% vim: tw=50 % 06/10/2022 12PM \section{Quantum Mechanics} \subsection{Particles and Waves in Classical Mechanics} Basic concepts of classical mechanics. \subsubsection*{Particles} \begin{definition*} Point-particle is an object carrying energy $E$ and momentum $p$ in infinitesimally small point of space. \end{definition*} \noindent Particle determined by $\bf{x}$ (position) and $\bf{v} = \dot{\bf{x}} = \dfrac{}{t} \bf{x}$ (velocity). Newton's second law is that \[ m \ddot{\bf{x}} = \bf{F}(\bf{x}(t), \dot{\bf{x}}(t)) \] Solving Newton's second law determines $\bf{x}(t)$ and $\dot{\bf{x}}(t)$ for all $t > t_0$ once initial conditions known ($\bf{x}(t_0), \dot{\bf{x}}(t_0)$). \subsubsection*{Waves} \begin{definition*} Any real or complex-valued function with periodicity in time / space. \begin{itemize} \item Take function of time $t$: \[ f(t + T) = f(t) \] where $T \neq 0$ is the period. \[ \nu = \frac{1}{T} \] is the frequency and \[ \omega = 2\pi\nu = \frac{2\pi}{T} \] is the angular frequency. \item Take function of space $x$ \[ f(x + \lambda) = f(x) \] where $\lambda$ is the wavelength. \[ K = \frac{2\pi}{\lambda} \] is the wave number. \end{itemize} \end{definition*} \begin{example*} In 1 dimension, electromagnetic wave obeys equation \[ \pfrac[2]{f(x, t)}{t} - c^2 \pfrac[2]{f(x, t)}{x} = 0 \tag{1} \] with $c \in \RR$. Solutions: \[ f_\pm(x, t) = A_\pm \exp(\pm iKx - i\omega t) \] with $A_\pm \in \CC$ (amplitude of wave) and $\omega = cK$ (dispersion relation), hence \[ \lambda = \frac{2\pi c}{\omega} = \frac{c}{\nu} \] \end{example*} \begin{example*} In 3 dimensions, electromagnetic wave obeys equation \[ \pfrac[2]{f(\bf{x}, t)}{t} - c^2 \nabla^2 f(\bf{x}, t) = 0 \tag{2} \] need $f(x, t_0)$, $\dfrac{f}{t}(x, t_0)$ to get unique solution. Solution: \[ f(\bf{x}, t) = A\exp(i \bf{K} \cdot \bf{x} - i \omega t) \] with $\omega = c|\bf{K}|$. \end{example*} \begin{note*} \begin{itemize} \item These kind of waves arise as solutions of other governing equations provided a different dispersion relation. \item For all governing equations, superposition principle holds if $f_1, f_2$ solutions implies $f = f_1 + f_2$ is a solution. \end{itemize} \end{note*} \subsection{Particle-like Behaviour of Wave} \begin{enumerate} \item[1.2.I] Black-body Radiation (1900) \item[1.2.II] Photo-electric effect (1905) \item[1.2.III] Compton scattering (1923) \end{enumerate} \subsubsection*{1.2.I Black Body Radiation} When a body heated at temperature $T$, it radiates light at different frequencies \begin{center} \includegraphics[width=0.6\linewidth] {images/568d7582456d11ed.png} \end{center} Classical prediction: \[ E = K_B T \] where $E$ is energy of each wave and $K_B$ is Boltzmann constant \[ \implies I(\omega) \propto K_B T \frac{\omega^2}{\pi^2 c^3} \] Planck: \[ I(\omega) \propto \frac{\omega^2}{\pi^2 c^3} \frac{\hbar \omega}{\exp \left( \frac{\hbar \omega}{K_B T} \right) - 1} \] $\hbar$ is reduced Planck constant: \[ \hbar = \frac{h}{2\pi} \]