% vim: tw=50 % 20/10/2022 12PM \noindent Expectation value of an observable is the mean (average) of infinite series of measurements performed on particles on the same state. \begin{align*} \langle p \rangle &= m \dfrac{\langle x \rangle}{t} \\ &= m \dfrac{}{t} \int_{-\infty}^\infty \psi^* x \psi \dd x \\ &= m \int_{-\infty}^\infty x \pfrac{}{t} (\psi^* \psi) \\ &= \frac{i\hbar m}{2m} \int_{-\infty}^\infty x \pfrac{}{x} \left( \psi^* \pfrac{\psi}{x} - \psi \pfrac{\psi^*}{x} \right) \dd x &&\text{(TDSE)} \\ &= - \frac{i\hbar}{2} \int_{-\infty}^\infty \left( \psi^* \pfrac{\psi}{x} - \psi \pfrac{\psi^*}{x} \right) \dd x \\ &= -i\hbar \int_{-\infty}^\infty \psi^* \pfrac{\psi}{x} \dd x \\ &= \int_{-\infty}^\infty \psi^* \left( -i\hbar \pfrac{}{x} \right) \psi \dd x \end{align*} position $\to x$ \\ momentum $\to -i\hbar \pfrac{}{x}$ \begin{hiddenflashcard}[position-operator] Position operator? $\hat{x} = \cloze{x}$ \end{hiddenflashcard} \begin{hiddenflashcard}[momentum-operator] Momentum operator? $\hat{p} = \cloze{-i\hbar \pfrac{}{x}}$ \end{hiddenflashcard} \subsubsection*{2.5.2 Hermitian operators} In $\CC^n$ linear map $\CC^n \to \CC^n$ \[ T : \ub{\bf{v}}_{\in \CC^n} \to \ub{\bf{w}}_{\in \CC^n} \quad \bf{w} = T \bf{v} \] In quantum mechanics linear maps $\mathcal{H} \to \mathcal{H}$ \[ \hat{O} : \psi \to \tilde{\psi} \quad \tilde{\psi} = (\hat{O} \psi) (x, t) \] \begin{definition*} An operator $\hat{O}$ is any linear map $\mathcal{H} \to \mathcal{H}$ such that \[ \hat{O} (a_1 \psi_1 + a_2 \psi_2) = a_1 \hat{O}(\psi_1) + a_2 \hat{O}(\psi_2) \] with $a_1, a_2 \in \CC$, $\psi_1, \psi_2 \in \mathcal{H}$. \end{definition*} \subsubsection*{Examples} \begin{itemize} \item finite differential operators \[ \sum_{m = 0}^N p_n(X) \pfrac[n]{}{x} \] with $p_n(x)$ a polynomial. In particular, $x$ and $-i \hbar \pfrac{}{x}$ are special cases. \item Translation \[ \hat{S}_a : \psi(x) \to \psi(x - a) \] \item Parity \[ \hat{P} : \psi(x) \to \psi(-x) \] \end{itemize} \begin{flashcard}[hermitian-conjugate] \begin{definition*} The Hermitian conjugate $\hat{O}^\dag$ of an operator $\hat{O}$ is the operator such that \[ \cloze{\langle \hat{O}^\top \psi_1, \psi_2 \rangle} = \cloze{\langle \psi_1, \hat{O} \psi_2 \rangle \quad \forall \psi_1, \psi_2 \in \mathcal{H}} \] \end{definition*} \end{flashcard} \noindent Verify (from the properties of the inner product) that \begin{itemize} \item $(a_1 \hat{A}_1 + a_2 \hat{A}_2)^\dag = a_1^* \hat{A}_1^\dag + a_2^* \hat{A}_2^\dag$ for any $a_1, a_2 \in \CC$ \item $(\hat{A} \hat{B})^\dag = \hat{B}^\dag \hat{A}^\dag$. \end{itemize} \begin{definition*} An operator $\hat{O}$ is \emph{Hermitian} if \[ \hat{O} = \hat{O}^\dag \iff \langle \hat{O} \psi_1, \psi_2 \rangle = \langle \psi_1, \hat{O} \psi_2 \rangle \] All physics quantities in quantum mechanics are represented by Hermitian operators. \end{definition*} \subsubsection*{Examples} \begin{enumerate}[(i)] \item $\hat{x} : \psi(x, t) \to x\psi(x, t)$ verify that $\hat{x}^\dag = \hat{x} \iff (\hat{x} \psi_1, \psi_2) = \psi_1 \hat{x} \psi_2)$ for $\psi_1, \psi_2 \in \mathcal{H}$ \[ \langle x\psi_1, \psi_2 \rangle = \int_{-\infty}^\infty (x\psi_1)^* \psi_2 \dd x = \int_{-\infty}^\infty \psi_1^* x \psi_2 \dd x = \langle \psi_1, x \psi_2 \rangle \] \item $\hat{P} : \psi(x, t) \to -i\hbar \pfrac{\psi}{x}(x, t)$ verify: \begin{align*} \langle \hat{P} \psi_1, \psi_2 \rangle &= \int_{-\infty}^\infty \left( -i\hbar \pfrac{\psi_1}{x} \right)^* \psi_2 \dd x \\ &= i\hbar [\psi_1^* \psi_2]_{-\infty}^\infty -i\hbar \int_{-\infty}^\infty \psi_1^* \pfrac{\psi_2}{x} \dd x \\ &= \int_{-\infty}^\infty \psi_1^* \left( -i\hbar \pfrac{\psi_2}{x} \right) \dd x \\ &= \langle \psi_1, \hat{P} \psi_2 \rangle \end{align*} \item Kinetic energy \[ \hat{T} : \psi(x, t) \to \frac{\hat{P}^2}{2m} \psi(x, t) = -\frac{\hbar^2}{2m} \pfrac[2]{\psi}{x} \psi(x, t) \] \item potential energy \[ \hat{U} : \psi(x, t) \to U(\hat{X}) \psi(x, t) = U(x) \psi(X, t) \] \item total energy \[ \hat{H} : \psi(x, t) \to (\hat{T} + \hat{U}) \psi(x, t) = \left( -\frac{\hbar^2}{2m} \pfrac[2]{}{x} + U(x) \right) \psi(x, t) \] Exercise: prove that $\hat{H}$ (the Hamiltonian operator) is Hermitian. \end{enumerate} \begin{theorem} The eigenvalue of Hermitian operators are real. \end{theorem} \begin{proof} Let $\hat{A}$ be a Hermitian operator with eigenvalue $a \in \CC$ \[ \langle \psi, \hat{A} \psi \rangle = \langle \psi, a\psi \rangle = a\langle \psi, \psi \rangle = a \] But $\hat{A}$ Hermitian: \[ \langle \psi, \hat{A} \psi \rangle = \langle \hat{A} \psi, \psi \rangle = \langle a \psi, \psi \rangle = a^* \langle \psi, \psi \rangle = a^* \] $\implies a = a^*$. \end{proof} \begin{theorem} If $\hat{A}$ Hermitian operator, $\psi_1, \psi_2$ normalised eigenfunctions of $\hat{A}$ with eigenvalues $a_1, a_2$ with $a_1 \neq a_2$ then $\psi_1$ and $\psi_2$ are orthogonal. \end{theorem} \begin{proof} We have \[ \hat{A} \psi_1 = a_1 \psi_1 \quad \hat{A}\ \psi_2 = a_2 \psi_2 \qquad a_1, a_2 \in \RR \] Then \begin{align*} a_1 \langle \psi_1, \psi_2 \rangle &= a_1^* \langle \psi_1, \psi_2 \rangle \\ &= \langle a_1, \psi_1, \psi_2 \rangle \\ &= \langle \hat{A} \psi_1, \psi_2 \rangle \\ &= \langle \psi_1, \hat{A} \psi_2 \rangle \\ &= \langle \psi_1, \hat{A} \psi_2 \rangle \\ &= \langle \psi_1, a \psi_2 \rangle \\ &= a_2 \langle \psi_1, \psi_2 \rangle \end{align*} so $\langle \psi_1, \psi_2 \rangle = 0$ since $a_1 \neq a_2$. \end{proof} \begin{theorem} The discrete (or continuous) set of eigenfunctions of any Hermitian operator together form a complete orthonormal basis of $\mathcal{H}$. \[ \psi(x, t) = \sum_{i = 1}^N c_i \psi_i(x, t) \] $c_i \in \CC$, $\{\psi_i\}$ a set of eigenfunctions of $\hat{A} = \hat{A}^\dag$. \end{theorem}