% vim: tw=50 % 17/11/2022 12PM \newpage \section{3D solutions of Schr\"odinger equation} \subsection{TISE in 3D for spherically symmetric potentials} \begin{flashcard}[3D-TISE] \prompt{TISE in 3D?} \[ \cloze{-\frac{\hbar^2}{2m} \nabla^2 \chi(\bf{x}) + U(\bf{x}) \chi(\bf{x})} = \cloze{E \chi(\bf{x})} \] \end{flashcard} Laplacian operator $\nabla^2$ \begin{itemize} \item Cartesian coordinates $(x, y, z)$: \[ \nabla^2 \equiv \pfrac[2]{}{x} + \pfrac[2]{}{y} + \pfrac[2]{}{z} \] \item Spherical coordinates $(r, \theta, \phi)$ \[ \nabla^2 = \frac{1}{r} \pfrac[2]{}{r} (R) + \frac{1}{r^2 \sin^2\theta} \left[ \sin\theta \pfrac{}{\theta} \left( \sin\theta \pfrac{}{\theta} \right) + \pfrac[2]{}{\phi} \right] \] \begin{center} \includegraphics[width=0.6\linewidth] {images/2239675869f511ed.png} \end{center} \begin{align*} x &= r\cos\phi \sin \theta \\ y &= r \sin \phi \sin \theta \\ z &= r \cos\theta \end{align*} $0 \le r < \infty$, $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$. Reminder: \[ \int_{\RR^3} \dd V = \int_{-\infty}^\infty \dd x \int_{-\infty}^\infty \dd y \int_{-\infty}^\infty \dd z \] \[ \int_{\RR^3} \dd V = \int_0^{2\pi} \dd \phi \int_{-1}^1 \dd \ub{\cos \theta}_{\to \int_0^\pi \sin \theta \dd \theta} \int_0^\infty r^2 \dd r\] \end{itemize} \begin{definition*} Spherically symmetric potential \[ U(\bf{x}) = U(r, \theta, \phi) \equiv U(r) \] Clearly, even with a spherically symmetric potential $\phi(r, \theta, \phi)$. \end{definition*} \noindent We start by focussing on a particular sub-class of solutions of TISE, i.e. on Radial eigenfunctions $\chi(r)$. If $\chi(r, \theta, \phi) = \chi(r)$ then \[ \nabla^2 \chi(r) = \frac{1}{r} \pfrac[2]{}{r} (r\chi(r)) \] Plugging this into TISE in 3D: \[ \boxed{-\frac{\hbar^2}{2m} \left( \dfrac[2]{\chi}{r} + \frac{2}{r} \dfrac{\chi}{r} \right) + U(r) \chi = E\chi} \tag{$*$} \] Normalisation condition for $\chi \in \mathcal{H}$: \[ \int_{\RR^3}|\chi(r, \theta, \phi)|^2 \dd V < \infty \] \[ \implies \int_0^\infty |\chi(r)|^2 r^2 \dd r < \infty \] eigenfunctions $\chi(r)$ must go to 0 sufficiently fast at $r \to \infty$ and behave well ($\sim \frac{1}{r}$) (most singular behaviour) at $r \to 0$. \myskip How to solve ($*$)? One way of doing it is to define \[ \sigma(r) \equiv r\chi(r) \] \[ \implies -\frac{\hbar^2}{2m} \dfrac[2]{\sigma(r)}{r} + U(r) \sigma(r) = E\sigma(r) \tag{$**$} \] This is like the 1D TISE defined only on $\RR^+$ and with usual normalisation condition on $\RR^2$: \[ \int_0^\infty |\sigma(r)|^2 \dd r < \infty \] We want $\sigma(r) = 0$ at $r = 0$, $\sigma'(r)$ finite at $r = 0$. \\ $\implies$ Solve ($**$) on $\RR$ and look for odd solutions: \[ \sigma(-r) = -\sigma(r) \] \begin{center} \includegraphics[width=0.6\linewidth] {images/ba35c9c469f611ed.png} \end{center} \subsubsection*{Example: Spherically symmetric potential well} \[ U(r) = \begin{cases} 0 & r \le a \\ U_0 & r > a \end{cases} \qquad a \in \RR^+, U_0 \in \RR^+ \] \begin{center} \includegraphics[width=0.6\linewidth] {images/16d648b669f711ed.png} \end{center} TISE as ($**$) and solve it for $\sigma(r) = r\chi(r)$ by analytically continuation on whole $\RR$ and looking only for \emph{odd} solutions. \[ -\frac{\hbar^2}{2m} \dfrac[2]{\sigma(r)}{r} + U(r)\sigma(r) = E\sigma(r) \] Look for odd parity bound states \[ 0 \le E \le U_0 \] \[ K = \sqrt{\frac{2mE}{\hbar^2}} \qquad \ol{k} = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}} \] odd solutions: \[ \sigma(r) = \begin{cases} A \sin(kr) & |r| \le a \\ B e^{-\ol{k}r} & r > a \\ -B e^{+\ol{k}r} & r < -a \end{cases} \] Boundary conditions for $\sigma(r)$: \begin{itemize} \item continuity of $\sigma(r)$ at $r = a$ \item continuity of $\sigma'(r)$ at $r = a$. \end{itemize} \[ \implies \begin{cases} A\sin ka = B e^{-\ol{k}a} \\ kA \cos ka = -\ol{k} B e^{-\ol{k}a} \end{cases} \] \[ \implies -k\cot(ka) = \ol{k} \] From definition: \[ k^2 + \ol{k^2} = \frac{2mU_0}{\hbar^2} \] Solve this graphically by defining \[ \zeta = ka, \qquad \to \eta = -\zeta \cot\zeta \] \[ \eta = \ol{k}a \qquad \to \eta^2 + \xi^2 = r_0^2 \] \begin{center} \includegraphics[width=0.6\linewidth] {images/cfd3886e69f811ed.png} \end{center} If $r_0 < \frac{\pi}{2}$ ($\iff U_0 < \frac{\pi^2 \hbar^2}{3ma^2}$) then doesn't exist solution. Two differences: \begin{enumerate}[(1)] \item Below a given threshold for $U_0$ there does not exist bound state in 3D. (contrarily to 1D in which there exists even bound state) \item \[ \chi(r) = \begin{cases} A \frac{\sin(kr)}{r} & r < Q \\ B \frac{e^{-\ol{k}r}}{r} & r \ge Q \end{cases} \] \end{enumerate} \begin{center} \includegraphics[width=0.6\linewidth] {images/13bd6f5469f911ed.png} \end{center} \subsection{Angular momentum in Quantum Mechanics} Classical mechanics: \[ \bf{L} = \bf{x} \times \bf{p} \] When you have $U(r)$ then \[ \dfrac{\bf{L}}{t} = \dot{\bf{x}} \times \bf{p} + \bf{x} \times \dot{\bf{p}} = 0 \] In Dynamics and relativity the conservation of angular momentum implies that 3D $\to$ 2D (once take the plane $\bf{L} \cdot \bf{x} = 0$) $\to$ 1D (solve Newton's second law on $\bf{e}_r$). \begin{flashcard}[angular-momentum-operator] \begin{definition*} Angular momentum operator \fcscrap{\[ \hat{\bf{L}} = \hat{\bf{x}} \times \hat{\bf{p}} \]} \[ \hat{\bf{L}} = \cloze{-i\hbar \bf{x} \times \nabla} \] \fcscrap{In 1D: $\hat{p} = -\hbar \pfrac{}{x}$ \\ In 3D: $\hat{\bf{p}} = -\hbar\nabla$, $\hat{\bf{x}} = \bf{x}$.} \end{definition*} \end{flashcard} \noindent Write it in cartesian coordinates $(x_1, x_2, x_3)$ \[ \hat{L}_i = -\hbar \eps_{ijk} x_j \pfrac{}{x_k} \qquad \rightarrow (\eps_{ijk} \hat{x}_j \hat{p}_k) \] $i = 1, 2, 3$.