% vim: tw=50 % 15/11/2022 12PM \subsubsection*{Consequences of generalised uncertainty theorem} \begin{itemize} \item $[\hat{A}, \hat{B}] = 0$ if and only if there exists joint set of eigenstates which form a complete basis of $\mathcal{H}$ which happens if and only if $A, B$ can be measured simultaneously with arbitrary precision on a given state. \item Take $\hat{A} = \hat{x}$, $\hat{B} = \hat{p}$. Given that $[\hat{x}, \hat{p}] = i\hbar \hat{I}$ \[ \implies (\Delta_\psi x)(\Delta_\psi p) \ge \frac{\hbar}{2} \] (Heisenberg's uncertainty principle). \end{itemize} We had shown explicitly that, if $\psi = \psi_{\text{GP}}$ then \[ (\Delta_{\psi_{\text{GP}}} x) (\Delta_{\psi_{\text{GP}}} p) = \frac{\hbar}{2} \] at $t = 0$. (this is the minimum uncertainty). The reason for this lies in two lemmas: \begin{enumerate}[(i)] \item Lemma 4.5: $\psi$ is a state of minimum uncertainty \[ \iff \hat{x} \psi = ia \hat{p} \psi \quad a \in \RR \] \item Lemma 4.6: The condition for 4.5 to hold is \[ \psi(x) = C e^{-bx^2} \quad c \in \CC, b \in \RR^+ \] \end{enumerate} Exercise: Verify that $\psi_k(x, t) = e^{ikx} e^{-E_k t/\hbar}$ does not satisfy equation of Lemma 4.5. \subsection{Ehrenfest theorem} Time evolution of operators. \begin{theorem} The expectation value of an Hermitian operator $\hat{A}$ evolves according to \[ \dfrac{}{t} \langle \hat{A} \rangle_\psi = \frac{i}{\hbar} \langle [\hat{H}, \hat{A}] \rangle_\psi + \left\langle \pfrac{\hat{A}}{t} \right\rangle_\psi \] \end{theorem} \begin{proof} \begin{align*} \dfrac{}{t} \langle \hat{A} \rangle_\psi &= \dfrac{}{t} \int_{-\infty}^\infty \psi^*(x, t) \hat{A} \psi(x, t) \dd x \\ &= \int_{-\infty}^\infty \pfrac{}{t} (\psi^* \hat{A} \psi) \dd x \\ &= \int_{-\infty}^\infty \left( \pfrac{\psi^*}{t} \hat{A} \psi + \psi^* \pfrac{\hat{A}}{t} \psi + \psi^* \hat{A} \pfrac{\psi}{t} \right) \dd x \\ &= \frac{i}{\hbar} \int_{-\infty}^\infty \psi^* (\hat{H} \hat{A} - \hat{A} \hat{H}) \psi \dd x + \left\langle \pfrac{\hat{A}}{t} \right\rangle_\psi \\ &= \frac{i}{\hbar} \int_{-\infty}^\infty \psi^* [\hat{H}, \hat{A}] \psi \dd x + \left\langle \pfrac{\hat{A}}{t} \right\rangle_\psi \\ &= \frac{i}{\hbar} \langle [\hat{H}, \hat{A}] \rangle_\psi + \left\langle \pfrac{\hat{A}}{t} \right\rangle_\psi \qedhere \end{align*} \end{proof} \subsubsection*{Examples} \begin{enumerate}[(1)] \item Take $\hat{A} = \hat{H}$ \[ \implies \dfrac{\langle \hat{H} \rangle_\psi}{t} = 0 \] ($\dfrac{E}{t} = 0$) \item Take $\hat{A} = \hat{p}$. \begin{align*} [\hat{H}, \hat{p}] \psi &= \left[ \frac{\hat{p}^2}{2m} + U(\hat{x}), \hat{p} \right] \psi \\ &= [U(\hat{x}), \hat{p}] \psi \\ &= U(x) \left( -i\hbar \pfrac{}{x} \right) \psi(x, t) - \left( -i\hbar \pfrac{}{x} \right) [U(x) \psi(x, t) \\ &= \cancel{i\hbar U(x) \pfrac{\psi}{x}(x, t)} + \cancel{i\hbar U(x) \pfrac{\psi}{x}(x, t)} + i\hbar \pfrac{U}{x}(x) \psi(x, t) \\ \implies \dfrac{\langle \hat{p} \rangle_\psi}{t} &= \frac{i}{\hbar} \langle [\hat{H}, \hat{p}] \rangle_\psi \\ &= - \left\langle \pfrac{U}{x} \right\rangle_\psi \end{align*} \item $\hat{A} = \hat{x}$ \begin{align*} [\hat{H}, \hat{x}] &= \left[ \frac{\hat{p}^2}{2m} + U(\hat{x}), \hat{x} \right] \\ &= \frac{1}{2m} [\hat{p}^2, \hat{x}^2] \\ &= \frac{1}{2m} (\hat{p} \ub{[\hat{p}, \hat{x}]}_{-i\hbar \hat{I}} + \ub{[\hat{p}, \hat{x}]}_{i\hbar \hat{I}} \hat{p}) \\ &= -\frac{i\hbar}{m} \hat{p} \\ \dfrac{\langle \hat{x} \rangle_\psi}{t} &= \frac{i}{\hbar} \langle [\hat{H}, \hat{x}] \rangle_\psi \\ &= \frac{\langle \hat{p} \rangle_\psi}{m} \end{align*} (matches the classical $\dot{x} = \frac{p}{m}$) \end{enumerate} \subsection{Harmonic oscillator revisited (non-examinable)} \[ \hat{H} = \frac{\hat{p}^2}{2m} + \half m\omega^2 \hat{x}^2 \] ($k = m\omega^2$, elastic constant). Eigenvalues, eigenfunctions of $\hat{H}$. Rewrite: \begin{align*} \hat{H} &= \frac{1}{2m} (\hat{p} + im\omega \hat{x})(\hat{p} - im\omega \hat{x}) + \frac{i\omega}{2} \ub{[\hat{p}, \hat{x}]}_{-i\hbar \hat{I}} \\ &= \frac{1}{2m}(\hat{p} + im\omega \hat{x})(\hat{p} - im\omega \hat{x}) + \frac{\hbar\omega}{2} \hat{I} \tag{1} \end{align*} \begin{definition*} Ladder operators \[ \hat{a} =\frac{1}{\sqrt{2m}} (\hat{p} - im\omega \hat{x}) \tag{2} \] \[ \hat{a}^\dag = \frac{1}{\sqrt{2m}} (\hat{p} + im\omega \hat{x}) \] \[ \implies \boxed{\hat{H} = \hat{a}^\dag \hat{a} + \frac{\hbar\omega}{2} \hat{I}} \tag{4} \] \end{definition*} \noindent Compute \begin{align*} [\hat{a}, \hat{a}^\dag] &= \frac{1}{2m} [\hat{p} - im \omega \hat{x}, \hat{p} + im\omega \hat{x}] \\ &= -\frac{im\omega}{2m} [\hat{x}, \hat{p}] + \frac{im\omega}{2m} [\hat{p}, \hat{x}] \\ &= \hbar \omega \hat{I} \tag{5} \\ [\hat{H}, \hat{a}] &= [\hat{a}^\dag, \hat{a}, \hat{a}] \\ &= -\hbar \omega \hat{a} \tag{6} \\ [\hat{H}, \hat{a}^\dag] = \hbar \omega \hat{a}^\dag \tag{7} \end{align*} Suppose $\chi$ eigenfunction of $\hat{H}$ with eigenvalue $E$, \[ \hat{H} \chi = E \chi \] Take $(\hat{a} \chi)$. What is its energy? \begin{align*} \hat{H}(\hat{a}, \chi) &= [\hat{H}, \hat{a}] \chi + \hat{a} \hat{H} \chi \\ &= -\hbar \omega \hat \chi + E \hat{a} \chi \\ &= (E - \hbar \omega) \hat{a} \chi \end{align*} $\hat{a} \chi)$ is eigenfunction of $\hat{H}$ with eigenvalue $(E - \hbar \omega)$ and $\hat{a}^\dag \chi)$ is eigenfunction of $\hat{H}$ with eigenvalue $(E + \hbar\omega)$. Prove by induction: \[ (\hat{a}^n \chi) \to \text{eigenfunction with eigenvalue $E - n \hbar\omega$} \] \[ (\hat{a}^{\dag n} \chi) \to \text{eigenfunction with eigenvalue $E + n \hbar\omega$} \] Using the fact that \[ \langle \hat{H} \rangle_\psi \ge 0 \] then $\exists$ eigenfunction $\chi_0$ such that \[ \hat{a} \chi_0 = 0 \] Find $\chi_0$ \[ \frac{1}{\sqrt{2m}}(\hat{p} - im\omega \hat{x}) \chi_0) = 0 \] \[ -i\hbar \pfrac{\chi_0}{x} - im\omega x\chi_0 = 0 \] \[ \implies \chi_0(x0 = ce^{-m\omega x^2 /2\hbar} \] \[ \hat{H} \chi_0 = \hat{a}^\dag \hat{a} \chi_0 + \frac{\hbar \omega}{2} \hat{I} \chi_0 = \frac{\hbar\omega}{2} \chi_0 \] The excited states with $E > E_0$ \begin{align*} \chi_n &= (a^\dag)^n \chi_0 \\ &= \frac{1}{(\sqrt{2m})^2} (\hat{p} + im\omega \hat{x})^n \chi_0 \\ &= \frac{c}{(\sqrt{2m})^n} \left( -i\hbar \pfrac{}{x} + im\omega x \right)^n e^{-m\omega x^2 /2\hbar} \end{align*} Eigenvalues \[ E_n = \frac{\hbar\omega}{2} + n\hbar\omega = \left( n + \half \right) \hbar\omega \]