% vim: tw=50 % 27/10/2022 12PM \newpage \section{1 dimensional solutions of Schr\"odinger equation} TISE (Time independent Schr\"odinger equation): \[ \hat{H} \chi(X) = E\chi(x) \] \[ -\frac{\hbar^2}{2m} \chi''(x) + U(x) \chi(x) = E \chi(x) \] with $E \in \RR$. We will solve TISE in 3 cases: \begin{enumerate} \item[3.1] Bound states \item[3.2] Free particle \item[3.3] scattering states. \end{enumerate} \subsection{Bound states} \subsubsection*{3.1.1 Infinite potential well} \[ U(x) = \begin{cases} 0 & |x| \le a \\ +\infty & |x| > 0 \end{cases} \] $a \in \RR^+$. \begin{itemize} \item for $|x| > 0$, $\chi(x) = 0$ otherwise $U \cdot \chi = \infty$ so boundary condition $\chi(\pm a) = 0$. \item for $|x| \le a$ we look for solutions of \[ -\frac{\hbar^2}{2m}\chi''(x) = E \chi(x) \] \[ \implies \chi''(x) + k^2 \chi(x) = 0 \] with $k = \sqrt{\frac{2mE}{\hbar^2}}$ and we also have $\chi(\pm a) = 0$. Solution: \[ \chi(x) = A \sin (kx) + B \cos(kx) \] $\chi(a) = 0$, $\chi(-a) = 0$ implies \[ A\sin (ka) = 0, \quad B\cos (ka) = 0 \] so two options: \begin{enumerate}[(i)] \item $A = 0$, $\cos (ka) = 0$ then $k_n = \frac{n\pi}{2a}$, $n$ an odd integer. \[ \chi_n(x) = B \cos(k_n x) \] the \emph{even solutions}. \item $B = 0$, $\sin(ka) = 0$ then $k_n = \frac{n\pi}{2a}$, $n$ even integer. \[ \chi_n(x) = A \sin(k_n x) \] the \emph{odd solutions}. \end{enumerate} Determine $A$, $B$ by requiring normalisation of eigenfunction \[ \int_{-a}^a |\chi_n(x)|^2 \dd x = 0 \implies A = B = \sqrt{\frac{1}{Q}} \] Solution: eigenvalues of $\hat{H}$ are \[ E_n = \frac{\hbar^2}{2m} k_n^2 = \hbar^2 \frac{\pi^2}{8ma^2}n^2 \] eigenfunction of $\hat{H}$ \[ \chi_n(x) = \sqrt{\frac{1}{Q}} \begin{cases} \cos \left( \frac{n\pi x}{2a} \right) & n = 1, 3, \dots \\ \sin \left( \frac{n\pi x}{2a} \right) & n = 2, 4, \dots \end{cases} \] .image \begin{enumerate}[(i)] \item Ground state has $E \neq 0$. Note (contrarily to classical mechanics) \item $n \to \infty$, $|\chi_n(x)|^2 \to \text{const}$ (Classical mechanics limits) \end{enumerate} \end{itemize} In classical mechanics \[ P(x) \propto \frac{1}{\mathcal{N}(x)} \quad P(x) = \frac{A}{\mathcal{N}(x)} \] In this case particle free inside the wall \[ \implies \mathcal{N} \text{constant} \implies P \text{constant} \] \begin{proposition*} If quantum system has non-degenerate eigenstates ($E_i \neq E_j$ for $i \neq j$) then, if $U(x) = U(-x)$ the eigenfunction of $\hat{H}$ have to be either odd or even. \end{proposition*} \begin{proof} If $U(x) = U(-x)$ then TISE invariant under $x \to -x$. If $\chi(x)$ is a solution with eigenvalue $E$, then also $\chi(-x)$ solution and $\chi(-x) = \alpha \chi(x)$ solutions must be the same up to a normalisation factor $\alpha$. Then \[ \chi(x) = \chi(-(-x)) = \alpha \chi(-x) = \alpha^2 \chi (x) \] \[ \implies \alpha^2 = 1 \implies \alpha = \pm 1 \] \[ \implies \chi(x) = \pm \chi(-x) \qedhere \] \end{proof} \subsubsection*{3.1.2 Finite potential well} \[ U(x) = \begin{cases} 0 & |x| \le a \\ U_0 & |x| > a \end{cases} \] Consider $E > 0$ ($E < 0$ does not exist in this case) and $E < U_0$ (bound state) We look for odd / even eigenfunction \begin{enumerate}[(i)] \item even parity bound states \[ \chi(-x) = \chi(x) \] solve \[ -\frac{\hbar^2}{2m} \chi''(x) = E \chi(x) \qquad |x| \le a \tag{I} \] \[ -\frac{\hbar^2}{2m} \chi''(x) = (E - U_0) \chi(x) \qquad |x| > a \tag{II} \] \begin{enumerate}[(I)] \item $\chi''(x) + k^2 \chi(x) = 0$ with $k = \sqrt{\frac{2mE}{\hbar^2}}$ \[ \chi(x) = A \sin(kx) + B \cos(kx) \] but $A = 0$ (even parity) \[ \chi(x) = B\cos(kx) \] \item $\chi''(x) - \ol{k}^2 \chi(x) = 0$ with $k = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$ \[ \chi(x) = ce^{+\ol{k} x} + D e^{-\ol{k} x} \] but impose normalisability implies $x > a$, $c = 0$, $x < -a$, $D = 0$. Impose even parity $C = D$. \end{enumerate} To summarise: \[ \chi(x) = \begin{cases} C e^{\ol{k} x} & x < -a \\ B \cos(kx) & |x| \le a \\ C e^{-\ol{k} x} & x > a \end{cases} \] Impose continuity of $\chi(x)$ at $x = \pm a$, $\chi'(x)$ at $x = \pm a$. Then \[ \chi(a) \to C e^{-\ol{k} a} = B \cos(ka) \] \[ \chi'(a) \to -\ol{k} C e^{-\ol{k} a} = -kB \sin(ka) \] if take ratio from definition \[ k\tan(ka) = \ol{k} \] \[ k^2 + \ol{k}^2 = \frac{2m U_0}{\hbar^2} \] Define rescaled variables $\xi = ka$, $\eta = \ol{k} a$. \[ \xi \tan \xi = \eta \] \[ \xi^2 + \eta^2 = r_0^2 \] \[ r_)^2 = \frac{2m U_0}{\hbar^2}a^2 \] \begin{center} \includegraphics[width=0.6\linewidth] {images/fdbe470859dd11ed.png} \end{center} eigenvalues of $\hat{H}$ corespond to points of intersection \[ E_n = \frac{\hbar^2}{2ma^2} \xi_n^2 \quad n = 1, \dots, p \] \begin{note*} $U_0 \to \infty \implies r_0 \to \infty \implies E_n = \frac{\hbar^2}{8ma^2} (2n - 1)^2 \pi^2$, $\chi \to \chi_n$ of infinite well. \begin{center} \includegraphics[width=0.6\linewidth] {images/19c8ce0059de11ed.png} \end{center} \end{note*} \end{enumerate} \noindent Exercise: \begin{enumerate}[(1)] \item Use the unused condition in system to write $C$ in terms of $B$ \item Impose normalisation to 1 to find $B$. \end{enumerate}