% vim: tw=50 % 10/11/2022 12PM \subsubsection*{Recap of chapter 2} Hermitian operators $\leftrightarrow$ observables \[ \hat{O}^+ = \hat{O} \iff (\hat{O} \psi, \phi) = (\psi, \hat{O}, \phi) ~\forall \psi, \phi \in \mathcal{H} \] Have: \begin{itemize} \item Real eigenvalues (Theorem 2.1) \item If $\hat{O} \psi_1 = a \psi_1$, $\hat{O} \psi_2 = b \psi_2$ with $a \neq b$ then $(\psi_1, \psi_2) = 0$ (Theorem 2.5) \item Eigenstates of Hermitian operator form a complete basis of $\mathcal{H}$. (Theorem 2.6) \end{itemize} Quantum measurement: \begin{itemize} \item Eigenvalues of $\hat{O}$ are possible outcomes of measurement of the observable $O$. \item If $\psi = \sum_i a_i \psi_i$, $\psi_i$ eigenstates of $\hat{O}$ then $P(O = \lambda_i) = a_i^2 = |(\psi_i, \psi)|^2$ \item Immediately after a measurement with outcome $\lambda_i$, the wave function becomes $\psi_i$. \end{itemize} \newpage \section{Simultaneous measurements in Quantum Mechanics} \subsection{Commutators} \begin{flashcard}[commutator-of-operators] \begin{definition*} Commutator of two operators $\hat{A}, \hat{B}$ is the operator \[ [\hat{A}, \hat{B}] = \cloze{\hat{A} \hat{B} - \hat{B} \hat{A}} \] \end{definition*} \end{flashcard} \noindent Properties: \begin{itemize} \item $[\hat{A}, \hat{B}] = -[\hat{B}, \hat{A}]$ \item $[\hat{A}, \hat{A}] = 0$ \item $[\hat{A}, \hat{B} \hat{C}] = [\hat{A}, \hat{B}] \hat{C} + \hat{B} [\hat{A}, \hat{C}]$ \item $[\hat{A}, \hat{B}, \hat{C}] = \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}] \hat{B}$. \end{itemize} Exercise: Compute $[\hat{x}, \hat{p}]$ in 1 dimension. \\ Take $\psi \in \mathcal{H}$ \[ \hat{x} \hat{p} \psi = x \left( -i \hbar \pfrac{}{x} \right) \psi(x) = -i\hbar x \pfrac{\psi}{x}(x) \] \[ \hat{p}\hat{x} \psi = -i\hbar \pfrac{}{x}(x \psi(x)) = -i\hbar \psi(x) - i\hbar x \pfrac{\psi}{x} \] \[ \implies [\hat{x}, \hat{p}]\psi = i\hbar \psi \implies [\hat{x}, \hat{p}] = i\hbar \hat{I} \] Canonical commutator relation. \begin{definition*} Two Hermitian operators $\hat{A}$ and $\hat{B}$ are \emph{simultaneously} diagonalisable in $\mathcal{H}$ is it exists a complete basis of joint eigenfunctions $\{\psi_i\}$ such that \[ \hat{A} \psi_i = a_i \psi_i \] \[ \hat{B} \psi_i = b_i \psi_i \] with $a_i, b_i \in \RR$. \end{definition*} \begin{theorem} Two Hermitian operators $\hat{A}$ and $\hat{B}$ are simultaneously diagonalisable \[ \iff [\hat{A}, \hat{B}] = 0 \] \end{theorem} \begin{proof} \begin{enumerate} \item[$\Rightarrow$] If $\hat{A}, \hat{B}$ simultaneously diagonalisable then $\{\psi_i\}$ set of joint eigenfunctions that is a complete basis of $\mathcal{H}$. \[ \forall \psi_i \quad [\hat{A}, \hat{B}]\psi_i = \hat{A}\hat{B} \psi_i -\hat{B} \hat{A} \psi_i = (a_i b_i - b_i a_i)\psi_i = 0 \] Take $\psi \in \mathcal{H}$. \[ [\hat{A}, \hat{B} = \sum_i c_i [\hat{A}, \hat{B}] \psi_i = 0 \] \[ \implies [\hat{A}, \hat{B}] = 0 \] \item[$\Leftarrow$] If $[\hat{A}, \hat{B}] = 0$ and $\psi_i$ eigenfunction of $\hat{A}$ with eigenvalues $a_i$. \[ 0 = [\hat{A}, \hat{B}] \psi_i = \hat{A} \hat{B} \psi_i - \hat{B} \hat{A} \psi_i = \hat{A} \hat{B} \psi_i - a_i \hat{B} \psi_i \] so \[ \hat{A}(\hat{B} \psi_i) = a_i (\hat{B} \psi_i) \] $\hat{B}$ maps the eigenspace $E_i$ of $\hat{A}$ with eigenvalue $a_i$ into itself so $\hat{B} \mid_{E_i}$ is an Hermitian operator of $E_i$. Since this holds for all eigenspace $E_i$ of $\hat{A}$, we can find a complete basis of simultaneous eigenfunctions of $\hat{A}$ and $\hat{B}$. \end{enumerate} \end{proof} \subsection{Heisenberg's Uncertainty Principle} \begin{flashcard}[uncertainty-in-measurement-of-observable] \begin{definition*} The uncertainty in a measurement of an observable $A$ on a state $\psi$ is defined as \[ \Delta_\psi A = \cloze{\sqrt{(\Delta_\psi A)^2}} \] where \begin{align*} \cloze{(\Delta_\psi A)^2} \fcscrap{&= \langle (\hat{A} - \langle \hat{A} \rangle_\psi \hat{I})^2 \rangle_\psi \\} &= \cloze{\langle \hat{A}^2 \rangle_\psi - (\langle \hat{A} \rangle_\psi)^2} \end{align*} \end{definition*} \end{flashcard} \noindent The two definitions are equivalent: \begin{align*} \langle (\hat{A} - \langle \hat{A} \rangle_\psi \hat{I})^2 \rangle_\psi &= \int_{\RR^3} \psi^* (\hat{A} - \langle \hat{A} \rangle_\psi \hat{I})^2 \psi \dd^3 x \\ &= \int_{\RR^3} \psi^* \hat{A}^2 \psi \dd^3 x + (\langle \hat{A} \rangle_\psi)^2 \int_{\RR^3} \psi^* \psi \dd^3 x - 2 \langle \hat{A} \rangle_\psi \int_{\RR^3} \psi^* \hat{A} \psi \dd^3 x \\ &= \langle \hat{A}^2 \rangle_\psi + (\langle \hat{A} \rangle_\psi)^2 - 2(\langle \hat{A} \rangle_\psi)^2 \\ &+ \langle \hat{A} \rangle_\psi^2 - (\langle \hat{A} \rangle_\psi)^2 \end{align*} \begin{flashcard}[uncertainty-lemma] \begin{lemma} $(\Delta_\psi A)^2 \ge 0$ and $(\Delta_\psi A) = 0 \iff \psi$ is eigenfunction of $\hat{A}$. \end{lemma} \end{flashcard} \begin{proof} \begin{align*} (\Delta_\psi A)^2 &= \langle (\hat{A} - \langle \hat{A} \rangle_\psi \hat{I})^2 \rangle_\psi \\ &= (\psi, (\hat{A} - \langle \hat{A} \rangle_\psi \hat{I})^2 \psi) \\ &= ((\hat{A} - \langle \hat{A} \rangle_\psi \hat{I}) \psi, (\hat{A} - \langle \hat{A} \rangle_\psi \hat{I})\psi) \\ &= \langle \phi, \phi) \\ &\ge 0 \end{align*} (Call $\phi = (\hat{A} - \langle \hat{A} \rangle_\psi \hat{I})\psi$) Now prove that $(\Delta_\psi A)^2 = 0 \iff \phi = 0$. \begin{enumerate} \item[$\Rightarrow$] $(\Delta_\psi A)^2 = (\phi, \phi) = 0$ if $\phi = 0$ implies \[ \hat{A} \psi = \langle \hat{A} \rangle_\psi \psi \] i.e. $\psi$ eigenfunction of $\hat{A}$. \item If $\psi$ is eigenfunction of $\hat{A}$ with eigenvalue $a \in \RR$ then \[ \langle \hat{A} \rangle_\psi = (\psi, \hat{A} \psi) = a(\psi, \psi) = a \] \[ \langle \hat{A} \rangle_\psi = (\psi, \hat{A}^2 \psi) = a^2 (\psi, \psi) = a^2 \] using second definition, \[ (\Delta_\psi A)^2 = \langle \hat{A}^2 \rangle_\psi - (\langle \hat{A} \rangle_\psi)^2 = a^2 - a^2 = 0 \qedhere \] \end{enumerate} \end{proof} \begin{lemma} If $\psi, \phi \in \mathcal{H}$, then \[ |(\phi, \psi)|^2 \le (\phi, \phi) (\psi, \psi) \] and $|(\phi, \psi)|^2 = (\phi, \phi)(\psi, \psi)$ if and only if $\phi = a \psi$ for $a \in \CC$. \end{lemma} \noindent (proof comes from Schwarz inequality and is available in Maria Ubiali's notes). \begin{flashcard}[generalised-uncertainty-theorem] \begin{theorem}[Generalised uncertainty theorem] If $A$ and $B$ observables and $\psi \in \mathcal{H}$ then \[ (\Delta_\psi A)(\Delta_\psi B) \ge \cloze{\half |(\psi, [\hat{A}, \hat{B}]\psi)|} \] \end{theorem} \end{flashcard} \begin{proof} \begin{align*} (\Delta_\psi A)^2 &= ((\hat{A} - \langle \hat{A} \rangle_\psi \hat{I}) \psi, (\hat{A} - \langle \hat{A} \rangle_\psi \hat{I})\psi) \end{align*} Define \[ \hat{A}' = \hat{A} - \langle \hat{A} \rangle_\psi \hat{I} \] \[ \hat{B}' = \hat{B} - \langle \hat{B} \rangle_\psi \hat{I} \] Hence \[ (\Delta_\psi A)^2 = (\hat{A}'\psi, \hat{A}'\psi) \] \[ (\Delta_\psi B)^2 = (\hat{B}' \psi, \hat{B}' \psi) \] Using lemma 4.3: \[ (\Delta_\psi A)^2 (\Delta_\psi B)^2 \ge |(\hat{A}' \psi, \hat{B}' \psi)|^2 \tag{1} \] and RHS is equal to $|(\psi, \hat{A}'\hat{B}' \psi)|^2$ because $\hat{A}'$ is Hermitian. Define \[ [\hat{A}', \hat{B}'] = \hat{A}'\hat{B}' - \hat{B}'\hat{A}' \tag{2} \] \[ \{\hat{A}', \hat{B}'\} = \hat{A}'\hat{B}' + \hat{B}'\hat{A}' \tag{3} \] if $\hat{A}', \hat{B}'$ Hermitian \[ [\hat{A}', \hat{B}']^\dag = -[\hat{A}', \hat{B}'] \tag{4} \] Now writing \[ \hat{A}' \hat{B}' = \half ([\hat{A}', \hat{B}'] + \{\hat{A}', \hat{B}'\}) \tag{5} \] Plug (5) into (1) \[ (\Delta_\psi A)^2(\Delta_\psi B)^2 \ge \frac{1}{4} |(\psi, [\hat{A}', \hat{B}']\psi) + (\psi, \{A', B'\}\psi)|^2 \] Given that: \begin{itemize} \item $(\psi, \{\hat{A}', \hat{B}'\} \psi) \in \RR$ \item $(\psi, [\hat{A}', \hat{B}'] \psi) = ir$ with $r \in \RR$ \end{itemize} then \[ (\Delta_\psi A)^2 (\Delta_\psi B)^2 \ge \frac{1}{4} |(\psi, [\hat{A}', \hat{B}'] \psi)|^2 + \frac{1}{4} |\psi, \{\hat{A}', \hat{B}'\} \psi)|^2 \] \[ \implies (\Delta_\psi A)(\Delta \psi B) \ge \half |(\psi, [\hat{A}, \hat{B}]\psi)| \qedhere \] \end{proof}