% vim: tw=50 % 25/10/2022 12PM \subsubsection*{2.5.3 Expectation values and operators} So far: every quantum observable is represented by a Hermitian operator $\hat{O}$. \begin{enumerate}[(I)] \item The possible outcomes of measurement of the observable $O$ are eigenvalues of $\hat{O}$. \item If $\hat{O}$has discrete set of normalised eigenfunctions $\{\psi_i\}$ with distinct eigenvalues $\{\lambda_i\}$, the measurement of $O$ on a particle described by $\psi$ has probability \[ P(O = \lambda_I) = |a_i|^2 = |\langle \psi_i, \psi \rangle|^2 \] where $\psi = \sum_{i = 1}^N a_i \psi_i$. \item If $\{\psi_i\}$ is a set of orthonormal eigenfunctions of $\hat{O}$ and $\{\psi_i\}_{i \in I}$ complete set of orthonormal eigenfunctions with some eigenvalue $\lambda$ \[ P(O = \lambda) = \sum_{i \in I} |a_i|^2 \] sanity check \begin{align*} \sum_{i = 1}^N |a_i|^2 &= \sum_{i = 1}^N \langle a_i \psi_i, a_i \psi_i \rangle \\ &= \sum_{i, j = 1}^N \langle a_i \psi_i, a_j \psi_j \rangle \\ &= \langle \psi, \psi \rangle \\ &= 1 \end{align*} \item The projection postulate: If $O$ measured on $\psi$ at time $t$ and the outcome of measure is $\lambda_i$ then the wave function of $\psi$ instantaneously after measurement becomes $\psi_i$ (eigenfunction with eigenvalues) [if $\hat{O}$ has degenerate eigenfunction with some eigenvalue $\lambda$ then the wavefunction becomes $\psi = \sum_{i \in I} a_i \psi_i$] \end{enumerate} \begin{definition*}[Projection operator] Given $\psi = \sum_i a_i \psi_i = \sum_i \langle \psi_i, \psi \rangle \psi_i$ define \[ \hat{P}_i : \psi \to \langle \psi_i, \psi \rangle \psi_i \] \end{definition*} \noindent We can now define expectation value of an observable measured on state $\psi$ \begin{align*} \langle O \rangle_\psi &+ \sum_i \lambda_i P(O = \lambda_i) \\ &= \sum_i \lambda_i |a_i|^2 \\ &= \sum_i \lambda_i |\langle \psi_i, \psi \rangle|^2 \\ &= \left\langle \sum_i \langle \psi_i, \psi \rangle \psi_i, \sum_j \lambda_j \langle \psi_j, \psi \rangle \psi_j \right\rangle \\ &= \langle \psi, \hat{O} \psi \rangle \\ &= \int \psi^*(x, t) \hat{O} \psi(x, t) \dd x \end{align*} Property: \[ \langle a\hat{A} + b\hat{B} \rangle_\psi = a\langle\hat{A}\rangle_\psi + b\langle\hat{B}\rangle_\psi \] $a, b \in \RR$. \myskip Interpretation: \begin{itemize} \item The physics implication of projection postulate is that if $O$ is measured twice, the outcome of second measure (of $\Delta t$ between measures is small) is the same as first with probability 1. \item (Born's rule) If $\phi(\bf{x}, t)$ is the state that gives the desired outcome of a measurement on a state $\psi(\bf{x}, t)$, probability of such outcome is given by \[ |\langle \psi, \phi \rangle|^2 = \left| \int_{-\infty}^\infty \psi^*(x, t) \phi(x, t) \dd x \right|^2 \] \end{itemize} \subsection{Time independent Schr\"odinger equation (TISE)} Let's rewrite TDSE in 1D \[ i \hbar \pfrac{\psi}{t}(x, t) = -\frac{\hbar^2}{2m} \pfrac[2]{\psi}{x} (x, t) + U(x) \psi(x, t) = \hat{H} \psi(x, t) \tag{1} \] try ansatz (try solution) \[ \psi(x, t) = T(t) \chi(X) \tag{2} \] Plug (2) into (1) \[ i\hbar \pfrac{T}{t}(t) \chi(x) = T(t) \hat{H} \chi(X) \] divide by $T(t)\chi(x)$ \[ \frac{1}{T(t)} i\hbar \pfrac{T}{t}(t) = \frac{\hat{H} \chi(x)}{\chi(x)} \tag{3} \] Both LHS and RHS have to be equal to a constant $E$, so \[ \frac{1}{T(t)} i\hbar \pfrac{T}{t}(t) = E \implies T(t) = e^{-iEt/\hbar} \tag{4} \] with $E \in \RR$. So TISE is \begin{equation*} \boxed{ \begin{aligned} \hat{H}\chi(x) &= E\chi(x) \\ -\frac{\hbar^2}{2m} \pfrac[2]{\chi}{x}(x) + U(x) \chi(x) &= E \chi (x) \end{aligned} } \tag{5} \end{equation*} \begin{hiddenflashcard}[TISE] \prompt{Time independent Schr\"oedinger's equation?} \[ \boxed{\cloze{\hat{H} \chi(x) \equiv -\frac{\hbar^2}{2m} \pfrac[2]{\chi}{x} (x) + U(x) \chi(x) = \cloze{E \chi(x)}}} \] \end{hiddenflashcard} \begin{itemize} \item TDSE is eigenvalue equation for $\hat{H}$ operator. \item eigenvalues of $\hat{H}$ are all possible outcomes of measure of energy of state $\psi$. \end{itemize} \subsection{Stationary states} We found \emph{a} particular solution of TDSE \begin{flashcard}[solution-of-TDSE] \prompt{If $\psi$ has state $\chi(x)$ at $t = 0$, with $\chi$ an eigenstate (with energy $E$), what is $\psi(\bf{x}, t)$?} \[ \psi(x, t) = \cloze{\chi(x) e^{-iEt/\hbar}} \] \end{flashcard} $E$ eigenvalue associated with eigenfunction $\chi$. \begin{definition*} These solutions are called stationary states. \end{definition*} \noindent Why? \[ \rho(x, t) = |\psi(x, t)|^2 = |\chi(x)|^2 \] If we apply theorem 2.6 to $\hat{O} = \hat{H}$ \begin{theorem} Every solution of TDSE can be written as a linear combination of stationary states. \end{theorem} \begin{itemize} \item For system that has a discrete set of eigenvalues of $\hat{H}$, \[ E_n = E_1, E_2, \dots \] $n \in \NN$ \[ \psi(x, t) = \sum_n a_n \chi_n(x) e^{-iE_n t/\hbar} \] \item For system that has a continuous set of eigenvalues of $\hat{H}$, $E(\alpha)$ \[ \psi(x, t) = \int A(\alpha) \chi_\alpha(\alpha) e^{-iE_\alpha t/\hbar} \dd \alpha \] where $A \in \CC$, $\alpha \in \RR$. \item $|a_n|^2$, $|A(\alpha)|^2 \dd \alpha$ probability of measuring the particle energy to be $E_h = E(\alpha)$. \end{itemize} \noindent Imagine a system with only 2 energy eigenvalues $E_1 \neq E_2$ we can write the state $\psi$ at time $t$ \[ \psi(c, t) = a_1 \chi_1(x) e^{-iE_1 t/\hbar} + a_2 \chi_2(x) e^{-iE_2 t/\hbar} \] \[ \implies \psi(x, 0) = a_1 \chi_1(x) + a_2 \chi_2(x) \] if $a_1 = 0$ then $\psi(x, 0) = a_2 \chi_2(\alpha)$, $\psi(x, t) = a_2 \chi_2(x) e^{-iE_2 t/\hbar}$ for all $t$, $|\psi(x, 0)|^2 = |\psi(x, t)|^2$. If $a_i \neq 0$ and $a_2 \neq 0$, \begin{align*} |\psi(x, t)|^2 &= |a_1 \chi_1 e^{-i E_1 t/\hbar} + a_2 \chi_2 e^{-iE_2 t/\hbar}|^2 \\ &= a_1^2 |\chi_1|^2 + a_2^2 |\chi_2|^2 + 2a_1a_2 \chi_1(x)\chi_2(x) \cos \left( \frac{(E_1 - E_2)t}{\hbar} \right) \end{align*}