% vim: tw=50 % 29/11/2022 12PM \begin{proposition*} If $f(r) = \sum_{n = 0}^\infty a_n r^n$ is infinite then $R(r)$ is not normalisable. \end{proposition*} \begin{proof} Asymptotic behaviour of $f(r)$ determined by \[ \frac{a_n}{a_{n - 1}} \stackrel{n \to \infty}{\longrightarrow} \frac{2\nu}{n} \] This is the same asymptotic behaviour as \[ g(r) = e^{2\nu r} = \sum_{n = 0}^\infty \frac{(2\nu)^n}{n!} r^n \] $b_n = \frac{(2\nu)^n}{n!}$, then \[ \frac{b_n}{b_{n - 1}} \stackrel{n \to \infty}{\longrightarrow} \frac{2\nu}{n} \] Asymptotically $f(r) \sim e^{2\nu r}$, $R(r) = f(r) e^{-\nu r} \sin e^\nu r$. \end{proof} \myskip $\implies$ the series must terminate. $\exists N > 0$ such that \[ a_N = 0 \quad \text{with} \quad a_{N - } \neq 0 \] \[ \implies 2\nu N - \beta = 0\implies \nu = \frac{\beta}{2N} \] Substituting $\nu, \beta$, \[ \boxed{E_N = -\frac{e^4 m_e}{32 \pi^2 \eps_0^2 \hbar^2} \frac{1}{N^2}} \] with $N = 1, 2, 3, \dots$ same as Bohr's energy spectrum. Eigenfunction $R_N(r)$, substitute $2N \nu = \beta$ in (11) and find \[ \frac{a_n}{a_{n - 1}} = -2\nu \frac{N - n}{n(n + 1)} \tag{12} \] Can use (12) to find coefficient of $R_N(r)$. \begin{itemize} \item[$N = 1$], polynomial of degree 0, set $a_0 = 1$ then normalise \[ R_1(r) = A_1 e^{-\nu r} \] \item[$N = 2$], polynomial of degree 1, set $a_0 = 1$, \[ \frac{a_1}{a_0} \stackrel{(12)}{=} -2\nu \frac{2 - 1}{2} \implies a_1 = -\nu a_0 = -\nu \] \[ R_2(r) = A_2(1 - \nu r) e^{-\nu r} \] \item[$N = 3$], polynomial of degree 2, $a_0 = 1$, $a_1 = -2\nu$, $a_2 = \frac{2}{3} \nu^2$ \[ R_3(r) = A_3(1 - 2\nu r + \frac{2}{3} \nu^2 r^2)e^{-\nu r} \] \end{itemize} In general \[ R_N(r) = L_N(\nu r) e^{-\nu r} \] where $L_n$ is the Laguerre polynomial of $O(N - 1)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/9b4f5d3a6fe211ed.png} \end{center} $P(r) \propto r^2|R_N(r)|^2$. \\ Exercise: Compute $A_1$ and compare closest to nucleus radius to Bohr radius \[ \langle \hat{r} \rangle_{\chi_1 = R_1 Y_{00}} = \frac{3}{2} a_0 \] (Bohr radius is $\left. \dfrac{P(r)}{r} \right|_{r = a_0} = 0$) \subsubsection*{5.3.2 $l > 0$} \[ \dfrac[2]{R}{r} + \frac{2}{r} \dfrac{R}{r} + \left( \frac{\beta}{r} - 2\nu - \frac{l(l + 1)}{r^2} \right) R = 0 \tag{14} \] Asymptotic behaviour: \[ R(r) = f(r) e^{-\nu r} \tag{15} \] \[ \implies \dfrac[2]{f}{r} + \frac{2}{r} (1 - \nu r) \dfrac{f}{r} + \left( \frac{\beta}{r} - 2\nu - \frac{l(l + 1)}{r^2} \right) f = 0 \tag{16} \] Power series \[ f(r) = r^\sigma \sum_{n = 0}^\infty a_n r^n \tag{17} \] Plug (17) into (16) and identify lowest power of $r$ and set coefficient to zero \[ a_0[\sigma(\sigma - 1) + 2\sigma - l(l + 1)] r^{\sigma - 2} = 0 \] \[ \implies \sigma(\sigma + 1) - l(l + 1) = 0 \] So have $\sigma = -l - 1$ or $\sigma = l$. But if $\sigma = -l - 1$ then $R(r) \sim \frac{1}{r^{l + 1}}$ as $r \to 0$, which is not integrable near $r = 0$. But if $\sigma = l$, then $R(r) \sim 0$ as $r \to 0$ which is fine. Now we know \[ f(r) = r^l \sum_{n = 0}^\infty a_n r^n \tag{18} \] Plug (18) into (16) and find \[ \boxed{a_n = \frac{2\nu(n + l) - \beta}{n(n + 2l -1)} a_{n - 1}} \tag{19} \] As before easy to show that $R(r)$ would diverge unless \[ \exists n_{\text{max}} > 0 \quad \text{such that} \quad a_{n_\text{max}} = 0, a_{n_{\text{max}} - 1} \neq 0 \] Plug $a_{n_{\text{max}}}$ in (19). \[ 2\nu\ub{(n_{\text{max}} + l)}_{\equiv N} - \beta = 0 \] \[ \implies 2\nu N - \beta = 0 \implies \nu = \frac{\beta}{2N} \] \begin{itemize} \item $E_N = -\frac{e^4 m_E}{32 \pi^2 \eps_0^2 \hbar^2} \frac{1}{N^2}$, $N = 1, 2, \dots$ \item Eigenvalues same but the degeneracy is larger $\forall N$, $N = n_{\text{max}} + l$. Can have $l = 0, 1, \dots, N - 1$. $-l \le m \le l$. \[ \ub{D(N)}_{\text{degeneracy}} = \sum_{l = 0}^{N - 1} \sum_{m = -l}^l 1 = \sum_{l = 0}^{N - 1} (2l + 1) = N^2 \] energy level $N$ you have $N^2$ (linearly independent) states with same $E_N$. \item Eigenfunctions \[ \chi_{N, l, m}(r, \theta, \phi) = R_{N, l}(r) Y_{l, m}(\theta, \phi) = r^l g_{N, l} e^{-r/2N} Y_{l, m}(\theta, \phi) \] $g_{n, l}(r)$ polynomial of degree $(N - l - 1)$ defined by \[ g_{N, l}(r) = \sum_{n = 0}^{N - l - 1} a_k r^k \] with $a_k = \frac{2\nu}{k} \frac{k + l - N}{k + 2l + 1}$ (generalised Laguerre polynomials) quantum numbers $N = 0, 1, 2, \dots$ (principal quantum numbers), $l = 0, \dots, N - 1$ (total angular momentum), $m = -l, \dots, l$ (azimuthal quantum number). \end{itemize} For $N = 4$ $l = 0$, \[ R_{4, 0}(r) \propto (1 + c_{4, 0} r + d_{4, 0} r^2 + e_{4, 0} r^2) e^{-r\beta/8} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/c31342da6fe411ed.png} \end{center} $Y_{00}(\theta, \phi) = \frac{1}{\sqrt{4\pi}}$, \begin{center} \includegraphics[width=0.4\linewidth] {images/d9c8b7586fe411ed.png} \end{center} For $N = 4$, $l = 1$, \[ R_{4,1}(r) \propto r(c_{4, 1} + d_{4, 1} r + e_{4, 1} r^2) e^{-r\beta/8} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/22febc246fe511ed.png} \end{center} $Y_{1,0}(\theta, \phi)$, $Y_{1,1}(\theta, \phi)$, $Y_{1,-1}(\theta, \phi)$. \begin{center} \includegraphics[width=0.4\linewidth] {images/3256935e6fe511ed.png} \end{center} For $N = 4$, $l = 2$, \[ R_{4, 2}(r) \propto r^2(c_{4, 2} + d_{r, 2}r) e^{-2\beta/8} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/b4affa026fe511ed.png} \end{center} $Y_{2,0}(\theta, \phi)$, $Y_{2,\pm1}(\theta, \phi)$, $Y_{2,\pm2}(\theta, \phi)$. $N = 4$, $l = 3$ \begin{center} \includegraphics[width=0.6\linewidth] {images/c11120826fe511ed.png} \end{center} \[ R_{4,3} = r^3(c_{4,3})e^{-r\beta/8} \] $Y_{3,0}, Y_{3,\pm1}, Y_{3,\pm2},Y_{3\pm3}$. \myskip Bohr model: \begin{itemize} \item $E_N$ was correct \item Bohr radius was sort of correct \item $L^2 = N^2\hbar^2$ wrong. Instead $L^2 = l(l + 1)\hbar^2$ with $l < N$. \item degeneracy wrong. \end{itemize} \subsection{Periodic table} $z$, $e^-$, \[ \chi(\bf{x}_1, \bf{x}_2, \dots, \bf{x}_z) = \chi(\bf{x}_1) \cdots \chi(\bf{x}_z) \] $E = \sum_{j = 1}^N E_j$. It's a poor approximation.