% vim: tw=50 % 13/10/2022 12PM \newpage \section{Foundation of Quantum Mechanics} \begin{center} \begin{tabular}{c|c} Linear Algebra & Quantum Mechanics \\ vector ($n$-dimensional complex value) & state \\ $\bf{v}$, $\{e_i\}$, $\bf{v} \to (v_1, \dots, v_n)$ & $\psi$, basis $\bf{x} \to \psi(\bf{x}, t)$ \\ vector space $\CC^n$ & $L^2(\RR^3)$ complex-valued square integrable functions \\ inner product $\langle \bf{v}, \bf{w} \rangle = v_1^* w_1 + \cdots + v_n^* w_n$ & $\langle \psi, \phi \rangle \int_{\RR^3} \psi^* (\bf{x}, t) \phi(\bf{x}, t) \dd^3 x$ \\ linear map $\CC^n \to \CC^n$, use matrix & $L^2(\RR^3) \to l^2(\RR^3)$ operators $\hat{O}$, $\phi = \hat{O} \psi$ \end{tabular} \end{center} \subsection{Wave Function and Probabilistic Interpretation} Classical mechanics: $\bf{x}, \dot{\bf{x}}$ (or equivalently $\bf{p} = m \dot{\bf{x}}$) determine dynamics of the particle. \myskip Quantum mechanics: $\psi$ described by $\psi(\bf{x}, t)$ determine dynamics of the particle (in a probabilistic way) \begin{flashcard}[state-of-particle] \begin{definition*} $\psi$ is the \cloze{\emph{state} of the particle.} \end{definition*} \end{flashcard} \begin{definition*} $\psi(\bf{x}, t)$ complex coefficient of $\psi$ in the continuous basis of $\bf{x}$, i.e. $\psi(\bf{x}, t)$ is $\psi$ in $\bf{x}$ representation and is called \emph{wavefunction}. $\psi(\bf{x}, t) : \RR^3 \to \CC$ that satisfies mathematical properties dictated by its physics interpretation. \end{definition*} \subsubsection*{Interpretations} Born's rule / probabilistic interpretation. \myskip The probability density for particle to sits at $\bf{x}$ at given time $t$ \[ \rho(\bf{x}, t) \propto |\psi(\bf{x}, t)|^2 \] $\rho(\bf{x}, t) \dd V$ is the probability that the particle sits in some small volume $V$ centred at $\bf{x}$ is proportional to square modulus of $\psi(\bf{x}, t)$. \subsubsection*{Mathematical Properties} \begin{enumerate}[(i)] \item Because the particle has to be somewhere implies that wavefunction has to be normalisable (or square0integrable) in $\RR^3$: \[ \int_{\RR^3} \psi^*(\bf{x}, t) \psi(\bf{x}, t) \dd^3 x = \int_{\RR^3} |\psi(\bf{x}, t)|^2 \dd^3 x = \mathcal{N} < \infty \] with $\mathcal{N} \in \RR$ and $\mathcal{N} \neq 0$. \item Because total probability has to be 1, \[ \ol{\psi}(\bf{x}, t) = \frac{1}{\sqrt{\mathcal{N}}} \psi(\bf{x}, t) \] \[ \implies \int_{\RR^3} |\ol{\psi}(\bf{x}, t)|^2 \dd^3 x = 1 \] \[ \implies \rho(\bf{x}, t) = |\ol{\psi}(\bf{x}, t)|^2 \] \end{enumerate} \begin{note*} Often drop $\ol{\psi}$ and write wavefunctions as $\psi$, then normalise at the end. \end{note*} \begin{note*} If $\tilde{\psi}(\bf{x}, t) = e^{i\alpha} \psi(\bf{x}, t)$ with $\alpha \in \RR$ then $|\tilde{\psi}(\bf{x}, t)|^2 = |\psi(\bf{x}, t)|^2$ so $\psi$ and $\tilde{\psi}$ are equivalent state. \end{note*} \noindent Non-examinable aside: \\ State corresponds to rays in vector space of wave functions $[\psi]$ is the equivalence class of vectors under equivalence relation $\psi_1 \sim \psi_2 \iff \psi_1 = e^{i\alpha} \psi_2$. \subsubsection*{Hilbert Space} \begin{flashcard}[square-integrable-hilbert-space] \begin{definition*} The set of all \cloze{square-integrable functions} in $\RR^3$ is called \cloze{Hilbert space $\mathcal{H}$} or \cloze{$L^2(\RR^3)$.} \end{definition*} \end{flashcard} \begin{proposition*} If $\psi_1, \psi_2 \in \mathcal{H}$ then $\psi = a_1 \psi_1 + a_2 \psi_2 \neq 0 \in \mathcal{H}$ ($a_1, a_2 \in \CC$). \end{proposition*} % theorem 2.1 \begin{theorem} If $\psi_1(\bf{x}, t)$ and $\psi_2(\bf{x}, t)$ are square-integrable then also $\psi(\bf{x}, t) = a_1 \psi_1(\bf{x}, t) + a_2 \psi_2(\bf{x}, t)$ is square-integrable. \end{theorem} \begin{proof} \[ \int_{\RR^3} |\psi_1(\bf{x}, t)|^2 \dd^3 x = \mathcal{N}_1 < \infty \] \[ \int_{\RR^3} |\psi_2(\bf{x}, t)|^2 \dd^3 x = \mathcal{N}_2 < \infty \] by triangle identities for complex numbers, \begin{align*} \int_{\RR^3} |\psi(\bf{x}, t)|^2 \dd^3 x &= \int_{\RR^3} |a_1 \psi_1(\bf{x}, t) + a_2 \psi_2(\bf{x}, t)|^2 \dd^3 x \\ &\le \int_{\RR^3} (|a_1 \psi_1(\bf{x}, t)| + |a_2 \psi_2 (\bf{x}, t)|)^2 \dd^3 x \\ &= \int_{\RR^3} (|a_1 \psi_1(\bf{x}, t)|^2 + |a_2\psi_2(\bf{x}, t)|^2 + 2|a_1\psi_1||a_2\psi_2|) \dd^3 x \\ &\le \int_{\RR^3} 2|a_1\psi_1(\bf{x}, t)|^2 + 2|a_2 \psi_2(\bf{x}, t)|^2 \dd^3 x \\ &= 2|a_1|^2 \mathcal{N}_1 + 2|a_2|^2 \mathcal{N}_2 \\ &< \infty \end{align*} \end{proof} \subsection{Inner Product} \begin{flashcard}[hilbert-inner-product] \begin{definition*} Inner product in $\mathcal{H}$ is defined as \[ \langle \psi, \phi \rangle = \cloze{\int_{\RR^3} \psi^*(\bf{x}, t) \phi(\bf{x}, t) \dd^3 x} \] \end{definition*} \end{flashcard} \begin{theorem} If $\psi, \phi \in \mathcal{H}$ then their inner product is guaranteed to exist. \end{theorem} \begin{proof} \[ \int_{\RR^3} |\psi(\bf{x}, t)|^2 \dd^3 x = \mathcal{N}_1 < \infty \] \[ \int_{\RR^3} |\phi(\bf{x}, t)|^2 \dd^3 x = \mathcal{N}_2 < \infty \] \begin{align*} |\langle \psi, \phi \rangle | &= \left| \int_{\RR^3} \psi^*(\bf{x}, t) \phi(\bf{x}, t) \dd^3 x \right| \\ &\le \sqrt{\int_{\RR^3} |\psi(\bf{x}, t)|^2 \dd^3 x \int_{\RR^3} |\phi(\bf{x}, t)|^2 \dd^3 x} &&\text{(Cauchy Schwarz)} \\ &= \sqrt{\mathcal{N}_1 \mathcal{N}_2} \\ &< \infty \qedhere \end{align*} \end{proof}