The blowup of An

By the Remark, An × Pn−1 is a quasi-projective variety.

Let
X = Z({xiyj − xjyi | 1 ≤ i < j ≤ n}) ⊆ An × Pn−1.

Let ϕ : X → An be given by

ϕ((x1, . . . , xn), (y1 : · · · : yn)) = (x1, . . . , xn),

the projection. This is a morphism.

Observations:

(1) If p ∈ An \ {0}, then ϕ−1(p) consists of one point.

Proof. Let p = (a1, . . . , an), say a1 6= 0. If

((a1, . . . , an), (b1 : · · · : bn)) ∈ ϕ−1(p),

then for j 6= i, aibj − ajbi = 0, or bj = aj
ai
bi. So b1, . . . , bn are completely determined

up to scaling. Taking bi = ai, we see

ϕ−1(p) = {((a1, . . . , an), (a1 : · · · : an))}.

Defining ψ : An \ {0} → X by ψ(a1, . . . , an) = ((a1, . . . , an), (a1 : · · · : an)) is an
inverse to ϕ|X\ϕ−1(0) : X \ ϕ−1(0) → An \ {0}.

(2) ϕ−1(0) = {0} × Pn−1

(3) The points of ϕ−1(0) are in 1 − 1 correspondence with the lines through the origin
in An. n = 2 picture:

Start of

lecture 12
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Proof. A line through 0 can be parametrised by l : A1 → An,

l(t) = (a1t, . . . , ant)

for some a1, . . . , an not all 0. For t 6= 0,

ϕ−1(a1t, . . . , ant) = ((a1t, . . . , ant), (a1t : · · · : ant))
= ((a1t, . . . , ant), (a1 : · · · : an))

Thus the lift of L \ {0} is given parametrically by t 7→ ((a1t, . . . , ant), (a1 : · · · : an)),
A1 \ {0} → ϕ−1(An \ {0}) ⊆ X. This extends to all of A1 and also ϕ−1(L \ {0}) is
the image of this parametrisation.

(4) X is irreducible.

Proof. X = (X \ ϕ−1(0)) ∪ ϕ−1(0). The first set being homeomorphic to An \ {0},
and hence is irreducible. (An open subset of an irreducible space is irreducible).
But every point of ϕ−1(0) is in the closure of X \ ϕ−1(0), by the proof of (3), so
X \ ϕ−1(0) is dense in X.

Claim: If U ⊆ X is a dense open set and U is irreducible, then X is irreducible.

Proof: If X = Z1 ∪Z2, Z1, Z2 closed, then U = (Z1 ∩U) ∪ (Z2 ∩U), so U = Z1 ∩U
say. So U ⊆ Z1, so U ⊆ Z1. But U ⊆ Z1. But U = X by density of U . SO Z1 = X.

Thus the blowup X is irreducible.
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Definition (Blowing up). If Y ⊆ An is a closed subvariety with 0 ∈ Y , we define
the blowing up of Y at 0 to be

Ỹ := ϕ−1(Y \ {0}) ⊆ X,

where X = Z({xiyj − xjyi | 1 ≤ i < j ≤ n}) ⊆ An × Pn−1, ϕ : X → An is given by
projection of the first n coordinates.

Example

Let Y ⊆ A2 be given by
Y = Z(x22 − (x31 + x21)︸ ︷︷ ︸

x2
2−x2

1(x1+1)

)

X ⊆ A2 × P1, x1y2 − x2y1 = 0. Work in two coordinate patches:

U1 = {y1 6= 0}, U2 = {y2 6= 0}

In U2, we set y2 = 1, and the equation for X becomes x1 = x2y1. Then

ϕ−1(Y ) ∩ U2 = Z(x22 − (x31 + x21), x1 − x2y1) ⊆ A2 × A1 = A3.

This is isomorphic to
Z(x22 − (x32y − 13 + x22y

2
1)) ⊆ A2.

In terms of coordinate rings,

K[x1, x2, y1]

〈x22 − (x31 + x21), x1 − y1x2〉
∼=

K[x2, y1]

〈x22 − (x32y
2
1 + x22y

2
1)〉

Note
x22 − (x22y

2
1 + x22y

2
1) = x22(1− x2y

2
1 − y21)

Noet ϕ−1(0)∩U2 = Z(x2). The blowup Ỹ ∩U2 = ϕ−1(Y \ {0})∩U2 is now given by the
equation 1− x2y

2
1 − y21 in A2 (x2, y1).
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For thoroughness, we will also consider Ỹ ∩U1, where y1 = 1, x2 = x1y2, so can eliminate
x2 from equation to get

x21y
2
2 − (x31 + x21) = x21(y

2
2 − x1 − 1)

Ỹ ∩ U1 has equation y22 − x1 − 1 = 0.

Rational maps

Definition (Rational map). Let X,Y be varieties. Consider the equivalence relation
on pairs (U, f) where U ⊆ X open, and f : U → Y a morphism, with (U, f) ∼ (V, g)
if f |U∩V = g|U∩V .

Exercise: Check that this is an equivalence relation.

A rational map f : X 99K Y is an equivalence class of a pair.

Example. If X is affine, ϕ = f
g ∈ K(X), then we have a morphism ϕ : X \Z(g) →

A1. This defines a rational morphism to A1.

Start of

lecture 13 Definition (Birational map). A birational map is a rational map f : X 99K Y with
a rational inverse g : Y 99K X such that f ◦ g = idY and g ◦ f = idX as rational
maps.
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Remark. We can’t always compose rational maps. Suppose given f : X 99K Y ,
g : Y 99K Z, f : U → Y , g : V → Z. If f(U) ⊆ Y \ V , we can’t compose.
If this is not the case, then f−1(Y \ V ) ( U is a proper subset of U , and then
g ◦ f : U \ f−1(Y \ V ) → Z defines a rational map g ◦ f : X 99K Z. Note the ability
to compose may depend on the representative for f, g.

Remark. One can show that if f : X 99K Y is a birational map, then ∃U ⊆ X,
V ⊆ Y such that f is defined on U , f(U) ⊆ V and f : U → V is an isomorphism.

Definition (Birationally equivalent). We say varieties X,Y are birationally equiv-
alent if there exists a birational map f : X 99K Y . Equivalently, ∃U ⊆ X, V ⊆ Y
open subsets with U ∼= V .

Example. ϕ : X → An, the blow up of An at 0 ∈ An. This is a birational
map (morphism) since it induces an isomorphism ϕ : ϕ−1(An \ {0}) → An \ {0}.
ϕ−1 : An 99K X is not a morphism, only defined on An \ {0}.

Definition (Dominant). We say that f : X 99K Y is a dominant rational map if
whenever f̃ : U → Y is a representative for f , then f(U) is dense in Y .

Definition (Function field of a variety).The function field of a variety X is

K(X) = {(U, f) | f : U → K is a regular function}/ ∼,

where (U, f) ∼ (V, g) if f |U∩V = g|U∩V . In particular, if X is affine variety, then
this is the field of fractions of A(X). If f is dominant, we obtain

f# : K(Y ) → K(X)

(V, ϕ) 7→ (f−1(V ) ∩ U,ϕ ◦ f)

Note f−1(V ) ∩ U is non-empty since V ∩ f(U) 6= ∅ by density of f(U).
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Note. If f : X 99K Y is a birational map, with birational inverse g : Y 99K X, each
are dominant since they induce isomorphisms between open subsets. Thus we get

f# : K(Y ) → K(X), g# : K(X) → K(Y )

inverse maps, so K(X) ∼= K(Y ).

Fact: If K(X) ∼= K(Y ), then X and Y are birational to each other, i.e. ∃f : X 99K Y
birational.

Example. 0 ∈ Y ⊆ An, Ỹ → Y the blow up of Y at 0 is a birational morphism:
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4 Tangent spaces, singularities and dimension

Recall: Gvien an equation f(X1, . . . , Xn) = 0 in Rn, X the solution set, p ∈ X, the
tangent space to X is the orthogonal complement to (∇f)(p), i.e. the tangent space to
X at p is

TpX :=

{
(v1, . . . , vn) ∈ Rn

∣∣∣∣∣
n∑

i=1

vi
∂f

∂xi
(p) = 0

}
.

This is a vector subspace of Rn.

Definition (Tangent space). If X ⊆ An is an affine variety with I = I(X) =
〈f1, . . . , fr〉, f1, . . . , fr ∈ K[X1, . . . , Xn], then we define, for p ∈ X the tangent space
to X at p by

TpX =

{
(v1, . . . , vn) ∈ Kn

∣∣∣∣∣
n∑

i=1

vi
∂fj
∂xi

(f) = 0, 1 ≤ j ≤ r

}
.

The derivative is defined using the standard differentiation rules for polynomials.
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Example. I = 〈x22 − x31〉 ⊆ K[x1, x2], X = Z(I), p = (a1, a2).

T pX = {(v1, v2) ∈ K2 | v1(−3a21) + v2(2a2) = 0}

dimK T pX =

{
1 p 6= (0, 0)

2 p = (0, 0)

(assuming charK 6= 2, 3).

Definition (Dimension of an affine variety). Let X ⊆ An be an affine variety. Then
the dimension of X is

dimX = min{dimK T pX | p ∈ X}.

We say X is singular at p if dimK T pX > dimX.

Lemma. {p ∈ X | dimK T pX ≥ K} is a closed subset of X.

Proof.

T pX = ker


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fr
∂x1

· · · ∂fr
∂xn


︸ ︷︷ ︸

Kn→Kr
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where I(X) = 〈f1, . . . , fr〉. But dimkerM + rankM = n (rank-nullity). So

dimT pX ≥ K ⇐⇒ n− rank ≥ K

⇐⇒ rank ≤ n−K

If A is an r × n matrix, then rank(A) ≥ k + 1 if and only if there is a (k + 1)× (k + 1)
submatrix of A whose determinant is non-zero. So rank J ≤ n − k if and only if all
(n − k + 1) × (n − k + 1) minors (determinants of (n − k + 1) × (n − k + 1) matrices)
vanish. Thus the set:

{p ∈ X | dimT pX ≥ k} = Z(f1, . . . , fr, all (n− k + 1)× (n− k + 1) minors of J).

Hence this set is closed.

Start of

lecture 14 Recall: p ∈ X is singular if dimK T pX > dimX = inf{dimT pX}.

The above lemma tells us that the set of singular points of X is a proper closed subset.

Example. y2 − x3 = 0, J = (2y,−3x2)

vanishes when x = y = 0.
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Example. x2 + y2 − z2 = 0, J = (2x, 2y,−2z), vanishing at the origin.

Intrinsic characterisation of the tangent space

Let X be an affine variety. For p ∈ X, define ϕp : A(X) → K to be the K-algebra
homomorphism given by ϕp(f) = f(p).

Definition (Derivation centred at p). A derivation centred at p is a map D :
A(X) → K such that

(1) D(f + g) = D(f) +D(g)

(2) D(fg) = ϕp(f)D(g) +D(f)ϕp(g) (the RHS can also be written as f(p)D(g) +
g(p)D(f)). (Leibniz rule).

(3) D(a) = 0 for a ∈ K.

Denote Der(A(X), p) to be the set of derivations centred at p.

Note. Der(A(X), p) is a K-vector space (check D1 + D2, aD are derivations if
D1, D2, D are derivations).

Theorem. T pX ∼= Der(A(X), p) as K-vector spaces for p ∈ X.
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Proof. Given (v1, . . . , vn) ∈ T pX, so if I(X) = 〈f1, . . . , fr〉,
∑

i vi
∂fj
∂xi

(p) = 0 for all j.
Define

K[x1, . . . , xn] → Kf 7→
∑
i

vi
∂f

∂xi
(p)

This vanishes on elements of I(X), which are of the form f =
∑r

j=1 gjfj for gj ∈
K[x1, . . . , xn]. Then

f 7→
n∑

i=1

vi

 r∑
j=1

(
∂fj
∂xi

· gj +
∂gj
∂xi

fj

)
(p)

 (fj(p) = 0 for all j, since p ∈ X)

=
∑
i,j

(
vi
∂fj
∂xi

gj(p)

)

=
∑
j

gj(p)

(∑
i

vi
∂fj
∂xi

(p)j

)
= 0

Thus we get a well-defined K-linear map

Dr :
K[x1, . . . , xn]

I(X)
= A(X) → K.

Check easily that this is a derivation. Given D ∈ Der(A(X), p), define vi = D(xi). By
repeated use of the Leibniz rule,

D(f) =

n∑
i=1

vi
∂f

∂xi
(p).

Example:

D(x1x2) = D(x1) · x2(p) + x1(p)D(x2)

= v1x2(p) + v2x1(p)

= v1
∂(x1x2)

∂x1
(p) + v2

∂(x1x2)

∂x2
(p)

Thus D(fj) =
∑

i vi
∂fj
∂xi

(p), but fj ∈ I(X), so D(fj) = 0. Thus
∑

i vi
∂ff
∂xi

(p) = 0 for all
j, so (v1, . . . , vn) ∈ T pX.

Remark. Singular points and tangent spaces are intrinsic to affine varieties.
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Definition (Local ring). Let X be a variety, p ∈ X. We define the local ring to X
at p to be

OX,p = {(U, f) | U is an open neighbourhoof of p, f : U → K a regular function}/ ∼

where (U, f) ∼ (V, g) if f |U∩V = gU∩V . This is a subring of K(X), the field of
fractions.

Example.

(1) X ⊆ An is an affine variety,

OX,p =

{
f

g
∈ K(X)

∣∣∣∣∣ g(p) 6= 0, f, g ∈ A(X)

}
.

(2) X ⊆ Pn a projective variety. Then

OX,p =

{
f

g

∣∣∣∣∣ f,g∈K[x1,...,xn]/I(X),g(p)6=0,
f,g homogeneous of the same degree

}

which is a subring of

K(X) =

{
f

g
| f,g∈K[x0,...,xn]/I(X),g 6=0
f, g homogeneous of the same degree

}

Remark. The definition of OX,p makes it intrinsic, i.e. not dependent on the
embedding.

Remark. OX,p is a ring ((U, f) + (V, g) = (U ∩ V, f |U∩V + g|U∩V ) etc). We define

mp = {(U, f) ∈ OX,p | f(p) = 0}.

This is an ideal, and every element of OX,p \mp is invertible. Thus mp is the unique
maximal ideal of OX,p.

Definition (Local ring). A ring A with a unique maximal ideal is called a local
ring.
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Start of

lecture 15 Theorem. If X ⊆ An is an affine variety then T pX ∼= (mp/m
2
p)

∗ where V ∗ is the
dual of the K-vector space V .

Proof. Note that there is an isomorphism

OX,p/mp → K
f 7→ f(p)

This map is surjective since constants are regular functions, and injective by definition of
mp. Thus we can define the K-vector space on mp/m

2
p by identifying K with OX,p/mp,

and
(f +mp) · (g +m2

p) = (f · g +m2
p).

We will show Der(A(X), p) ∼= (mp/m
2
p)

∗. Given D ∈ Der(A(X), p), we define

ϕD : mp/m
2
p → K

defined as follows: for f, g ∈ A(X), g(p) 6= 0, f(p) = 0, (X \ Z(g), fg ) ∈ mpOX,p. Set

ϕD

(
f

g

)
= “D

(
f

g

)
”

=
g(p)D(f)− f(p)D(g)

g(p)2

=
D(f)

g(p)

since f(p) = 0. Note if f1
g1
, f2g2 ∈ mp, then

ϕD

(
f1f2
g1g2

)
=
f2(p)

g2(p)
· ϕD

(
f1
g1

)
+
f1(p)

g1(p)
ϕD

(
f2
g2

)
= 0.

Thus ϕD(m
2
p) = 0, so we obtain a well-defined map ϕD : mp/m

2
p → K.

Conversely, if given ϕ : mp/m
2
p → K, p = (a1, . . . , an) ∈ X ⊆ An. Note xi − ai ∈ mp for

all i, and we define
Dϕ(xi − ai) = ϕ(xi − ai).

This is sufficient to determine Dϕ as before.
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Example. Suppose X = An, p = 0. Then

mp/m
2
p = (x1, . . . , xn)︸ ︷︷ ︸

⊆K[x1,...,xn]

/(x1, . . . , xn)
2

(exercise).

Definition (Zariski tangent space). If X is any variety, and p ∈ X, then the Zariski
tangent space to X at p is

TpX = (mp/m
2
p)

∗,

where mP ⊆ OX,p is the maximal ideal.

Theorem. Any variety has an open cover by affine varieties (i.e. open subsets
isomorphic to affine varieties).

Note. If X ⊆ Pn is projective, {Ui ∩X | 0 ≤ i ≤ n} (Ui = Pn \ Z(xi)) is a cover of
X by affines.

Proof. Consider the most general case where X is a quasi-projective variety, X ⊆ Pn.
Each Ui ∩ X is a quasi-affine variety. So enough to show each quasi-projective variety
is covered by affine varieties. Let p ∈ X ⊆ An. Will find an affine neighbourhood of
p in X. Then X ⊆ An, the closure, is an affine variety, and Z = X \ X is closed in
X. Choose f ∈ I(Z) with f(p) 6= 0. Then 〈f〉 ⊆ I(X), so Z(f) ⊇ Z(I(Z)) = Z, so
p ∈ X \ Z(f) ⊆ X \ Z = X. But X \ Z(f) can be identified with the closed subset of
An+1 given by Z(I(X), yf − 1) as in Example Sheet 1.

Remark. The definition of dimension of singular points goes through unchanged
with the Zariski tangent space.

dimX = inf{dimT pX | p ∈ X}.

p ∈ X is singular if dimX < dimT pX. By applying the above theorem, in fact
the set of singular points of an arbitrary variety X is closed in X. This also shows
dimension and singularity are intrinsic to X.
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Alternative definitions of dimension (we won’t prove stuff here)

Definition (Transcendence degree). If F/K is a finitely generated field extension,
then the transcendence degree of F/K, written TrdegK F is the cardinality of any
transcendence basis.

Definition (Krull dimension of a ring). If A is a ring, the Krull dimension of A is
the largest n such that there exists a chain of prime ideals

P0 ( P1 ( · · · ( Pn ⊆ A.

Definition (Krull dimension of a topological space). If X is a topological space, the
Krull dimension of X is the largest n such that there exists a chain of irreducible
subsets

Z0 ( Z1 ( · · · ( Zn ⊆ X.

Start of

lecture 16 Remark. If K is algebraically closed, then dimK[x1, . . . , xn] agrees with the Krull
dimension of An. If X ⊆ An is an affine variety, then dimA(X) equals the Krull
dimension of X (check: there exists a 1− 1 correspondence between prime ideals of
A(X) and irreducible subsets of X).

Theorem. If X is a variety, then

dimX = TrdegKK(X) = Krull dimension of X = Krull dimension of OX,p

for p ∈ X.

Proof. “Dimension theory” – non-examinable proof.

Example. In Example Sheet 1, we showed that if X = Z(f) ⊆ A2, then the clsoed
subsets of X are X and finite subsets of X. Thus the Krull dimension of X is 1.
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5 Curves

Definition (Algebraic curve). An (algebraic) curve is a variety C with dimC = 1.

Definition. Let C ⊆ Pn be a projective non-singular curve. We define DivC to
be the free abelian group generated by the points of C. This is called the group of
divisors of C.

An element of DivC is of the form
∑n

i=1 aipi, ai ∈ Z, pi ∈ C.

Example. Consider C = P1. An element of K(C) is the raito f(x0,x1)
g(x0,x1)

where f, g
are homogeneous polynomials of the same degree. we can write

f

g
=

∏
i(bix0 − aix1)

mi∏
j(djx0 − cjx1)nj

∑
mi = d =

∑
nj . Let Pi = (ai : bi), Qj = (cj : dj). f

g has a zero of order mi at Pi

and a pole of order nj at Qj . The divisors of zeroes and poles of f
g is(

f

g

)
=
∑
i

miPi −
∑
j

njQj .

Definition (Principal divisor). We call a divisor D ∈ DivC principal if it is of the
form

(
f
g

)
. Let PrinC ⊆ DivC be the subgroup of principal divisors and define the

class group of C to be
ClC =

DivC

PrinC
.

Example. We see ClP1 = Z.

Goal: Given any non-singular curve, f ∈ K(X), want to define the order of 0 or pole
at p ∈ X.

Lemma. Let A be a ring, M a finitely generated A-module and I ( A an ideal such
that I ·M =M . Then there exists x ∈ A such that x ≡ 1 (mod I) and x ·M = 0.
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Proof. Recall if we have φ : M → M an A-module homomorphism with φ(M) ⊆ IM ,
then there exists a1, . . . , an ∈ I such that

φn + a1φ
n−1 + · · ·+ an = 0.

Take ϕ to be the identity map. So this means multiplication by

1 + a1 + a2 + · · ·+ an

is the zero homomorphism of M . Then taking this to be x, x ≡ 1 (mod I) and xM =
0.

Theorem (Nakayama’s lemma). Let A be a local ring with maximal ideal m. Let
I ⊆ m be an ideal. Let M be a finitely generated A-module. Then I ·M = M
implies M = 0.

Proof. There exists x ∈ A with x ·M = 0 and x ≡ 1 (mod I), so x ≡ 1 (mod m). So
x /∈ m. But this implies x is invertible: otherwise, 〈x〉 6= A and hence 〈x〉 ⊆ m. Then
M = x−1 · (xM) = 0.

Corollary. Let A be a local ring with maximal ideal m, M a finitely-generated
A-module, I ⊆ m an ideal. Then if M = IM +N for a submodule N ⊆M , we have
M = N .

Proof. Note M/N satisfies

I

(
M

N

)
=
IM +N

N
.

If M = IM +N , we get I
(
M
N

)
= M

N , so M
N = 0.

Corollary. Let A be a local ring with m its maximal ideal. Let x1, . . . , xn ∈M be
a set of elements of a finitely generated module M such that the images x1, . . . , xn ∈
M/mM form a basis for M/mM as an A/m-vector space. Then x1, . . . , xn generate
M as an A-module.

Remark. A/m is a field since m is maximal. Further, M/mM is a vector space
over A/m via

(a+m)(α+mM) = aα+mM,

which is well-defined.
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Proof. Let N ⊆ M be the submodule of M generated by x1, . . . , xn. Then the compo-
sition

N ↪→M →M/mM

is surjective. Thus M = N +mM . So by the previous Corollary, M = N .

Start of

lecture 17 Corollary. Let C ⊆ Pn be a non-singular projective curve. Then mp ⊆ OC,p is a
principal ideal.

Proof. We begin by proving OC,p is Noetherian. Replace C by an open affine neighbour-
hood of p ∈ C, C ′. This does not change OC,p, i.e. OC,p = OC′,p. Then

OC′,p =

{
f

g

∣∣∣∣ f, g ∈ A(C ′) =
K[x1, . . . , xn]

I(C ′)

}
⊆ K(C ′).

If J ⊆ OC′,p, then

J =

{
f

g

∣∣∣∣ f ∈ A(C ′) ∩ J, g ∈ A(C ′), g(p) 6= 0)

}
⊆ OC′,p.

Prove ⊆: if f/g ∈ J , then g ·
(
f
g

)
= f ∈ J , so f ∈ A(C ′)∩J . Prove ⊇: if f ∈ A(C ′)∩J ,

then f
g = 1

g · f ∈ J (if g(p) 6== 0).

Now K[x1, . . . , xn] is Noetherian by Hilbert’s basis theorem. HenceA(C ′) = K[x1, . . . , xn]/I(C
′)

is Noetherian. Hence A(C ′)∩J is finitely generated, and by the equation for J , the set of
generators of A(C ′) generate J as an ideal in OC′,p. Since C is non-singular of dimension
1,

1 = dimT pC = dim(mp/m
2
p)

∗.

Also, OC,p/mp
∼=→ K, f +mp 7→ f(p). Thus mp/m

2
p is a 1-dimensional vector space over

OC,p/mp, hence by the previous Corollorary to Nakayama’s lemma, mp is generated
by the lift of a 1 element basis of mp/m

2
p. Thus mp is principal (we need mp finitely

generated here!).

53

https://notes.ggim.me/AG#lecturelink.17


Remark. Let t ∈ mp be a generator. We get a chain of ideals

· · · ⊆ (t3) ⊆ (t2) ⊆ (t) = mp ⊂ OC,p.

Notice if (tk+1) = (tk), then mp · (tk) = (tk). But then Nakayama’s lemma tells us
that (tk) = 0. But tk 6= 0 since OC,p is an integral domain.

Also, consider I =
⋂∞

k=1(t
k). Clearly t · I = I, so mp · I = I, so I = 0.

Consequence: If f ∈ OC,p\{0}, then there exists a unique ν ≥ 0 such that f ∈ (tν)
but f /∈ (tν+1). Define ν : OC,p \ {0} → Z by ν(f) = ν as above.

Remark.

• ν(f · g) = ν(f) + ν(g).

• ν(f + g) ≥∈ {ν(f), ν(g)} with equality if ν(f) 6= ν(g).

Can extend ν to a map

ν : K(C) \ {0} =: K(C)× → Z

by

ν

(
f

g

)
= ν(f)− ν(g).

ν is an example of a discrete valuation.

Definition (Discrete valuation). Let K be a field. A discrete valuation on K is a
function ν : K× → Z such that

(1) ν(f · g) = ν(f) + ν(g).

(2) ν(f + g) ≥ min{ν(f), ν(g)} with equality if ν(f) 6= ν(g).
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Definition (Discrete valuation ring). Given a discrete valuation, we define the
corresponding discrete valuation ring (DVR) by

R = {f ∈ K× | ν(f) ≥ 0} ∪ {0}

which is a subring of K. We also define

m = {f ∈ K× | ν(f) ≥ 1} ∪ {0}.

Note m is the unique maximal ideal of R: if f ∈ R\m, then ν(f) = 0, so ν(f−1) = 0,
so f−1 ∈ R.

Example.

(1) R = OC,p ⊆ K = K(C). ν the discrete valuation we defined.

(2) Let p ∈ Z be prime, K = Q. Any rational number can be written as a
bp

ν with
(a, p) = 1, (b, p) = 1. Then define

νp

(a
b
pν
)
= ν.

This is a discrete valuation, with discrete valuation ring

Z(p) =
{a
b
∈ Q | p - b

}
.

(3) K = K(x), a ∈ K. Define

ν

(
(x− a)ν

f

g

)
= ν

where f, g are relatively prime to x−a. Here the discrete valuation ring is OA1,a.

(4) Let K = K(x),

ν

(
f

g

)
= deg g − deg f.

This is the “order of 0 at ∞”.

Setup: C ⊆ Pn a projective non-singular curve. Each point p ∈ C gives a discrete
valuation νp : K(C)× → Z with discrete valuation ring OC,p. For f ∈ K(C)×, we define
the divisor of zeroes and poles of f to be

(f) :=
∑
p∈C

νp(f)p
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Next time: need to check that this is a finite sum!

Start of

lecture 18 Let C be a projective non-singular curve.

Definition (Divisor of zeroes and poles). For f ∈ K(C) \ {0}, the divisor of zeroes
and poles of f is

(f) =
∑
p∈C

νp(f) · p.

Remark. Note f is represented on some open subset U ⊆ C by g
h , g, h homogeneous

polynomials. We shrink U by removing Z(g), Z(h). Now, if p ∈ U , f = g
h ∈ OC,p is

a regular function with f(p) 6= 0, so νp(f) = 0. Thus the sum defining (f) is a sum
over points of C \ U , which is a finite set.

(Here we use dimC = 1, so that irreducible sets are C and singleton sets).

Definition (Group of principal divisors). The group of principal divisors on C is

PrinC = {(f) | f ∈ K(C) \ {0}}.

This is a subgroup since:

• (f · g) = (f) + (g)

• (f−1) = −(f).

Definition (Divisor class group). The (divisor) class group is

ClC :=
DivC

PrinC
.

Definition (Linearly equivalent). If D,D′ ∈ DivC satisfy D −D′ = (f) for some
f ∈ K(C)×, then we say D is linearly equivalent to D′, and write

D ∼ D′.

Digression: Extending morphisms to projective space. C a projective non-singular
curve, ∅ 6= U ⊆ C an open subset. f0, . . . , fn regular functions on U without a common
zero.
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Then we obtian a morphism

f : U → Pn

p 7→ (f0(p) : · · · : fn(p))

Theorem. f : U → Pn extends to a morphism f : C → Pn.

Proof. Suppose either fi has a pole at p ∈ C (i.e. νp(fi) < 0) or all fi are zero at p. Let

m = min{νp(fi) | 0 ≤ i ≤ n}.

Let t be a local parameter at p, i.e. a generator of mp ⊆ OC,p. So νp(t) = 1. Then
νp(t

−mfi) = νp(fi) − m. Thus νp(t−mfi) = 0 for some i and νp(t
−mfj) ≥ 0. Thus

t−mf0, . . . , t
−mfn ∈ OC,p, and these functions don’t simultaneously vanish at p. Hence

in some neighbourhood V of p, we obtain a morphism fp : V → Pn given by q 7→
((t−mf0)(p) : · · · : (t−mfn)(p)). This agrees with f on U ∩ V by rescaling.

Proposition. Let f : X → Y be a non-constant morphism between projective
non-singular curves. Then

(1) f−1(q) is a finite set for all q ∈ Y

(2) f induces an inclusion K(Y ) ↪→ K(X) such that [K(X) : K(Y )] is finite. We
call [K(X) : K(Y )] the degree of f .

Proof.

(1) f−1(q) ⊆ X is closed, and since dimX = 1, either f−1(q) is finite, or f−1(q) = X.
The latter contradicts f being non-constant.

(2) If ϕ ∈ K(Y ), then ϕ defines a regular function on some open U ⊆ Y . ϕ : U → K.
ϕ◦f makes sense provided f(X) 6⊆ Y \U . But f(X) is irreducible (point set topology
exercise), so f is constant if f(X) ⊆ Y \ U . Thus ϕ ◦ f makes sense as a rational
function on X. Thus K(Y ) → K(X) exists and is automatically an injection since
both are fields. Omit proof of finiteness.
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Definition (Degree of ramification). Suppose f : X → Y is a non-constant mor-
phism between projective non-singular curves. Let p ∈ Y , mp = (t) ⊆ OY,p, t a local
parameter. Let q ∈ f−1(p). Then t ◦ f ∈ OX,q. Define

eq := νq(t ◦ f),

the degree of ramification of f at q.

Theorem. Let f : X → Y a non-constant morphism between projective non-singular
curves. Then for p ∈ Y , ∑

q∈f−1(p)

eq = deg f

is the degree of f .

Proof. Omitted, but the theorem statement is crucial.

Example.

(1) charK 6= 2, f : P1 → P1, (u, v) 7→ (u2 : v2). Setting v = 1, this gives a
morphism A1 → A1 given by u 7→ u2. If p ∈ A1, t = u− p is a local parameter
at p. t ◦ f = u2− p = (u− q)(u+ q) where q2 = p. Then eq = e−q = 1. We have
deg f = eq + e−q = 2.

(2) If p = 0, f−1(p) = {0}, e0 = ν0(u
2) = 2. Function fields, K(P1) = K(u),

K(u) → K(y), u 7→ u2 degree 2.

(3) charK = p, f : P1 → P1, (u : v) 7→ (up : vp). Set v = 1, u 7→ up. f−1(q) = {r}
with rp = q, q ∈ A1. Then t = u− q. t ◦ f = up − q = (u− r)p.

Application: Let X be a projective non-singular curve, f ∈ K(X)×. This gives a
morphism U → P1 where U is the open set in which f is singular. This extends to
f : C → P1, non-constant as long as f /∈ K.

Start of

lecture 19 Let C be a projective non-singular curve, and f ∈ K(C)×. f : C → P1, p 7→ (f(p) : 1),
or writing f = g

h , g, h homogeneous polynomials of the same degree, then f : C → P1,
p 7→ (g(p) : h(p)).

58

https://notes.ggim.me/AG#lecturelink.19


Then
(f) =

∑
p∈f−1((0:1))

epp−
∑

q∈f−1((1:0))

eqq.

Thus, if we define
deg

∑
p∈C

app =
∑
p∈C

ap,

then deg(f) = deg f − deg f = 0. Thus every principal divisor is degree 0.

Thus the homomorphism deg : DivC → Z descends to deg : ClC → Z, and this is
surjective as deg p = 1.

Linear systems

Definition (Effective divisor). Let D ∈ DivC, D =
∑

i nipi. We say D is effective
if ni ≥ 0 for all i. Define

L(D) = {f ∈ K(C)× | D + (f) is effective} ∪ {0}.

Lemma. L(D) is a vector space.

Proof. f ∈ L(D) implies cf ∈ L(D) for c ∈ K, c 6= 0, since (f) = (cf) = (c) + (f). If
f, g ∈ L(D), f, g non-zero, f + g 6= 0, then

(f + g) =
∑
p

νp(f + g)p

and νp(f + g) ≥ min{νp(f), νp(g)}. Thus if D + (f), D + (g) are effective, then so is
D + (f + g).

Theorem. L(D) is a finite dimensional vector space and L(0) = K. Furthermore,
dimK L(D) ≤ degD + 1.

Proof. Induction on degD. If degD < 0, then there are no effective divisors linearly
equivalent to D, so L(D) = 0. Suppose degD ≥ 0, write D =

∑
i nipi and pick

p ∈ C \ {p1, . . . , pn}. Consider the map

λ : L(D) → K, f 7→ f(p).
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which makes sense since νp(f) ≥ 0 for f ∈ L(D), since otherwise the coefficient of p in
D+(f) is negative. If f ∈ kerλ, then f ∈ mp ⊆ OC,p, so νp(f) ≥ 1. Thus f ∈ L(D−P ).
Note also L(D −D) ⊆ L(D), since if D − P + (f) is effective then so is D − (f). Thus
L(D − P ) = kerλ, and L(D)

L(D−P ) ⊆ K. Thus dimK L(D) ≤ dimL(D − P ) + 1. Thus by
induction, dimK L(D) ≤ degD + 1.

Thus dimL(0) ≤ 1, but K ⊆ L(D) since 0 + (c) = 0. So dimL(0) = 1.

Remark. L(0) = {f : C → K regular}, and hence regular functions on C are
constant.

Definition (Complete linear system). Given a divisor D, we define the complete
linear system associated to D to be

|D| = {D′ ∈ DivC | D′ effective, D′ ∼ D}

=
L(D) \ {0}

∼
(f ∼ λf)

= P(L(D))

a projective space.

Morphisms to projective space

Let D be a divisor, f0, . . . , fn ∈ L(D) with not all fi being 0. This gives a morphism
f : C → Pn, p 7→ (f0(p) : · · · : fn(p)).

Definition (f∗H). Let f : C → Pn be a morphism. Let H ⊆ Pn be a hyperplane
with f(C) 6⊆ H. We define f∗H ∈ DivX as follows. Let H = Z(ϕ) with ϕ a linear
homogeneous polynomial and choose ψ linear homogeneous so that H ′ = Z(ψ)
satisfies f−1(H) ∩ f−1(H ′) = ∅. Define

f∗H =
∑

p∈f−1(H)

νp

(
ϕ

ψ
◦ f
)
p
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Remark. This is independent of the choice of ψ. For example

ϕ

ψ′ =
ϕ

ψ

ψ

ψ′ .

Relations to morphisms

Let f0, . . . , fn ∈ L(D) to have the properties:

(1) The fi aren’t all 0.

(2) ∀p ∈ C, ∃a0, . . . , an ∈ K such that the coefficient of p in D + (
∑

i aifi) is 0.

As above, we get a morphism f : C → Pn. Let H ⊆ Pn be given by an equation∑
i aixi = 0.

Start of

lecture 20 Theorem. f∗H = D + (
∑

i aifi).

Proof. Let p ∈ f−1(H). Suppose the coefficient of p in D is 0. Let ϕ =
∑

i aixi. Let
b0, . . . , bn be such that p /∈ Z(

∑
i bixi). Let ψ =

∑
i bixi. Then the coefficient of p in

f∗H is

νp

(
ϕ

ψ
◦ f
)

Necessarily, f0, . . . , fn do not have a pole at p, since otherwise D + (fi) has a negative
coefficient for p. Thus, f0, . . . , fn are regular on a neighbourhood of p, so we can write
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f = (f0 : . . . : fn) in this neighbourhood. Now

νp

(
ϕ

ψ
◦ f
)

= νp

(∑
i aifi∑
i bifi

)
= νp

(∑
i

aifi

)

since
∑

i bifi is non-vanishing and regular at p. But νp (
∑

i aifi) is the coefficient of p in
D + (

∑
i aifi). If p appears in D with coefficient m< then

νp

(∑
i

bifi

)
≥ −m

for any b0, . . . , bn ∈ K. There is also some choice of b0, . . . , bn with νp (
∑

i bifi) = −m
by assumption (2). In a neighbourhood of p, the morphism f is given by

f = (tmf0 : · · · : tmfn)

where t is a local parameter at p. The coefficient of p in f∗H is

νp


∑

i ait
mfi∑

i

bit
mfi︸ ︷︷ ︸

νp=0


= νp

(∑
i

ait
mfi

)
= m+ νp

(∑
i

aifi

)
,

which is the coefficient of p in D + (
∑

i aifi). Thus f∗H = D + (
∑

i aifi).

Picture so far: f0, . . . , fn span a subspace V ⊆ L(D). This gives a linear subspace

D =
V \ {0}

K1
= P(V ) ⊆ |D| = P(L(D)).

We call D the linear system.

Definition (Support of a divisor). For a divisor D =
∑n

i=1 aipi with ai 6= 0, we
define the support of D to be Supp(D) = {p1, . . . , pn}.

Definition (Base-point free). We say D = P(V ) is base-point free if ∀p ∈ C,
∃D′ ∈ D (where we identify [f ] ∈ D with D + (f)) with p /∈ SuppD′.

(This is assumption (2): ∀p ∈ C, there exists b0, . . . , bn such that p /∈ Supp(D +
(
∑

i bifi))).
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In this case, the theorem applies, and we obtain f : C → Pn with the property that

D = {f∗H | H ⊆ Pn hyperplane}.

Converse: Suppose f : L → Pn is a morphism. Set D = f∗Z(x0). (Assume f(C) ⊆
Z(x0)). Let fi ∈ K(C) be given by

ri =
x1
x0

◦ f,

a rational function on C which is regular on C \f−1(Z(x0)). Then f = (f0 : f1 : · · · : fn)
on C \ f−1(Z(x0)) and hence f is induced by the linear system D ⊆ |D|, D = P(V ) with
V spanned by f0, . . . , fn ∈ L(D).

By the previous theorem, f∗Z(
∑

i aixi) = D+(
∑

i aifi) ∈ D. Note D is base-point free,
since given p ∈ C, can find a hyperplane H ⊆ Pn with f(p) /∈ H, so p /∈ Supp f∗H, while
f∗H ∈ D.

Remark. If f : C ↪→ Pn is an embedding, then f∗H can be viewed as “H ∩C iwth
multiplicaion”, and

D = {H ∩ C | H ⊆ Pn hyperplane}.

Remark. Can also pull-back hypersurfaces H ⊆ Pn, with H = Z(ϕ), ϕ a homoge-
neous polynomial of degree d, as follows. For p ∈ f−1(H), choose a homogeneous
polynomial ψ which doesn’t vanish at f(p) and take the coefficient of p in f∗H to
be

νp

(
ϕ

ψ
◦ f
)
.

Definition (Degree of a curve morphism). Let f : C → Pn be a morphism, L ⊆ Pn

a hyperplane, f(C) 6⊆ L. The degree of f is the degree of the divisor f∗L. This is
well-defined since f∗L, f∗L′ are linearly equivalent and linearly equivalent divisors
have the same defgree.

Example. Let f : C ↪→ P2 identify C with Z(ϕ) where ϕ has degree d. In this
case, the degree of f is d. (Check this: need to compare coefficients in f∗L with the
multiplicativity of zeroes of ϕ|L).
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Theorem. Let f : C → Pn be a morphism. H ⊆ Pn a hypersurface with f(C) 6⊆ H.
H = Z(ϕ). degϕ = e. Then deg f∗H = (deg f) · e.

Proof. Choose some xi such that f(C) 6⊆ Z(xi). Then ϕ
xe
i

is a rational function in Pn

and ϕ
xe
i
◦ f is a rational function on C. Assume H ∩ L ∩ f(C) = ∅. Then(

ϕ

xei
◦ f
)

=
∑

p∈f−1(H)

νp

(
ϕ

xei
◦ f
)
p−

∑
p∈f−1(L)

(
xei
ϕ

◦ f
)

= f∗H − ef∗L

Since the degree of a principal divisor is 0, we get deg f∗H = e · deg f∗L.

Start of

lecture 21 Remark. This is known as Bézout’s Theorem. This is usually expressed as follows:

Let C,C ′ ⊆ P2 be curves of degrees d and e respectively. Then the number of points
in C ∩ C ′ (assuming C 6= C ′) “counted with multiplicities” is d · e.

For example, if C is non-singular, f : C ↪→ P2 an embedding, then d = deg f and
deg f∗C ′ = d · e. So if p ∈ C ∩ C ′, its multiplicity is the coefficient of p in f∗C ′. If
C is singular, need a more subtle definition of multiplicity.

In general, given a divisor D on a projective non-singular curve C, we would like to
understand when |D| induces an embedding C in projective space.

In other words, suppose |D| is base-point free, i.e. ∀p ∈ C, there exists D′ ∈ |D| with
p /∈ SuppD′. Then by choosing f0, . . . , fn ∈ L(D) spanning L(D), we obtain a morphism
f = (f: · · · : fn) : C → Pn. When is this an embedding? We can alsu use a sub-linear
system D = P(V ) ⊆ |D| = P(L(D)) and choose f0, . . . , fn ∈ V a spanning set.

Theorem. Suppose a linear system D ⊆ |D| is base-point free. Then the induced
morphism f : C → Pn is an embedding if and only if

(1) D separates points: i.e. ∀P,Q ∈ C distinct, there exists a D′ ∈ D such that
P ∈ SuppD′ and Q /∈ SuppD′. (This is equivalent to injectivity of f).

(2) D separates vectors: i.e. ∀P ∈ C, ∃D′ ∈ D such that the coefficient of P in D′

is 1.
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Definition (Very ample divisor). We say a divisor D is very ample if |D| induces
an embedding into some projective space.

Theorem. D is very ample if ∀P,Q ∈ C, not necessarily distinct, we have

dim |D − P −Q| = dim |D| − 2.

Proof. Recall dim |D| = dimL(D)− 1. For any P ∈ C, we have a map L(D) → K. This
is constructed as follows. Suppose the coefficient of P in D is n. Then if f ∈ L(D), then
νp(t

n · f) = n+ νp(f) ≥ 0, where t is a local parameter at p. So tn · f ∈ OC,p. Thus we
define

evp : L(D) → K
f 7→ (tn · f)(p)

If f ∈ ker(evp), we have νp(tn · f) ≥ 1, so νp(f) > −n. Hence the coefficient of p in
D = (f) is at least 1. Thus (D − p) + (f) is effective, so f ∈ L(D − P ). Conversely,
if f ∈ L(D − P ), (D − P ) + (f) is effective, so νp(f) ≥ −n + 1, so νp(t

n · f) ≥ 1, so
f ∈ ker(evp). Thus L(D − P ) = ker evp. If |D| is base-point free, then evp : L(D) → K
is surjective ∀p and conversely. So

dim |D − P | = dimL(D − P )− 1 = dimL(D)− 2 = dim |D| − 1

for all p if and only if |D| is base-point free. Now |D| separates points and tangent
vectors if and only if |D − P | is base-point free ∀p ∈ C. Indeed, if D′ ∈ |D − P | does
not have Q in its support, then D′ + P separatest P and Q if Q 6= P . If P = Q, and
P /∈ SuppD′, then D′ + P has coefficient 1 for P . Now

dim |D − P −Q| = dim |D − P | = 1

if and only if |D − P | is base-point free so |D| is very ample and base-point free if and
only if

dim |D − P −Q| = dim |D − P | − 1 = dim |D| − 2 ∀P,Q.
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Moral. If we can control dimL(D), then we know a lot about embeddings.
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6 Differentials and the Riemann-Roch Theorem

Definition (ΩB/A). Let B be a ring and A ⊆ B a subring. We define

ΩB/A =
free B-module generated by symbols db for b ∈ B

submodule R of relations

where R is the submodule with generators:

d(bb′)− bdb′ − b′db ∀b, b′ ∈ B

d(b+ b′)− db− db′ ∀b, b′ ∈ B

da ∀a ∈ A

Start of

lecture 22 Example. ΩK[x]/K For f ∈ K[x], df = f ′(x)dx. Thus ΩK[x]/K is the free K[x]-
module with one generator dx.

Similarly ΩK(x)/K, f ∈ K(x), df = f ′(x)dx. Thus ΩK(x)/K is the 1-dimensional
vector space over K(x) with basis dx.

Proposition. If L/K is a separable algebraic field extension, then ΩL/K = 0.

A field extension L/K is separable algebraic if everything in L is a solution to some
irreducible polynomial equation f(x) = 0 with f(α) ∈ K[X], and f ′(α) 6= 0, i.e. α is
not a multiple root.

Proof. Given α ∈ L, f(x) ∈ K[x] with f(α) = 0, f ′(α) 6= 0, then 0 = f(α) implies
0 = d(f(α)) = f ′(α)dα, so dα = 0 since f ′(α) 6= 0.

Lemma. Let C be a curve, p ∈ C, and t a local parameter for C at p. Then

ΩK(C)/K = K(C)dt.

Proof. t local parameter implies t is not a constant function, and hence defines a non-
constant map t : C → P1, inducing a finite field extension K(P1) = K(t) → K(C). This
extension is separable (proof omitted, not required if charK = 0. The idea is that if the
extension is not separable, then charK | eQ for all Q ∈ C. However, since t is a local
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parameter at p, ep = 1). If α ∈ K(C), then there exists f ∈ K(t)[x] such that f(α) = 0,
f ′(α) = 0. Write

f(x) =
∑
i≥0

fi(t)x
i

for some f(t) ∈ K(t). Then

0 = d(f(α)) = d

∑
i≥0

fi(t)α
i


=

∑
i≥0

f ′i(t)α
i

 df +

∑
i≥

ifi(t)α
i−1


︸ ︷︷ ︸

=f ′(α)6=0

dα

Thus we can solve for dα, getting dα = gdt ∈ K(C)dt.

Definition (νp(ω)). Let C be a projective non-singular curve, ω ∈ ΩK(C)/K, p ∈ C.
We define νp(ω) as follows. Let t ∈ OC,p a local parameter and write w = fdt for
f ∈ K(C). Define

νp(ω) = νp(f).

We define div(ω) =
∑

p∈C νp(ω)p ∈ DivC. We say ω is regular at p if νp(ω) ≥ 0.

Lemma.

(1) f ∈ OC,p =⇒ νp(df) ≥ 0.

(2) If t′ is another local parameter at p, then νp(dt
′) = 0 and νp(fdt

′) = νp(f) +
νp(dt

′) is independent of t.

(3) If f ∈ K(C) and νp(f) 6= 0 in K (i.e., charK | νp(f)) then νp(df) = νp(f)− 1.

Proof.

(1) Let p ∈ C ⊆ Pn, p ∈ C ∩Ui, where Ui = Pn \Z(xi). Work on Ui ∩C, where rational
functions are just ratios of polynomials. If f = g/h, h(p) 6= 0, we have

df =
hdg − gdh

h2
=
∑
i

γidxi

with γi ∈ OC,p. So

νp(df) ≥ min{νp(γidxi) ≤ i ≤ n} ≥ min{νp(dxi) |  ≤ i ≤ n}.
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Thus νp(df) is bounded below independently of f . Choose f ∈ OC,p such that
νp(df) is minimal, t a local parameter at p ∈ C. Then νp(f−f(p)) ≥ 1, so can write
f − f(p) = tf1, for some f1 ∈ OC,p. So

df = d(f − f(p))

= d(ft1)

= f1dt+ tdf1 (∗)

If νp(df) < 0, note νp(f1dt) ≥ 0, and hence (∗) implies

νp(df) = νp(tdfi) = νp(t) + νp(df1) = 1 + νp(df1).

So νp(df1) < νp(df). This contradicts the minimality of νp(df). Thus νp(df) ≥ 0.

(2) We may write t′ = u · t for u a unit, u ∈ O×
C,p (the group of units). Then dt′ =

udt+ tdu. du = g · dt for some g with νp(g) ≥ 0 by (1). So

dt′ = (u+ tg)︸ ︷︷ ︸
νp=0

dt,

so νp(dt′) = 0 by definition. If fdt = hdt′ = h(u+ tg)dt, then

νp(h(u+ tg)) = νp(h) + νp(u+ tg) = νp(h).

Hence νp is independent of choice of t.

(3) Suppose f = tnu where n = νp(f), u ∈ O×
C,p. Then df = ntn−1udt + tndu. If

charK - n, then

νp(f) ≥ min{νp(ntn−1udt), tndu} = min{n− 1, n} = n− 1

and equality holds since n 6= n− 1. Thus νp(df) = νp(f)− 1.

Proposition. If ω ∈ ΩK(C)/K, then νp(ω) = 0 for all but a finite number of p.

Proof. Omitted.

Thus div(ω) ∈ Div(C).

Start of
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Proof. For t a local parameter at some point p ∈ C, ω = fdt, ω′ = f ′dt, then ω = f ′

f ·ω′.
Then

div(ω) = div(ω′) +

(
f ′

f

)
.

Definition (Canonical class). The canonical class of a projective non-singular curve
C is the linear equivalence class of divω in ClC, for any 0 6= ω ∈ ΩK(C)/K. We
write the canonical class as KC .

Definition (Genus). The genus of C is dimK L(KC).

If K = C and we use the Euclidean topology rather than the Zariski topology, then
this is the usual notion of genus!

Example. C = P1, K(C) = K(t), t = x0/x1. Note when x1 = 1, t = p0 is a local
parameter for C at p0 = (p0 : 1) ∈ P1. Thus dt = d(t− p0) and νp0(d(t− p0)) = 0.
Thus νp0(dt) = 0 for all p0 ∈ P1 \ Z(xi). At t = ∞, look at A1 = P1 \ Z(x0), so
s = x1/x0 is a local parameter at q = (1 : 0). Note t = s−1, so

dt = d(1/s) = −ds

s2

so νq(dt) = −2. So KC ∼ −2q where ∼ means linearly equivalent. Thus L(KC) =
L(−2q) = 0. Thus

g(C) = dimL(KC) = 0.
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Example. Plane cubic

y2 = (x− λ1)(x− λ2)(x− λ3)

in A2 or
y2z = (x− λ1z)(x− λ2z)(x− λ3z)

λ1, λ2, λ3 ∈ K distinct. ω = dx
y , 2ydy = f ′(x)dx.

so
2dy

f ′(x)
=

dx

y
.

In fact, div(ω) = 0. Hardest part: q = (0 : 1 : 0). Thus KC ∼ 0, and L(KC) = L(0),
so g(C) = dimL(0) = 1.

Theorem (Riemann-Roch Theorem). Write l(D) := dimK L(D) for D ∈ Div(C).
Then

l(D)− l(KC −D) = degD + 1− g

where g is the genus of C.

Proof. Omitted. This is far beyond the scope of this course; this theorem is not even
proved in part III.

Consequences:

(1) If D = 0 then l(D) = 1, so 1− l(KC) = 0 + 1− g or l(KC) = g, the definition of g.
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(2) If D = KC , then
l(KC)− l(0)︸ ︷︷ ︸

=g−1

= degKC + 1− g

so degKC = 2g − 2 .

(3) If degD > 2g − 2, then degKC −D = 2g − 2− degD, 0. Thus l(KC −D) = 0 and

l(D) = degD + 1− g .

Remark. For 0 ≤ degD ≤ 2g − 2, behaviour of l(D) can be complicated and
unpredictable.

(4) If degD > 2g, then ∀P,Q ∈ C,

l(D − P −Q) = l(D)− 2

by (3). Hence |D| induces an embedding of C in some Pn.

Example. If C has genus 0, then every positive degree divisor induces an em-
bedding.

For example, if P ∈ C, |P | is very ample, l(P ) = 2, so we get an embedding of
C in P1. Thus C ∼= P1.
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Example. g = 1. If degD = 3, then D is very ample, and l(D) = 3+1−1 = 3.
So |D| induces an embedding of C in P2. Thus in particular C is isomorphic to a
curve of degree 3 in P2. Can show C ∼= Z(f) for some homogeneous polynomial
of degree 3. More specifically, fix P0 ∈ C, and embed using |3P0|. Let D ∈ DivC
be degree 0. Then

l(D + P0)− l(KC −D − P0) = deg(D + P0) + 1− g.

The second term of RHS is 0 since degKC −D−P0 = −1. Then since deg(D+
P0) = 1 and g = 1, we get l(D + P0) = 1. So there exists an effective divisor
linearly equivalent to D + P0, necessarily D + P0 ∼ P for some P ∈ C. Thus
P −P0 ∼ D. Note P is unique: if P −P0 ∼ P ′−P0, then P ∼ P ′, so if P 6= P ′,
dim |P | ≥ 1, so l(P ) ≥ 2. But l(P ) = 1 by Riemann-Roch Theorem.

Conclusion: every divisor class on C of degree 0 can be represented uniquely
by P − P0 for some P ∈ C, i.e. C → ker(deg : ClC → Z)), p 7→ p − p0 is a
bijection. This gives a group structure on C, i.e. P +Q = R for P,Q,R ∈ C if

(P − P0) + (Q− P0) ∼ R− P0.

Geometric description: P,Q ∈ C
i
↪→ P2. Let L be the line joining P and Q

(tangent line to C at P if P = Q). Then

“L ∩ C” = i∗L = P +Q+ S.

(possibly S = P or S = Q). Now P +Q+ S ∼ 3P0, or

(P − P0) + (Q− P0) + (S − P0) ∼ 0.

Next let L′ be the line joining S with P0. Then

“L′ ∩ C” = i∗L′ = S + P0 +R ∼ 3P0.

So (S − P0) + (R− P0) ∼ 0 or (S − P0) ∼ −(R− P0). Thus

(P − P0) + (Q− P0) ∼ (R− P0)

so P +Q = R.

Start of
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Example.
y2 = (x− λ1)(λ2)(λ3)

Take P0 = (0 : 1 : 0).

Example. Let C have genus 2. Then degKC = 2g − 2 = 2, l(KC) = 2.

Claim: |KC | is base-point free, hence induces a morphism f : C → P1.

Lemma. Let C be a projective non-singular curve. If there exist P,Q ∈ C,
P 6= Q, P ∼ Q, then C ∼= P1.

Proof. Consider the linear system |P |. Since Q ∈ |P |, dim |P | ≥ 1, so l(P ) ≥ 2.
But we have an upper bound dimL(D) ≤ degD + 1 ≤ 2. Thus l(P ) = 2. If
Q,R ∈ C then dimL(P −Q−R) = 0 since deg(P −Q−R) = 1. Thus |P | induces
an embedding of C into P1. So C ∼= P1.

Proof of Claim. If |KC | is not base-point free, then there exists P ∈ C such that
l(KC − P ) = l(KC) = 2. Since degKC − P = 1, this means there exists Q,R ∈
|KC − P |, Q 6= R, with Q ∼ R. Hence C ∼= P1, contradiction, since P1 has genus
0.

Thus if g = 2, we obtain a degree 2 morphism f : C → P1 induces by |KC |.
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Definition (Hyperelliptic). A projective non-singular curve C is hyperelliptic if
there exists a degree 2 morphism f : C → P1.

Thus all genus 2 curves are hyperelliptic.

Theorem. Let C be a projective non-singular curve of genus g ≥ 3. Then either:

(1) C is hyperelliptic, or

(2) |KC | induces an embedding C ↪→ Pg−1.

Proof. |KC | induces an embedding in Pl(KC)−1 = Pg−1 if and only if ∀P,Q ∈ C,

l(KC − P −Q) = l(KC)− 2 = g − 2.

In any event,

l(P +Q)− l(KC − P −Q) = deg(P +Q) + 1− g = 3− g.

Thus |KC | induces an embedding if and only if l(P + Q) = 1 for all P,Q ∈ C. Now
suppose |KC | does not induce an embedding. Then there exist P,Q ∈ C such that
l(P + Q) > 1. If l(P + Q) ≥ 3, then for R ∈ C, l(P + Q − R) ≥ 2. So there exists
P1, P2 ∈ |P + Q − R| distinct. Thus C ∼= P1 by the lemma, a contradiction. Thus
l(P +Q) = 2. Note similarly l(P +Q−R) = 1 for all R ∈ C. Thus |P +Q| is base-point
free and induces a degree 2 morphism f : C → P1. So C is hyperelliptic.

Theorem (Riemann-Hurwitz formula). Let f : X → Y be a non-constant mor-
phism between projective non-singular curves, with charK = 0 (or K(Y ) ⊆ K(X)
is a separable field extension). Then

2− 2g(X) = (deg f)(2− 2g(Y ))−
∑
p∈X

(ep − 1).

(ep = νp(t · f) where t is a local parameter at f(p)).

Proof. Omitted.
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Example. X = C hyperelliptic, Y = P1, Y = P1, f : C → P1 degree 2. Then

2− 2g(C) = 2 · (2− 2 · 0)︸ ︷︷ ︸
4

−
∑
p∈C

(ep − 1).

Thus the number number of points p ∈ C with ep > 1 is
∑

p(ep − 1) = 2g(C) + 2,
deg g =

∑
p∈f−1(q) ep.
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