% vim: tw=50 % 05/11/2022 12PM \subsection{The free particle} TISE ($U(x) = 0$): \[ -\frac{\hbar^2}{2m} \chi''(X) = E \chi(x) \] \[ \chi''(x) + \frac{2mE}{\hbar^2} \chi(x) = 0 \] $k = \sqrt{\frac{2mE}{\hbar^2}}$ \[ \chi(x) = e^{ikx} \] \[ E_k = \frac{\hbar^2 k^2}{2m} \to \chi_k(x) = e^{ikx} \] \[ \psi_k(x, t) = \chi_k(x) e^{-iE_k t/\hbar} = e^{i(kx - \hbar k^2/2m)} \] This wave function is \emph{not} square-integrable: \[ \int_{-\infty}^\infty |\psi_k(x, t)|^2 \dd x = \int_{-\infty}^\infty = \infty \] This is a consequence of \[ \int_{-\infty}^\infty |\psi(x, t)|^2 \dd x = \mathcal{N} < \infty \implies \lim_{R \to \infty} \int_{|x| > R} \dd x |\psi(x, t)|^2 = 0 \] How do we deal with unbound states? \begin{enumerate}[Option 1] \item[Option 1] Build a linear superposition of not-normalisable states that is normalisable (section 3.2.1) \item[Option 2] We ignore the problem but change interpretation (section 3.2.2) \end{enumerate} \subsubsection*{3.2.1 Gaussian Wave Packet} \[ \psi(x, t) = \int_{-\infty}^\infty A(k) \psi_k(x, t) \dd k \] ($A(k)$ is a continuous coefficient of linear combination) A possible option is Gaussian wave packet: \[ A(k) = A_{\text{GP}}(k) = \exp \left[ -\frac{\sigma}{2} (k - k_0)^2 \right] \quad \sigma \in \RR^+, k_0 \in \RR \] \begin{center} \includegraphics[width=0.6\linewidth] {images/253f832c5d0411ed.png} \end{center} \[ \psi_{\text{GP}} (x, t) = \int_{-\infty}^\infty A_{\text{GP}}(k) \psi_k(x, t) \dd k \] \[ \psi_{\text{GP}} (x, t) = \int_{-\infty}^\infty \exp[F(k)] \dd k \] where \begin{align*} F(k) &= -\frac{\sigma}{2} (k - k_0)^2 + ikx - \frac{i\hbar k^2}{2m}t \\ &= -\half \left( \sigma + \frac{i\hbar t}{m} \right) k^2 + (k_0 \sigma + ix) k \end{align*} \[ \alpha \equiv \sigma + \frac{i\hbar t}{m} \] \[ \beta \equiv k_0 \sigma + ix \] \[ \delta = -\frac{\sigma}{2} k_0^2 \] Complete the square: \[ F(k) = -\frac{\alpha}{2} \left( k - \frac{\beta}{\alpha} \right)^2 + \frac{\beta^2}{2\alpha} + \delta \] \[ \implies Y_{\text{GP}}(x, t) = \exp \left[ \frac{\beta^2}{2\alpha} + \delta \right] \int_{-\infty}^\infty \exp \left[ -\frac{\alpha}{2} \left( k - \frac{\beta}{\alpha} \right)^2 \right] \dd k \] Shift contour $\tilde{k} = k - \frac{\beta}{\alpha}$. Let $\nu = \Im \left( \frac{\beta}{\alpha} \right)$. \[ \psi_{\text{GP}} (x, t) = \exp \left[ \frac{\beta^2}{2\alpha} + \delta \right] \int_{-\infty - i\nu}^{\infty - i\nu} \exp \left( -\frac{\alpha}{2} \tilde{k}^2 \right) \dd \tilde{k} \] Using standard Gaussian integral \[ I(\alpha) = \int_{-\infty}^\infty \exp(-ay^2) \dd y = \sqrt{\frac{\pi}{a}} \] We get \[ \psi_{\text{GP}}(x, t) = \sqrt{\frac{2\pi}{\alpha}} \exp \left[ \frac{\beta^2}{2\alpha} + \delta \right] \] Exercise: Write $\psi_{\text{GP}}(x, t)$ by substituting $\beta, \alpha, \delta$ and normalise it to 1. \[ \beta = k_0 \sigma + ix \quad \beta^2 = k_0^2 \sigma^2 - k^2 + 2ix k_0\sigma \] The $-x^2$ in $\beta^2$ implies that $\psi_{\text{GP}}$ is normalisable. Once $\psi_{\text{GP}}$ is normalised, $\ol{\psi}_{\text{GP}}$ cen define \[ \rho_{\text{GP}}(x, t) = |\ol{\psi}_{\text{GP}}(x, t)|^2 = \sqrt{\frac{\sigma}{\pi \left( \sigma^2 + \frac{\hbar^2 t^2}{m^2} \right)}} \exp \left[ \frac{-\pi \left( x - \frac{\hbar k_0 t}{m} \right)^2}{(\sigma^2 + \frac{\hbar^2 t^2}{m^2})} \right] \] at $t$ fixed: \begin{center} \includegraphics[width=0.6\linewidth] {images/ea2575b45d0611ed.png} \end{center} width of distance \[ \sqrt{\half \left( \sigma + \frac{\hbar^2 t^2}{m^2 \sigma} \right)} \] The centre of the distribution is $\langle x \rangle_{\psi_{\text{GP}}}$: \begin{align*} \langle x \rangle_{\psi_{\text{GP}}} &= \int_{-\infty}^\infty \ol{\psi}^*_{\text{GP}}(x, t) x \ol{\psi}_{\text{GP}} (x, t) \dd x \\ &= \int_{-\infty}^\infty x \rho_{\text{GP}}(x, t) \\ &= \frac{\hbar k_0}{m}t \end{align*} Error on position of particle: \[ \Delta x = \sqrt{\langle x^2 \rangle_{\psi_{\text{GP}}} - \langle x \rangle_{\psi_{\text{GP}}}^2} = \sqrt{\half \left( \sigma + \frac{\hbar^2 t^2}{m^2\sigma} \right)} \] $\Delta x = \sqrt{\frac{\pi}{2}}$ at $t = 0$. $\Delta x$ increases as $t$ increases. Given $\psi_{\text{GP}}$ it is interesting to compute $\langle p \rangle$, $\Delta p$ \begin{align*} \langle p \rangle_{\psi_{\text{GP}}} &= \int_{-\infty}^\infty \ol{\psi}^*_{\text{GP}}(x, t) \left( -i\hbar \frac{}{x} \ol{\psi}_{\text{GP}} (x, t) \right) \dd x \\ &= \hbar k_0 \end{align*} \[ \Delta p = \sqrt{\langle p^2 \rangle_{\psi_{\text{GP}}} - \langle p \rangle_{\psi_{\text{GP}}}^2} \] To calculate $\Delta p$ on $\psi_{\text{GP}}$ we have \[ \langle p \rangle_{\psi_{\text{GP}}}^2 = \hbar^2 k_0^2 \] we need \[ \langle p^2 \rangle_{\psi_{\text{GP}}} = \int_{-\infty}^\infty \ol{\psi}^*_{\text{GP}}(x, t) \left( -\hbar^2 \dfrac[2]{}{x} \ol{\psi}_{\text{GP}} (x, t) \right) \dd x \] If you compute it and plug it into $\Delta p$ THE FOLLOWING SECTION IS ALL WRONG, IGNORE UNTIL TOLD TO STOP IGNORING. \[ \Delta p = \frac{\hbar}{\sqrt{2 \left( \sigma + \frac{\hbar^2 t^2}{m\sigma} \right)}} \] at $t = 0$, $\Delta p = \hbar \sqrt{\frac{2}{\sigma}}$, as $t \to \infty$, $\Delta p$ decreases as $\frac{1}{\sqrt{a + t^2}}$ What we learnt is \[ \Delta x \to \infty, \Delta p \to \infty \quad \text{as $t \to \infty$} \] \[ \Delta x \Delta p = \frac{\hbar}{2} \] STOP IGNORING. \\ At time $t = 0$, $\Delta x \Delta p = \frac{\hbar}{2}$. \myskip The GP is a state of minimum uncertainty. Other $A(k)$ would give you a normalisable state but if you compute $\Delta x \Delta p$ you would find something $> \frac{\hbar}{2}$. \\ Exercise: Compare what you find for $\psi_k(x, t)$ \[ \Delta x = \infty, \Delta p = 0 \] \[ \langle x \rangle_{\psi_k} = 0 , \langle x^2 \rangle_{\psi_k} = \infty \]