% vim: tw=50 % 24/11/2022 12PM \[ -\hbar \pfrac{}{\phi} Y(\theta, \phi) = \hbar mY(\theta, \phi) \] Find solutions \[ \boxed{Y(\theta, \phi) = y(\theta) X(\phi)} \tag{3} \] Plugging (3) into (2) \[ -i\hbar \left( \pfrac{}{\phi} X(\phi) \right) \cancel{y(\theta)} = \hbar m X(\phi) \cancel{y(\theta)} \] \[ X(\phi) = e^{im\phi)} \] Given that wave function must be simple-valued in $\RR^3$ $\implies X(\phi)$ must be invariant under \[ \phi \to \phi + 2\pi \] \[ \implies e^{i2m\pi} = 1 \implies m \in \ZZ \tag{4} \] Plug (4) into (1) and find \[ \boxed{\frac{1}{\sin\theta} \pfrac{}{\theta} \left( \sin \theta \pfrac{y(\theta)}{\theta} \right) - \frac{m^2}{\sin^2\theta} y(\theta) = -\frac{\lambda}{\hbar^2} y(\theta)} \tag{5} \] This is the associated Legendre equation (IB Methods) and it has solution \[ y(\theta) = P_{l, m}(\cos\theta = (\sin \theta)^{|m|} \dfrac[|m|]{}{(\cos\theta)} P_l(\cos\theta) \] (where $P_{l, m}$ is the associate Legendre polynomial and $P_l$ is the ordinary Legendre polynomial). Because $P_l(\cos\theta)$ is a polynomial in $\cos\theta$ of degree $l$, $\implies -l \le m \le l$ and (without proof) the eigenvalues of $\hat{L}^2$ are \[ \lambda = \hbar^2 l(l + 1) \] ($l = 0, 1, 2, \dots$) Put everything together: \[ Y_{l, m}(\theta, \phi) = P_{l, m}(\cos\theta) e^{im\phi} \] $l = 0, 1, 2, \dots$, $-l \le m \le l$. Spherical harmonics: \[ \hat{L}^2 Y_{l, m}(\theta, \phi) = \hbar^2 l(l = 1) Y_{l, m} (\theta \phi) \] \[ \hat{L}_3 Y_{l, m}(\theta, \phi) = m\hbar Y_{l, m}(\theta, \phi) \] $l$, $m$ are quantum numbers that characterise: \begin{itemize} \item $l \to$ total angular momentum \item $m \to$ azimuthal number, $z$-component of $L$. \end{itemize} In classical mechanics \begin{center} \includegraphics[width=0.1\linewidth] {images/bfaf9ab26bf211ed.png} \end{center} \[ -|\bf{L}| \le L_z \le |\bf{L}| \leftrightarrow -l \le m \le l \] \[ Y_{0, 0}(\theta, \phi) = \frac{1}{\sqrt{4\pi}} \qquad l = 0, m = 0 \] \[ Y_{1, 0}(\theta, \phi) = \frac{3}{\sqrt{4\pi}} \cos\theta \qquad l = 1, m = 0 \] \[ Y_{1, \pm 1}(\theta, \phi) = \frac{1}{\sqrt{4\pi}} \sin \theta e^{\pm i\phi} \qquad l = 1, m = \pm 1 \] All spherical harmonics are orthonormal (like all eigenfunctions of Hermitian operators) \[ (Y_{l, m}, Y_{l', m'}) = \delta_{ll'}\delta_{mm'} \] \[ \int_0^{2\pi} \dd \phi \int_{-1}^{1} \dd \cos\theta Y_{lm}^* (\theta, \phi) Y_{l'm'}(\theta, \phi) = \delta_{ll'} \delta_{mm'} \] \subsection{The Hydrogen atom} \begin{center} \includegraphics[width=0.3\linewidth] {images/e78d8a2e6bf411ed.png} \end{center} Model proton (nucleus) to be stationary at the origin ($m_p \to \infty$, or equivalently $m_p \gg m_e$) \[ F_{\text{coulomb}}(r) = -\frac{e^2}{4\pi \eps_0} \frac{1}{r^2} = -\pfrac{U_{\text{coulomb}}}{r} \] \[ U_{\text{coulomb}}(r) = -\frac{e^3}{4\pi\eps_0} \frac{1}{r} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/fef9a7886bf411ed.png} \end{center} Bound states $E < 0$. \[ -\frac{\hbar^2}{2m_e} \nabla^2 \chi(r, \theta \phi) - \frac{e^2}{4\pi\eps_0} \frac{1}{r} \chi(r, \theta, \phi) = E \chi(r, \theta, \phi) \tag{1} \] Laplacian \[ \nabla^2 = \frac{1}{r} \pfrac[2]{}{r} r + \frac{1}{r^2 \sin^2\theta} \left( \sin\theta \pfrac{}{\theta} \sin\theta \pfrac{}{\theta} + \pfrac[2]{}{\phi} \right) \] \[ \hat{L}^2 = \frac{\hbar^2}{\sin^2\theta} \left[ \sin\theta \pfrac{}{\theta} \sin \theta \pfrac{}{\theta} + \pfrac[2]{}{\phi} \right] \] \[ \implies -\hbar^2 \nabla^2 = -\frac{\hbar^2}{r} \pfrac[2]{}{r} r + \frac{\hat{L}^2}{r^2} \tag{2} \] Plug (2) into (1) \[ -\frac{\hbar^2}{2m_e} \frac{1}{r} \left( \pfrac[2]{}{r} r \chi(r, \theta, \phi) \right) + \frac{\hat{L}^2}{2m_e r^2} \chi(r, \theta, \phi) - \frac{e^2}{4\pi\eps_0 r} \chi(r, \theta, \phi) = E \chi(r, \theta, \phi) \tag{3} \] Because of eigenfunction of $\hat{H}$ are also eigenfunction of $\hat{L}^2$ and $\hat{L}_3$ $\implies$ $\chi(r, \theta, \phi)$ must also be eigenfunction of $\hat{L}^2$, $\hat{L}_3$. \[ \implies \chi(r, \theta, \phi) = R(r) Y_{l, m}(\theta, \phi) \] \[ \implies \hat{L}^2 \chi = R(r) Lhar Y_{l, m} (\theta, \phi) = \hbar^2 l(l + 1) R(r)Y_{l, m}(\theta, \phi) \tag{4} \] Plug (4) into (3) \begin{align*} -\frac{\hbar^2}{2m_e} \left( \dfrac[2]{R(r)}{r} + \frac{2}{r} \dfrac{R(r)}{r} \right) \cancel{Y_{l, m}(\theta, \phi)} &+ \frac{\hbar^2}{2m_e r^2} l(l + 1) R(r) \cancel{Y_{l, m}(\theta, \phi)} - \frac{e^2}{4\pi\eps_0}R(r) \cancel{Y_{l, m}(\theta, \phi)} \\ &= ER(r) \cancel{Y_{l, m}(\theta, \phi)} \tag{5} \end{align*} We end up with a 1D equation for radial part $R(r)$ \[ -\frac{\hbar^2}{2m} \left( \dfrac[2]{R}{r} + \frac{2}{r} \dfrac{R}{r} \right) + \ub{\left( -\frac{e^2}{4\pi\eps_0} \frac{1}{r} + \frac{\hbar^2 l(l + 1)}{2m_e r^2} \right)}_{V_{\text{eff}}(r)} R = ER \tag{6} \] ($V_{\text{eff}}(r)$ is a bit like in classical mechanics). \subsubsection*{5.3.1 $l = 0$} $V_{\text{eff}}(r) \to V_{\text{coulomb}}(r)$. Rewrite (6) in terms of variables \[ \nu^2 \equiv -\frac{2mE}{\hbar^2} > 0 \] \[ \beta \equiv \frac{e^2m}{2\pi\eps_0\hbar^2} \] In terms of $\nu^2$, $\beta$ (6) becomes \[ \dfrac[2]{R}{r} + \frac{2}{r} \dfrac{R}{r} + \left( \frac{\beta}{r} - \nu^2 \right) R = 0 \tag{7} \] \begin{enumerate}[(i)] \item The asymptotic behaviour ($r \o \infty$) determined by \[ \dfrac[2]{R}{r} - \nu^2 R = 0 \] \[ R(r) \sim e^{\pm r\nu} \] as $r \to \infty$. Take $R(r) \sim e^{-r\nu}$ because of normalisability. \item At $r = 0$ eigenfunction has to be finite ($\sim A$). \end{enumerate} Exploiting (i) take ansatz \[ R(r) = f(r) e^{-\nu r} \tag{8} \] Plug (8) into (7) and find \[ f''(r) + \frac{2}{r} (1 - \nu r) f'(r) + \frac{1}{r} (\beta - 2\nu) f(r) = 0 \tag{9} \] (9) is a homogeneous linear ODE with regular point $r = 0$ \[ f(r) = r^c \sum_{n = 0}^\infty a_n r^n \] \[ f'(r) = \sum_{n = 0}^\infty a_n(c + n) r^{c + n - 1} \tag{10} \] \[ f''(r) = \sum_{n = 0}^\infty a_n(c + n)(c + n - 1) r^{c + n - 2} \] Plug (10) into (9): \[ \sum_{n = 0}^\infty a_n(c + n)(c + n - 1) r^{c + n - 2} + \frac{2}{r} (1 - \nu r) a_n (c + n) r^{c + n - 1} + (\beta - 2\nu) r^{c + n - 1}] = 0 \] Constant power of $r$ has coefficient ($r^{c - 2}$) \[ a_0 c(c - 1) + 2 a_0 c = 0 \] \[ \implies a_0 c(c + 1) = 0 \] $c = -1$ (then $X \sim \frac{A}{r}$) or $c = 0$ (then $X \sim A$). So $c = 0$ and the equation for the other coefficients is \[ \sum_{n = 1}^\infty a_n n(n + 1) a_{n - 1} (\beta - 2\nu n)] r^{n - 2} = 0 \] \[ \implies a_n = \frac{2\nu n - \beta}{n(n + 1)}a_{n - 1} \tag{11} \]