% vim: tw=50 % 11/10/2022 12PM \subsubsection*{1.2.II Photo electric effect} \begin{center} \includegraphics[width=0.6\linewidth] {images/feb7aa7a495511ed.png} \end{center} As change $I$ and $\omega$ of incident light \begin{center} \includegraphics[width=0.6\linewidth] {images/192f3bfc495611ed.png} \end{center} classical expectation: \begin{enumerate}[(i)] \item incident light carries $E \propto I$ as $I$ increases there is enough $E$ to break the bond of $e^-$ with atom $\forall \omega$. \item emission rate should be constant as $I$ increases \end{enumerate} surprising facts: \begin{enumerate}[(1)] \item Below $\omega_{\text{min}}$ no $e^-$ emission \item $E_{\text{max}}$ depended on $\omega$ not on $I$ \item emission rate increases as $I$ increases \end{enumerate} 1905 Einstein \begin{itemize} \item light quantified in small quanta, called photon \item each photon carries \[ E = \hbar \omega \] \[ \bf{P} = \hbar \bf{K} \] \item phenomenon of $e^-$ emission comes from scattering of single photon off single $e^-$. \end{itemize} \[ E_{\text{min}} = 0 = \hbar \omega_{\text{min}} - \phi \] ($\phi$ is the binding energy of $e^-$ with atom of metal) \[ E_{\text{max}} = \hbar \omega_{\text{max}} - \phi \] as $I$ increases, the number of protons increases, so the amount of scattering increases, so there is a higher $e^-$ emission rate. \subsubsection*{!.2.III Compton scattering} 1923: X-rays scattering off free electron \begin{center} \includegraphics[width=0.6\linewidth] {images/067cef16495811ed.png} \end{center} Recall Dynamics and Relativity example sheet 4 question 7: \begin{center} \includegraphics[width=0.6\linewidth] {images/1f66f520495911ed.png} \end{center} \[ 2 \sin^2 \frac{\theta}{2} = \frac{mc}{|\bf{q}|} - \frac{mc}{|\bf{p}|} \] Why is this the peak? \begin{align*} E &= \hbar \omega \\ \bf{P} &= \hbar \bf{K} \implies |\bf{P}| = \hbar |\bf{K}| = \hbar \frac{\omega}{c} \\ \bf{q} &= \hbar \bf{K}' \implies |\bf{q}| = \hbar |\bf{K}'| = \hbar \frac{\omega'}{c} \end{align*} Take (2) and plug in (1) \[ \frac{1}{\omega'} = \frac{1}{\omega} + \frac{\hbar}{mc}(1 - \cos\theta) \] \begin{note*} $\hbar \to 0$, $\omega' \to \omega$. \end{note*} \subsection{Atomic spectra} 1897: Thomson, plum-pudding model of atoms. \begin{center} \includegraphics[width=0.6\linewidth] {images/41bcb100495911ed.png} \end{center} 1909: Rutherford \begin{center} \includegraphics[width=0.6\linewidth] {images/77984e60495911ed.png} \end{center} scattering pattern $\to$ Rutherford model \begin{center} \includegraphics[width=0.6\linewidth] {images/8f3601f2495911ed.png} \end{center} The Rutherford model did not work because \begin{enumerate}[(i)] \item $e^-$ moves on circular orbits would radiate \item $e^-$ would collapse on nucleus due to Coulomb force \item model did not explain spectra measured. \end{enumerate} \[ \omega_{\text{min}} = 2\pi c R_0 \left( \frac{1}{n^2} - \frac{1}{m^2} \right) \] ($c$ is the speed of light, $R_0$ is the Rydberg constant, $\omega_{\text{min}}$ is the light emitted by atoms when hit by light and $n, m \in \NN$) \myskip 1913 (Bohr): $e^-$ orbits around nucleus are quantised so that $L$ ($=$ orbital angular momentum) takes discrete values \[ L_n = n\hbar \] \begin{proposition*} Quantisation of $L$ $\implies$ quantisation of $r$, $v$, $E$. \end{proposition*} \begin{proof} \[ L \equiv m_e vr \implies v = \frac{L}{m_e r} \implies v_n = n \frac{\hbar m_e r}{} \] Coulomb force: \[ \bf{F}^{\text{Coul}} = \frac{e^2}{4 \pi \eps_0} \frac{1}{r^2} \bf{e}_r \] Newton's second law: \[ \bf{F}^{\text{Coul}} = m_e a_r \bf{e}_r \] \[ \implies \frac{e^2}{4 \pi \eps_0} \frac{1}{r^2} = m_e \frac{v^2}{r} \implies r \equiv r_n = \frac{4 \pi \eps_0 \hbar^2}{m_e e^2} n^2 \] \[ \implies r_0 = \frac{4 \pi \eps_0 \hbar^2}{m_e e^2} \] (min radius / Bohr radius) \begin{align*} E_n = \half m_e v_n^2 - \frac{e^2}{4\pi \eps_0} \frac{1}{r_n} \\ &= - \frac{e^2}{8\pi \eps_0 r_0} \frac{1}{n^2} \end{align*} \begin{hiddenflashcard}[bohr-radius] \prompt{Bohr radius?} \[ r_0 = \cloze{\frac{4\pi \eps_0 \hbar^2}{m_e e^2}} \] \end{hiddenflashcard} \begin{hiddenflashcard}[coulomb-force] \prompt{Coulomb force?} \[ \bf{F}^{\text{Coul}} = \cloze{\frac{e^2}{4\pi \eps_0} \frac{1}{r^2} e_r} \] \end{hiddenflashcard} \begin{hiddenflashcard}[bohr-energy] \prompt{Bohr energy?} \[ E_n = \cloze{-\frac{e^2}{8\pi \eps_0 r_0} \frac{1}{n^2}} \] \end{hiddenflashcard} \end{proof} \noindent $n = 1$, $E_1 = -13.6 eV$ GROUND LEVEL. \begin{center} \includegraphics[width=0.6\linewidth] {images/3537a2ee495b11ed.png} \end{center} \[ \omega_{\text{min}} = \frac{\Delta E_{\text{min}}}{\hbar} = 2\pi c \left( \frac{e^2}{4\pi \eps_0 \hbar c} \right)^2 \left( \frac{1}{n^2} - \frac{1}{m^2} \right) \] \subsection{The wave-like behaviour of particles} 1923: De Broglie hypothesis: $\forall$ particle of $\forall$ mass associated with $Q$ wave having \[ \omega = \frac{E}{\hbar} \] \[ \bf{K} = \frac{\bf{p}}{\hbar} \] 1927: Davison and Geemer $e^-$ off crystals interference pattern was consistent with De Broglie.