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Start of
lecture 1 1 Quantum Mechanics

1.1 Particles and Waves in Classical Mechanics

Basic concepts of classical mechanics.

Particles

Definition. Point-particle is an object carrying energy E and momentum p in
infinitesimally small point of space.

Particle determined by x (position) and v = ẋ = d
dtx (velocity). Newton’s second law

is that
mẍ = F(x(t), ẋ(t))

Solving Newton’s second law determines x(t) and ẋ(t) for all t > t0 once initial conditions
known (x(t0), ẋ(t0)).

Waves

Definition. Any real or complex-valued function with periodicity in time / space.

� Take function of time t:
f(t+ T ) = f(t)

where T ̸= 0 is the period.

ν =
1

T

is the frequency and

ω = 2πν =
2π

T

is the angular frequency.

� Take function of space x
f(x+ λ) = f(x)

where λ is the wavelength.

K =
2π

λ

is the wave number.
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Example. In 1 dimension, electromagnetic wave obeys equation

∂2f(x, t)

∂t2
− c2

∂2f(x, t)

∂x2
= 0 (1)

with c ∈ R. Solutions:

f±(x, t) = A± exp(±iKx− iωt)

with A± ∈ C (amplitude of wave) and ω = cK (dispersion relation), hence

λ =
2πc

ω
=
c

ν

Example. In 3 dimensions, electromagnetic wave obeys equation

∂2f(x, t)

∂t2
− c2∇2f(x, t) = 0 (2)

need f(x, t0),
df
dt (x, t0) to get unique solution. Solution:

f(x, t) = A exp(iK · x− iωt)

with ω = c|K|.

Note. � These kind of waves arise as solutions of other governing equations
provided a different dispersion relation.

� For all governing equations, superposition principle holds if f1, f2 solutions
implies f = f1 + f2 is a solution.

1.2 Particle-like Behaviour of Wave

1.2.I Black-body Radiation (1900)

1.2.II Photo-electric effect (1905)

1.2.III Compton scattering (1923)

1.2.I Black Body Radiation

When a body heated at temperature T , it radiates light at different frequencies
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Classical prediction:
E = KBT

where E is energy of each wave and KB is Boltzmann constant

=⇒ I(ω) ∝ KBT
ω2

π2c3

Planck:

I(ω) ∝ ω2

π2c3
ℏω

exp
(

ℏω
KBT

)
− 1

ℏ is reduced Planck constant:

ℏ =
h

2π

Start of
lecture 2 1.2.II Photo electric effect

As change I and ω of incident light
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classical expectation:

(i) incident light carries E ∝ I as I increases there is enough E to break the bond of
e− with atom ∀ω.

(ii) emission rate should be constant as I increases

surprising facts:

(1) Below ωmin no e− emission

(2) Emax depended on ω not on I

(3) emission rate increases as I increases

1905 Einstein

� light quantified in small quanta, called photon

� each photon carries
E = ℏω

P = ℏK

� phenomenon of e− emission comes from scattering of single photon off single e−.

Emin = 0 = ℏωmin − ϕ

(ϕ is the binding energy of e− with atom of metal)

Emax = ℏωmax − ϕ

as I increases, the number of protons increases, so the amount of scattering increases,
so there is a higher e− emission rate.

6



!.2.III Compton scattering

1923: X-rays scattering off free electron

Recall Dynamics and Relativity example sheet 4 question 7:

2 sin2
θ

2
=
mc

|q|
− mc

|p|
Why is this the peak?

E = ℏω

P = ℏK =⇒ |P| = ℏ|K| = ℏ
ω

c

q = ℏK′ =⇒ |q| = ℏ|K′| = ℏ
ω′

c

Take (2) and plug in (1)
1

ω′ =
1

ω
+

ℏ
mc

(1− cos θ)

Note. ℏ → 0, ω′ → ω.

1.3 Atomic spectra

1897: Thomson, plum-pudding model of atoms.
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1909: Rutherford

scattering pattern → Rutherford model

The Rutherford model did not work because

(i) e− moves on circular orbits would radiate

(ii) e− would collapse on nucleus due to Coulomb force
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(iii) model did not explain spectra measured.

ωmin = 2πcR0

(
1

n2
− 1

m2

)
(c is the speed of light, R0 is the Rydberg constant, ωmin is the light emitted by atoms
when hit by light and n,m ∈ N)

1913 (Bohr): e− orbits around nucleus are quantised so that L (= orbital angular mo-
mentum) takes discrete values

Ln = nℏ

Proposition. Quantisation of L =⇒ quantisation of r, v, E.

Proof.

L ≡ mevr =⇒ v =
L

mer
=⇒ vn = n

ℏmer

Coulomb force:

FCoul =
e2

4πε0

1

r2
er

Newton’s second law:
FCoul = mearer

=⇒ e2

4πε0

1

r2
= me

v2

r
=⇒ r ≡ rn =

4πε0ℏ2

mee2
n2

=⇒ r0 =
4πε0ℏ2

mee2

(min radius / Bohr radius)

En =
1

2
mev

2
n −

e2

4πε0

1

rn

= − e2

8πε0r0

1

n2

n = 1, E1 = −13.6eV GROUND LEVEL.
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ωmin =
∆Emin

ℏ
= 2πc

(
e2

4πε0ℏc

)2(
1

n2
− 1

m2

)
1.4 The wave-like behaviour of particles

1923: De Broglie hypothesis: ∀ particle of ∀ mass associated with Q wave having

ω =
E

ℏ

K =
p

ℏ
1927: Davison and Geemer e− off crystals interference pattern was consistent with De
Broglie.

Start of
lecture 3
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2 Foundation of Quantum Mechanics

Linear Algebra Quantum Mechanics
vector (n-dimensional complex value) state

v, {ei}, v → (v1, . . . , vn) ψ, basis x → ψ(x, t)
vector space Cn L2(R3) complex-valued square integrable functions

inner product ⟨v,w⟩ = v∗1w1 + · · ·+ v∗nwn ⟨ψ, ϕ⟩
∫
R3 ψ

∗(x, t)ϕ(x, t)d3x

linear map Cn → Cn, use matrix L2(R3) → l2(R3) operators Ô, ϕ = Ôψ

2.1 Wave Function and Probabilistic Interpretation

Classical mechanics: x, ẋ (or equivalently p = mẋ) determine dynamics of the particle.

Quantum mechanics: ψ described by ψ(x, t) determine dynamics of the particle (in a
probabilistic way)

Definition. ψ is the state of the particle.

Definition. ψ(x, t) complex coefficient of ψ in the continuous basis of x, i.e. ψ(x, t)
is ψ in x representation and is called wavefunction. ψ(x, t) : R3 → C that satisfies
mathematical properties dictated by its physics interpretation.

Interpretations

Born’s rule / probabilistic interpretation.

The probability density for particle to sits at x at given time t

ρ(x, t) ∝ |ψ(x, t)|2

ρ(x, t)dV is the probability that the particle sits in some small volume V centred at x
is proportional to square modulus of ψ(x, t).

Mathematical Properties

(i) Because the particle has to be somewhere implies that wavefunction has to be
normalisable (or square0integrable) in R3:∫

R3

ψ∗(x, t)ψ(x, t)d3x =

∫
R3

|ψ(x, t)|2d3x = N <∞

with N ∈ R and N ̸= 0.
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(ii) Because total probability has to be 1,

ψ(x, t) =
1√
N
ψ(x, t)

=⇒
∫
R3

|ψ(x, t)|2d3x = 1

=⇒ ρ(x, t) = |ψ(x, t)|2

Note. Often drop ψ and write wavefunctions as ψ, then normalise at the end.

Note. If ψ̃(x, t) = eiαψ(x, t) with α ∈ R then |ψ̃(x, t)|2 = |ψ(x, t)|2 so ψ and ψ̃ are
equivalent state.

Non-examinable aside:
State corresponds to rays in vector space of wave functions [ψ] is the equivalence class
of vectors under equivalence relation ψ1 ∼ ψ2 ⇐⇒ ψ1 = eiαψ2.

Hilbert Space

Definition. The set of all square-integrable functions in R3 is called Hilbert space
H or L2(R3).

Proposition. If ψ1, ψ2 ∈ H then ψ = a1ψ1 + a2ψ2 ̸= 0 ∈ H (a1, a2 ∈ C).

Theorem 1. If ψ1(x, t) and ψ2(x, t) are square-integrable then also ψ(x, t) =
a1ψ1(x, t) + a2ψ2(x, t) is square-integrable.

Proof. ∫
R3

|ψ1(x, t)|2d3x = N1 <∞∫
R3

|ψ2(x, t)|2d3x = N2 <∞

12



by triangle identities for complex numbers,∫
R3

|ψ(x, t)|2d3x =

∫
R3

|a1ψ1(x, t) + a2ψ2(x, t)|2d3x

≤
∫
R3

(|a1ψ1(x, t)|+ |a2ψ2(x, t)|)2d3x

=

∫
R3

(|a1ψ1(x, t)|2 + |a2ψ2(x, t)|2 + 2|a1ψ1||a2ψ2|)d3x

≤
∫
R3

2|a1ψ1(x, t)|2 + 2|a2ψ2(x, t)|2d3x

= 2|a1|2N1 + 2|a2|2N2

<∞

2.2 Inner Product

Definition. Inner product in H is defined as

⟨ψ, ϕ⟩ =
∫
R3

ψ∗(x, t)ϕ(x, t)d3x

Theorem 2. If ψ, ϕ ∈ H then their inner product is guaranteed to exist.

Proof. ∫
R3

|ψ(x, t)|2d3x = N1 <∞∫
R3

|ϕ(x, t)|2d3x = N2 <∞

|⟨ψ, ϕ⟩| =
∣∣∣∣∫

R3

ψ∗(x, t)ϕ(x, t)d3x

∣∣∣∣
≤

√∫
R3

|ψ(x, t)|2d3x
∫
R3

|ϕ(x, t)|2d3x (Cauchy Schwarz)

=
√
N1N2

<∞

Start of
lecture 4
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Properties of inner product

(i) ⟨ψ, ϕ⟩ = ⟨ϕ, ψ⟩∗

(ii) antilinear in first entry, linear in second entry. So ∀a1, a2 ∈ C,

⟨a1ψ1 + a2ψ2, ϕ⟩ = a∗1⟨ψ1, ϕ⟩+ a∗2⟨ψ2, ϕ⟩

⟨ψ1, a1ϕ1 + a2ϕ2 = a1⟨ψ, ϕ1⟩+ a2⟨ψ, ϕ2⟩

(iii) inner product of ψ ∈ H with itself is non-negative

⟨ψ,ψ⟩ =
∫
R3

|ψ(x, t)|2d3x > 0

Definition. The norm of wave function ψ is the real function

∥ψ∥ ≡
√
⟨ψ,ψ⟩

Definition. Wavefunction ψ is normalised if ∥ψ∥ = 1.

Definition. Two wave functions ψ, ϕ are orthogonal if

⟨ψ, ϕ⟩ = 0

Definition. A set of wavefunctions {ψn} is orthonormal if

⟨ψm, ψn⟩ = δmn

Definition. A set of wavefunctions {ψn} is complete if for all ϕ ∈ H can be written
as a linear combination of them

∀ϕ ∈ H ϕ =
∞∑
n=0

cnψn cn ∈ C, ψn ∈ H

Lemma 1. If {ψn} form a complete orthonormal basis of H then cn = ⟨ψn, ϕ⟩.
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Proof.

⟨ψn, ϕ⟩ =

〈
ψn,

∞∑
m=0

cmψm

〉

=

∞∑
m=0

cm⟨ψn, ψm⟩

=
∞∑
m=0

cmδmn

= cn

2.3 Time-dependent Schrödinger equation

Recap: first postulate of quantum mechanics is Born’s rule

P (x, t) = ρ(x, t)d3x = |ψ(x, t)|2dx

The second postulate is time dependent Schrödinger equation (TDSE):

iℏ
∂ψ

∂t
(x, t) = − ℏ2

2m
∇2ψ(x, t) + U(x)ψ(x, t)

where U(x) ∈ R (potential).

� First derivative in t: once ψ(x, t0) is known, we can find out ψ(x, t) at all times.

� asymmetry between t and x, so time dependent Schrödinger equation is a non-
relativistic equation.

Heuristic interpretation

e− diffraction (interference) → e− behaves like waves

ψ(x, t) ∝ exp[i(k · x− ωt)]

almost describes the dynamics of e−. Take De-Broglie

kbg =
p

ℏ
ω =

E

ℏ

for free particle

E =
|p|2

2m
=⇒ ω =

|p|2

2mℏ
=

ℏ
2m

|k|2

dispersion relation for a particle-wave

ω ∝ |k|2

15



while for light-waves
ω ∝ |k|

if exp[i(k · x − ωt)] is a solution of the equation for the wave of e− and if ω = ℏ
2m |k|2

then

exp[i(k · x)− i
|k|2

2m
ℏt] = exp[i(kx− k2

2m
ℏt)]

by dimensional analysis.

Properties

(i)
∫
R3 |ψ(x, t)|2d3x = N <∞.

Proof.

dN
dt

=
t

∫
R3

|ψ(x, t)|2d3x

=

∫
R3

∂

∂t
|ψ(x, t)|2d3x

but
∂

∂t
(ψ∗(x, t)ψ(x, t)) = ψ∗∂ψ

∂t
+
∂ψ∗

∂t
ψ

Now TDSE gives
∂ψ

∂t
=

iℏ
2m

∇2ψ − i
U

ℏ
ψ

and TDSE∗ gives
∂ψ∗

∂t
= − iℏ

2m
∇2ψ∗ + i

U

ℏ
ψ∗

=⇒ ∂

∂t
(ψ∗ψ) = ∇ ·

[
iℏ
2m

(ψ∗∇ψ − ψ∇ψ∗)

]
=⇒ dN

dt
=

∫
R3

∇ ·
[
iℏ
2m

(ψ∗∇ψ − ψ∇ψ∗
]
= 0

because ψ,ψ∗ are such that |ψ|, |ψ∗| → 0 as |x| → ∞.

(ii) Normalisation of wavefunction constant in time =⇒ probability is conserved

∂ρ(x, t)

∂t
+∇ · J(x, t) = 0

J(x, t) = −[· · · ] = − iℏ
2m

[ψ∗(x, t)∇ψ(x, t)− ψ(x, t)∇ψ∗(x, t)]

(the conserved probability current of quantum physics states).
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2.4 Expectation values and operators

How to extract info from ψ?

Definition. Observable = any property of the particle describe by ψ that can be
measured.

In Quantum mechanics → operator acting on ψ, measurement → expectation value of
an operator.

2.5.1 Heuristic interpretation

From probabilistic interpretation, if want to measure the position of particle:

⟨x⟩ =
∫ ∞

−∞
x|ψ(x, t)|2dx =

∫ ∞

−∞
ψ∗(x, t)xψ(x, t)dx

Ox → x̂→ x

Start of
lecture 5

Expectation value of an observable is the mean (average) of infinite series of measure-
ments performed on particles on the same state.

⟨p⟩ = m
d⟨x⟩
dt

= m
d

dt

∫ ∞

−∞
ψ∗xψdx

= m

∫ ∞

−∞
x
∂

∂t
(ψ∗ψ)

=
iℏm
2m

∫ ∞

−∞
x
∂

∂x

(
ψ∗∂ψ

∂x
− ψ

∂ψ∗

∂x

)
dx (TDSE)

= − iℏ
2

∫ ∞

−∞

(
ψ∗∂ψ

∂x
− ψ

∂ψ∗

∂x

)
dx

= −iℏ
∫ ∞

−∞
ψ∗∂ψ

∂x
dx

=

∫ ∞

−∞
ψ∗
(
−iℏ ∂

∂x

)
ψdx

position → x
momentum → −iℏ ∂

∂x

2.5.2 Hermitian operators

In Cn linear map Cn → Cn

T : v︸︷︷︸
∈Cn

→ w︸︷︷︸
∈Cn

w = Tv

17
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In quantum mechanics linear maps H → H

Ô : ψ → ψ̃ ψ̃ = (Ôψ)(x, t)

Definition. An operator Ô is any linear map H → H such that

Ô(a1ψ1 + a2ψ2) = a1Ô(ψ1) + a2Ô(ψ2)

with a1, a2 ∈ C, ψ1, ψ2 ∈ H.

Examples

� finite differential operators
N∑
m=0

pn(X)
∂

∂x

with pn(x) a polynomial. In particular, x and −iℏ ∂
∂x are special cases.

� Translation
Ŝa : ψ(x) → ψ(x− a)

� Parity
P̂ : ψ(x) → ψ(−x)

Definition. The Hermitian conjugate Ô† of an operator Ô is the operator such that

⟨Ô⊤ψ1, ψ2⟩ = ⟨ψ1, Ôψ2⟩ ∀ψ1, ψ2 ∈ H

Verify (from the properties of the inner product) that

� (a1Â1 + a2Â2)
† = a∗1Â

†
1 + a∗2Â

†
2 for any a1, a2 ∈ C

� (ÂB̂)† = B̂†Â†.

Definition. An operator Ô is Hermitian if

Ô = Ô† ⇐⇒ ⟨Ôψ1, ψ2⟩ = ⟨ψ1, Ôψ2⟩

All physics quantities in quantum mechanics are represented by Hermitian operators.

18



Examples

(i) x̂ : ψ(x, t) → xψ(x, t) verify that x̂† = x̂ ⇐⇒ (x̂ψ1, ψ2) = ψ1x̂ψ2) for ψ1, ψ2 ∈ H

⟨xψ1, ψ2⟩ =
∫ ∞

−∞
(xψ1)

∗ψ2dx =

∫ ∞

−∞
ψ∗
1xψ2dx = ⟨ψ1, xψ2⟩

(ii) P̂ : ψ(x, t) → −iℏ∂ψ∂x (x, t) verify:

⟨P̂ψ1, ψ2⟩ =
∫ ∞

−∞

(
−iℏ∂ψ1

∂x

)∗
ψ2dx

= iℏ[ψ∗
1ψ2]

∞
−∞ − iℏ

∫ ∞

−∞
ψ∗
1

∂ψ2

∂x
dx

=

∫ ∞

−∞
ψ∗
1

(
−iℏ∂ψ2

∂x

)
dx

= ⟨ψ1, P̂ψ2⟩

(iii) Kinetic energy

T̂ : ψ(x, t) → P̂ 2

2m
ψ(x, t) = − ℏ2

2m

∂2ψ

∂x2
ψ(x, t)

(iv) potential energy

Û : ψ(x, t) → U(X̂)ψ(x, t) = U(x)ψ(X, t)

(v) total energy

Ĥ : ψ(x, t) → (T̂ + Û)ψ(x, t) =

(
− ℏ2

2m

∂2

∂x2
+ U(x)

)
ψ(x, t)

Exercise: prove that Ĥ (the Hamiltonian operator) is Hermitian.

Theorem 3. The eigenvalue of Hermitian operators are real.

Proof. Let Â be a Hermitian operator with eigenvalue a ∈ C

⟨ψ, Âψ⟩ = ⟨ψ, aψ⟩ = a⟨ψ,ψ⟩ = a

But Â Hermitian:

⟨ψ, Âψ⟩ = ⟨Âψ, ψ⟩ = ⟨aψ, ψ⟩ = a∗⟨ψ,ψ⟩ = a∗

=⇒ a = a∗.
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Theorem 4. If Â Hermitian operator, ψ1, ψ2 normalised eigenfunctions of Â with
eigenvalues a1, a2 with a1 ̸= a2 then ψ1 and ψ2 are orthogonal.

Proof. We have
Âψ1 = a1ψ1 Â ψ2 = a2ψ2 a1, a2 ∈ R

Then

a1⟨ψ1, ψ2⟩ = a∗1⟨ψ1, ψ2⟩
= ⟨a1, ψ1, ψ2⟩
= ⟨Âψ1, ψ2⟩
= ⟨ψ1, Âψ2⟩
= ⟨ψ1, Âψ2⟩
= ⟨ψ1, aψ2⟩
= a2⟨ψ1, ψ2⟩

so ⟨ψ1, ψ2⟩ = 0 since a1 ̸= a2.

Theorem 5. The discrete (or continuous) set of eigenfunctions of any Hermitian
operator together form a complete orthonormal basis of H.

ψ(x, t) =
N∑
i=1

ciψi(x, t)

ci ∈ C, {ψi} a set of eigenfunctions of Â = Â†.

Start of
lecture 6 2.5.3 Expectation values and operators

So far: every quantum observable is represented by a Hermitian operator Ô.

(I) The possible outcomes of measurement of the observable O are eigenvalues of Ô.

(II) If Ôhas discrete set of normalised eigenfunctions {ψi} with distinct eigenvalues
{λi}, the measurement of O on a particle described by ψ has probability

P (O = λI) = |ai|2 = |⟨ψi, ψ⟩|2

where ψ =
∑N

i=1 aiψi.

20
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(III) If {ψi} is a set of orthonormal eigenfunctions of Ô and {ψi}i∈I complete set of
orthonormal eigenfunctions with some eigenvalue λ

P (O = λ) =
∑
i∈I

|ai|2

sanity check

N∑
i=1

|ai|2 =
N∑
i=1

⟨aiψi, aiψi⟩

=
N∑

i,j=1

⟨aiψi, ajψj⟩

= ⟨ψ,ψ⟩
= 1

(IV) The projection postulate: If O measured on ψ at time t and the outcome of
measure is λi then the wave function of ψ instantaneously after measurement
becomes ψi (eigenfunction with eigenvalues) [if Ô has degenerate eigenfunction
with some eigenvalue λ then the wavefunction becomes ψ =

∑
i∈I aiψi]

Definition (Projection operator). Given ψ =
∑

i aiψi =
∑

i⟨ψi, ψ⟩ψi define

P̂i : ψ → ⟨ψi, ψ⟩ψi

We can now define expectation value of an observable measured on state ψ

⟨O⟩ψ +
∑
i

λiP (O = λi)

=
∑
i

λi|ai|2

=
∑
i

λi|⟨ψi, ψ⟩|2

=

〈∑
i

⟨ψi, ψ⟩ψi,
∑
j

λj⟨ψj , ψ⟩ψj

〉
= ⟨ψ, Ôψ⟩

=

∫
ψ∗(x, t)Ôψ(x, t)dx

Property:
⟨aÂ+ bB̂⟩ψ = a⟨Â⟩ψ + b⟨B̂⟩ψ

a, b ∈ R.

Interpretation:
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� The physics implication of projection postulate is that if O is measured twice, the
outcome of second measure (of ∆t between measures is small) is the same as first
with probability 1.

� (Born’s rule) If ϕ(x, t) is the state that gives the desired outcome of a measurement
on a state ψ(x, t), probability of such outcome is given by

|⟨ψ, ϕ⟩|2 =
∣∣∣∣∫ ∞

−∞
ψ∗(x, t)ϕ(x, t)dx

∣∣∣∣2
2.5 Time independent Schrödinger equation (TISE)

Let’s rewrite TDSE in 1D

iℏ
∂ψ

∂t
(x, t) = − ℏ2

2m

∂2ψ

∂x2
(x, t) + U(x)ψ(x, t) = Ĥψ(x, t) (1)

try ansatz (try solution)
ψ(x, t) = T (t)χ(X) (2)

Plug (2) into (1)

iℏ
∂T

∂t
(t)χ(x) = T (t)Ĥχ(X)

divide by T (t)χ(x)

1

T (t)
iℏ
∂T

∂t
(t) =

Ĥχ(x)

χ(x)
(3)

Both LHS and RHS have to be equal to a constant E, so

1

T (t)
iℏ
∂T

∂t
(t) = E =⇒ T (t) = e−iEt/ℏ (4)

with E ∈ R. So TISE is

Ĥχ(x) = Eχ(x)

− ℏ2

2m

∂2χ

∂x2
(x) + U(x)χ(x) = Eχ(x)

(5)

� TDSE is eigenvalue equation for Ĥ operator.

� eigenvalues of Ĥ are all possible outcomes of measure of energy of state ψ.

2.6 Stationary states

We found a particular solution of TDSE

ψ(x, t) = χ(x)e−iEt/ℏ

E eigenvalue associated with eigenfunction χ.
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Definition. These solutions are called stationary states.

Why?
ρ(x, t) = |ψ(x, t)|2 = |χ(x)|2

If we apply theorem 2.6 to Ô = Ĥ

Theorem 6. Every solution of TDSE can be written as a linear combination of
stationary states.

� For system that has a discrete set of eigenvalues of Ĥ,

En = E1, E2, . . .

n ∈ N
ψ(x, t) =

∑
n

anχn(x)e
−iEnt/ℏ

� For system that has a continuous set of eigenvalues of Ĥ, E(α)

ψ(x, t) =

∫
A(α)χα(α)e

−iEαt/ℏdα

where A ∈ C, α ∈ R.

� |an|2, |A(α)|2dα probability of measuring the particle energy to be Eh = E(α).

Imagine a system with only 2 energy eigenvalues E1 ̸= E2 we can write the state ψ at
time t

ψ(c, t) = a1χ1(x)e
−iE1t/ℏ + a2χ2(x)e

−iE2t/ℏ

=⇒ ψ(x, 0) = a1χ1(x) + a2χ2(x)

if a1 = 0 then ψ(x, 0) = a2χ2(α), ψ(x, t) = a2χ2(x)e
−iE2t/ℏ for all t, |ψ(x, 0)|2 =

|ψ(x, t)|2. If ai ̸= 0 and a2 ̸= 0,

|ψ(x, t)|2 = |a1χ1e
−iE1t/ℏ + a2χ2e

−iE2t/ℏ|2

= a21|χ1|2 + a22|χ2|2 + 2a1a2χ1(x)χ2(x) cos

(
(E1 − E2)t

ℏ

)

Start of
lecture 7
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3 1 dimensional solutions of Schrödinger equation

TISE (Time independent Schrödinger equation):

Ĥχ(X) = Eχ(x)

− ℏ2

2m
χ′′(x) + U(x)χ(x) = Eχ(x)

with E ∈ R. We will solve TISE in 3 cases:

3.1 Bound states

3.2 Free particle

3.3 scattering states.

3.1 Bound states

3.1.1 Infinite potential well

U(x) =

{
0 |x| ≤ a

+∞ |x| > 0

a ∈ R+.

� for |x| > 0, χ(x) = 0 otherwise U · χ = ∞ so boundary condition χ(±a) = 0.

� for |x| ≤ a we look for solutions of

− ℏ2

2m
χ′′(x) = Eχ(x)

=⇒ χ′′(x) + k2χ(x) = 0

with k =
√

2mE
ℏ2 and we also have χ(±a) = 0. Solution:

χ(x) = A sin(kx) +B cos(kx)

χ(a) = 0, χ(−a) = 0 implies

A sin(ka) = 0, B cos(ka) = 0

so two options:

(i) A = 0, cos(ka) = 0 then kn = nπ
2a , n an odd integer.

χn(x) = B cos(knx)

the even solutions.
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(ii) B = 0, sin(ka) = 0 then kn = nπ
2a , n even integer.

χn(x) = A sin(knx)

the odd solutions.

Determine A, B by requiring normalisation of eigenfunction∫ a

−a
|χn(x)|2dx = 0 =⇒ A = B =

√
1

Q

Solution: eigenvalues of Ĥ are

En =
ℏ2

2m
k2n = ℏ2

π2

8ma2
n2

eigenfunction of Ĥ

χn(x) =

√
1

Q

{
cos
(
nπx
2a

)
n = 1, 3, . . .

sin
(
nπx
2a

)
n = 2, 4, . . .

.image

(i) Ground state has E ̸= 0. Note (contrarily to classical mechanics)

(ii) n→ ∞, |χn(x)|2 → const (Classical mechanics limits)

In classical mechanics

P (x) ∝ 1

N (x)
P (x) =

A

N (x)

In this case particle free inside the wall

=⇒ N constant =⇒ P constant

Proposition. If quantum system has non-degenerate eigenstates (Ei ̸= Ej for i ̸= j)
then, if U(x) = U(−x) the eigenfunction of Ĥ have to be either odd or even.

Proof. If U(x) = U(−x) then TISE invariant under x → −x. If χ(x) is a solution with
eigenvalue E, then also χ(−x) solution and χ(−x) = αχ(x) solutions must be the same
up to a normalisation factor α. Then

χ(x) = χ(−(−x)) = αχ(−x) = α2χ(x)

=⇒ α2 = 1 =⇒ α = ±1

=⇒ χ(x) = ±χ(−x)
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3.1.2 Finite potential well

U(x) =

{
0 |x| ≤ a

U0 |x| > a

Consider E > 0 (E < 0 does not exist in this case) and E < U0 (bound state) We look
for odd / even eigenfunction

(i) even parity bound states
χ(−x) = χ(x)

solve

− ℏ2

2m
χ′′(x) = Eχ(x) |x| ≤ a (I)

− ℏ2

2m
χ′′(x) = (E − U0)χ(x) |x| > a (II)

(I) χ′′(x) + k2χ(x) = 0 with k =
√

2mE
ℏ2

χ(x) = A sin(kx) +B cos(kx)

but A = 0 (even parity)
χ(x) = B cos(kx)

(II) χ′′(x)− k
2
χ(x) = 0 with k =

√
2m(U0−E)

ℏ2

χ(x) = ce+kx +De−kx

but impose normalisability implies x > a, c = 0, x < −a, D = 0. Impose
even parity C = D.

To summarise:

χ(x) =


Cekx x < −a
B cos(kx) |x| ≤ a

Ce−kx x > a

Impose continuity of χ(x) at x = ±a, χ′(x) at x = ±a. Then

χ(a) → Ce−ka = B cos(ka)

χ′(a) → −kCe−ka = −kB sin(ka)

if take ratio from definition
k tan(ka) = k

k2 + k
2
=

2mU0

ℏ2
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Define rescaled variables ξ = ka, η = ka.

ξ tan ξ = η

ξ2 + η2 = r20

r2) =
2mU0

ℏ2
a2

eigenvalues of Ĥ corespond to points of intersection

En =
ℏ2

2ma2
ξ2n n = 1, . . . , p

Note. U0 → ∞ =⇒ r0 → ∞ =⇒ En = ℏ2
8ma2

(2n− 1)2π2, χ→ χn of infinite
well.
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Exercise:

(1) Use the unused condition in system to write C in terms of B

(2) Impose normalisation to 1 to find B.

Start of
lecture 8 3.1.3 Harmonic Oscillator

U(x) =
1

2
kx2

k ∈ R elastic constant. ω =
√

k
m . Classical mechanics: Newton 2 is ẍ(t) = −ω2x(t).

=⇒ x(t) = A sinωt+B cosωt

with T = 2π
ω period oscillations.

Quantum mechanics:

− ℏ2

2m
χ′′(x) +

1

2
mω2x2χ(x) = Eχ(x) (1)

We know:

� Discrete eigenvalues

� even / odd eigenfunctions

Change of variables:

ξ2 ≡ mω

ℏ
x2

ε ≡ 2E

ℏω
Plug into (1)

−d2χ

dξ2
(ξ) + ξ2χ(ξ) = εχ(ξ) (2)
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Solve it by starting from a particular solution

ε = 1

(
E0 =

ℏω
2

)
ansatz:

χ0(ξ) = e−ξ
2/2 (3)

Plug (3) into (2) with ε = 1 works. We found one eigenvalues E0 =
ℏω
2 , χ0(x) = Ae−

mω
2ℏ x

2

To find other eigenfunction of Ĥ take general form

ξ(ξ) = f(ξ)e−ξ
2/x (4)

Plug (4) into (2)

−d2f

dξ2
+ 2ξ

df

dξ
+ (1− ε)f = 0 (5)

Use power series method (ξ = 0 regular point)

f(ξ) =

∞∑
n=0

anξ
n (6)

an ∈ R. Clearly

ξ
df

dξ
=

∞∑
n=0

nanξ
n (7)

d2f

dξ2
=

∞∑
n=0

n(n− 1)anξ
n−2 =

∞∑
n=0

(n+ 1)(n+ 2)an+2ξ
n

Plug (6)-(8) into (5):

∞∑
n=0

[(n+ 1)(n+ 2)an+2 − 2nan + (ε− 1)an]ξ
n = 0

=⇒ an+2 =
(2n− ε+ 1)

(n+ 1)(n+ 2)
an

Because of parity of eigenfunction:

� Either an = 0 for odd n (f(ξ) = f(−ξ)) even eigenfunction

� or an = 0 for even n, (f(ξ) = −f(−ξ)) odd eigenfunction.

Proposition. If series (6) does not terminate then eigenfunction of Ĥ would not
be normalisable.
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Proof. Suppose that the series in (6) does not terminate. Hence can look at asymptotic
behaviour of series. Take (0)

an+2

an
→ 2

n

as n→ ∞. This is same asymptotic behaviour as

g(ξ) = eξ
2
=

∞∑
m=0

ξ2m

m!
=

∞∑
m=0

bmξ
m

where

bm =

{
1
m! for m even

0 for m odd

asymptotic behaviour of g(ξ)

bn+2

bn
=

(
m
2

)
!(

m
2 + 1

)
!
=

2

m+ 2
→ 2

m

as m→ ∞. So if eξ
2/2 and f(ξ) have same asymptotic behaviour

χ(ξ) ∼ eξ
2
e−ξ

2/2 = eξ
2/2 → ∞

Given that the series (6) terminates then there exists Nsuch that

aN+2 = 0 (10)

with aN ̸= 0. Plug (10) into (9)

aN+2 =
(2N − ε+ 1)

(N + 1)(N + 2)
aN = 0

=⇒ 2N − ε+ 1 = 0

Plugging in definition of ε

=⇒ EN =

(
N +

1

2

)
ℏω

eigenvalues N = 0, E0 =
ℏω
2

EN+1 − En = ℏω

eigenfunction χN (ξ) = fN (ξ)e
−ξ2/2

χN (−ξ) = (−1)NχN (ξ)

Hermite polynomials are defined with recursive relation

fN (ξ) = (−1)Neξ
2 dN

dξN
(e−ξ

2
)

30



N EN fN (ξ)

0 ℏω
2 1

1 3ℏω
2 ξ

2 5ℏω
2 (1− 2ξ2)

3 7ℏω
2 (ξ − 2

3ξ
3)

Start of
lecture 9 3.2 The free particle

TISE (U(x) = 0):

− ℏ2

2m
χ′′(X) = Eχ(x)

χ′′(x) +
2mE

ℏ2
χ(x) = 0

k =
√

2mE
ℏ2

χ(x) = eikx

Ek =
ℏ2k2

2m
→ χk(x) = eikx

ψk(x, t) = χk(x)e
−iEkt/ℏ = ei(kx−ℏk2/2m)

This wave function is not square-integrable:∫ ∞

−∞
|ψk(x, t)|2dx =

∫ ∞

−∞
= ∞

This is a consequence of∫ ∞

−∞
|ψ(x, t)|2dx = N <∞ =⇒ lim

R→∞

∫
|x|>R

dx|ψ(x, t)|2 = 0

How do we deal with unbound states?

Option 1 Build a linear superposition of not-normalisable states that is normalisable
(section 3.2.1)

Option 2 We ignore the problem but change interpretation (section 3.2.2)

3.2.1 Gaussian Wave Packet

ψ(x, t) =

∫ ∞

−∞
A(k)ψk(x, t)dk

(A(k) is a continuous coefficient of linear combination) A possible option is Gaussian
wave packet:

A(k) = AGP(k) = exp
[
−σ
2
(k − k0)

2
]

σ ∈ R+, k0 ∈ R
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ψGP(x, t) =

∫ ∞

−∞
AGP(k)ψk(x, t)dk

ψGP(x, t) =

∫ ∞

−∞
exp[F (k)]dk

where

F (k) = −σ
2
(k − k0)

2 + ikx− iℏk2

2m
t

= −1

2

(
σ +

iℏt
m

)
k2 + (k0σ + ix)k

α ≡ σ +
iℏt
m

β ≡ k0σ + ix

δ = −σ
2
k20

Complete the square:

F (k) = −α
2

(
k − β

α

)2

+
β2

2α
+ δ

=⇒ YGP(x, t) = exp

[
β2

2α
+ δ

] ∫ ∞

−∞
exp

[
−α
2

(
k − β

α

)2
]
dk

Shift contour k̃ = k − β
α . Let ν = Im

(
β
α

)
.

ψGP(x, t) = exp

[
β2

2α
+ δ

] ∫ ∞−iν

−∞−iν
exp

(
−α
2
k̃2
)
dk̃

Using standard Gaussian integral

I(α) =

∫ ∞

−∞
exp(−ay2)dy =

√
π

a
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We get

ψGP(x, t) =

√
2π

α
exp

[
β2

2α
+ δ

]
Exercise: Write ψGP(x, t) by substituting β, α, δ and normalise it to 1.

β = k0σ + ix β2 = k20σ
2 − k2 + 2ixk0σ

The −x2 in β2 implies that ψGP is normalisable. Once ψGP is normalised, ψGP cen
define

ρGP(x, t) = |ψGP(x, t)|2 =
√

σ

π
(
σ2 + ℏ2t2

m2

) exp

−π
(
x− ℏk0t

m

)2
(σ2 + ℏ2t2

m2 )


at t fixed:

width of distance √
1

2

(
σ +

ℏ2t2
m2σ

)
The centre of the distribution is ⟨x⟩ψGP

:

⟨x⟩ψGP
=

∫ ∞

−∞
ψ
∗
GP(x, t)xψGP(x, t)dx

=

∫ ∞

−∞
xρGP(x, t)

=
ℏk0
m
t

Error on position of particle:

∆x =
√
⟨x2⟩ψGP

− ⟨x⟩2ψGP
=

√
1

2

(
σ +

ℏ2t2
m2σ

)
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∆x =
√

π
2 at t = 0. ∆x increases as t increases. Given ψGP it is interesting to compute

⟨p⟩, ∆p

⟨p⟩ψGP
=

∫ ∞

−∞
ψ
∗
GP(x, t)

(
−iℏ

x
ψGP(x, t)

)
dx

= ℏk0

∆p =
√
⟨p2⟩ψGP

− ⟨p⟩2ψGP

To calculate ∆p on ψGP we have

⟨p⟩2ψGP
= ℏ2k20

we need

⟨p2⟩ψGP
=

∫ ∞

−∞
ψ
∗
GP(x, t)

(
−ℏ2

d2

dx2
ψGP(x, t)

)
dx

If you compute it and plug it into ∆p THE FOLLOWING SECTION IS ALL WRONG,
IGNORE UNTIL TOLD TO STOP IGNORING.

∆p =
ℏ√

2
(
σ + ℏ2t2

mσ

)
at t = 0, ∆p = ℏ

√
2
σ , as t→ ∞, ∆p decreases as 1√

a+t2
What we learnt is

∆x→ ∞,∆p→ ∞ as t→ ∞

∆x∆p =
ℏ
2

STOP IGNORING.
At time t = 0, ∆x∆p = ℏ

2 .

The GP is a state of minimum uncertainty. Other A(k) would give you a normalisable
state but if you compute ∆x∆p you would find something > ℏ

2 .
Exercise: Compare what you find for ψk(x, t)

∆x = ∞,∆p = 0

⟨x⟩ψk
= 0, ⟨x2⟩ψk

= ∞

Start of
lecture 10
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3.3.2 Beam interpretation

The idea: ignore normalisation problem and take χk = eikx as eigenfunction of Ĥ. Take

χk(x) = Aeikx A ∈ C

ψk(x, t) = Aeikxe−i
ℏ2k2
2m

t

but instead of χn(x) describing a single particle they describe a beam of particles with

pk = ℏk

Ek =
ℏ2k2

2m
with probability density

ρk(x, t) = |A|2

representing constant average density of particles. Compute probability current

jk(x, t) = − iℏ
2m

(
ψ∗
k

∂ψ

∂x
− ψk

∂ψ∗
k

∂x

)
[
∂ρ

∂t
+
∂j

∂x
= 0

]
(lecture 3) In this case taking (∗)

jk(x, t) = |A|2ℏ
k

m
= |A|2 p

m
= average flux of particles

3.3 Scattering states

What happens if we have an unbound potential U(x) and throw a particle on it

Definition. Probability for particle to be reflected is given by the reflection coeffi-
cient

R = lim
t→∞

∫
−∞0|ψGP(x, t)|2dx
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Definition. Probability for particle to be transmitted is given by the transmission
coefficient

T = lim
t→∞

∫ ∞

0
|ψGP(x, t)|2dx

Clearly T +R = 1. Solving scattering problems using beam interpretation gives some
results for R and T , so we will use it.

3.4.1 Scattering off potential step

U(x) =

{
0 x ≤ 0

U0 x > 0
U0 ∈ R+

To find χk(x), solve TISE

− ℏ2

2m
χ′′
n(x) + U(x)χn(x) = Eχn(x)

Region I, x ≤ 0, U(x) = 0.

χ′′
n(x) + k2χn(x) = 0 k =

√
2mE

ℏ2
> 0

χn(x) = Aeikx +Be−ikx

(A part is the beam of incident particles, B part is the beam of reflected particles).
Region II, x > 0, U(x) = U0.

χ′′
k
(x) + k

2
χk(x) = 0

k =

√
2m(E − U0)

ℏ2

k real for E ≥ U0, and imaginary for E < U0.
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� For E ≥ U0,

αk(x) = Ceikx +De−ikx

(the C term is the transmitted beam, and the D term is the incident beam from
∞). D = 0 due to initial condition.

� For E > U0,
χk(x) = Ce−ηx +Deηx

where η =
√

2m(U0−E)
ℏ2 . D = 0 otherwise χk diverges at ∞.

Putting I and II:

χn,k(x) =

{
Aeinx +Be−inx x ≤ 0

Ceikx x > 0

Impose continuity of χ(x), χ′(x) at x = 0 and get

A+B = C

ikA− ikB = ikC

=⇒ B =
k − k

k + k
A

C =
2k

k + k
A

We can view these in terms of particle flux

J(x, t = − iℏ
2m

(
χ∗∂χ

∂x
− χ

∂χ∗

∂x

)
Compute for

� E > U0

J(x, t) =

{
ℏk
m (|A|2 − |B|2) x < 0
ℏk
m |C|2 x ≥ 0

Jinc(x, t) =
ℏx
m

|A|2

Jref (x, t)
ℏk
m

|B|2

Jtrans(x, t) =
ℏk
m

|C|2

R =
Jrefl
Jinc

=
|B|2

|A|2
=

(
k − k

k + k

)2

T =
Jtrans
Jinc

=
|C|2

|A|2
k

k
=

4kk

(k + k)2

Interpretation:
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– R+ T = 1

– E → U0, k → 0, T → 0, R→ 1.

– E → ∞, T → 1, R→ 0.

� E < U0.

Jinc(x, t) =
ℏk
m

|A|2

Jref (x, t) =
ℏk
m

|B|2

Jtrans(x, t) = 0

R = 1, T = 0 but χk(x) ̸= 0 from x > 0.

Scattering off potential barrier

U(x) =

{
0 x ≤ 0, x ≥ a

U0 0 < x < a

Consider E < U0.

k =

√
2mE

ℏ2
> 0

η =

√
2m(U0 − E)

ℏ2
> 0

Solution of TISE

χ(x) =


eikx +Aeiikx x ≤ 0

Be−ηx + Ceηx 0 < x < a

Deikx + Ee−ikx︸ ︷︷ ︸
=0

x ≥ a

4 free coefficients with 4 boundary conditions given by continuity of χ(X) and χ′(x) at
x = 0 and x = a.

1 +A = B + C

ik − ikA = −ηB + ηC

Be−ηa + Ceηa = Deika

−ηBe−ηa + ηCeηa = ikDeika

Find

D = − 4ηk

(η − ik)2 exp[(η + ik)a]− (η + ik)2 exp[−(η − ik)a]

=⇒ T = |D|2 = 4k2η2
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Take limit U0 ≫ E =⇒ ηa≫ 1

T → 16k2η2

(η2 + k2)2
e−2ma︸ ︷︷ ︸

e−
2a
ℏ
√

2m(U0−E)

Start of
lecture 11 Recap of chapter 2

Hermitian operators ↔ observables

Ô+ = Ô ⇐⇒ (Ôψ, ϕ) = (ψ, Ô, ϕ) ∀ψ, ϕ ∈ H

Have:

� Real eigenvalues (Theorem 2.1)

� If Ôψ1 = aψ1, Ôψ2 = bψ2 with a ̸= b then (ψ1, ψ2) = 0 (Theorem 2.5)

� Eigenstates of Hermitian operator form a complete basis of H. (Theorem 2.6)

Quantum measurement:

� Eigenvalues of Ô are possible outcomes of measurement of the observable O.

� If ψ =
∑

i aiψi, ψi eigenstates of Ô then P (O = λi) = a2i = |(ψi, ψ)|2

� Immediately after a measurement with outcome λi, the wave function becomes ψi.
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4 Simultaneous measurements in Quantum Mechanics

4.1 Commutators

Definition. Commutator of two operators Â, B̂ is the operator

[Â, B̂] = ÂB̂ − B̂Â

Properties:

� [Â, B̂] = −[B̂, Â]

� [Â, Â] = 0

� [Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]

� [Â, B̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂.

Exercise: Compute [x̂, p̂] in 1 dimension.
Take ψ ∈ H

x̂p̂ψ = x

(
−iℏ ∂

∂x

)
ψ(x) = −iℏx∂ψ

∂x
(x)

p̂x̂ψ = −iℏ ∂
∂x

(xψ(x)) = −iℏψ(x)− iℏx
∂ψ

∂x

=⇒ [x̂, p̂]ψ = iℏψ =⇒ [x̂, p̂] = iℏÎ

Canonical commutator relation.

Definition. Two Hermitian operators Â and B̂ are simultaneously diagonalisable
in H is it exists a complete basis of joint eigenfunctions {ψi} such that

Âψi = aiψi

B̂ψi = biψi

with ai, bi ∈ R.

Theorem 7. Two Hermitian operators Â and B̂ are simultaneously diagonalisable

⇐⇒ [Â, B̂] = 0

Proof. ⇒ If Â, B̂ simultaneously diagonalisable then {ψi} set of joint eigenfunctions
that is a complete basis of H.

∀ψi [Â, B̂]ψi = ÂB̂ψi − B̂Âψi = (aibi − biai)ψi = 0
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Take ψ ∈ H.

[Â, B̂ =
∑
i

ci[Â, B̂]ψi = 0

=⇒ [Â, B̂] = 0

⇐ If [Â, B̂] = 0 and ψi eigenfunction of Â with eigenvalues ai.

0 = [Â, B̂]ψi = ÂB̂ψi − B̂Âψi = ÂB̂ψi − aiB̂ψi

so
Â(B̂ψi) = ai(B̂ψi)

B̂ maps the eigenspace Ei of Â with eigenvalue ai into itself so B̂ |Ei is an Hermitian
operator of Ei. Since this holds for all eigenspace Ei of Â, we can find a complete
basis of simultaneous eigenfunctions of Â and B̂.

4.2 Heisenberg’s Uncertainty Principle

Definition. The uncertainty in a measurement of an observable A on a state ψ is
defined as

∆ψA =
√
(∆ψA)2

where

(∆ψA)
2 = ⟨(Â− ⟨Â⟩ψ Î)2⟩ψ
= ⟨Â2⟩ψ − (⟨Â⟩ψ)2

The two definitions are equivalent:

⟨(Â− ⟨Â⟩ψ Î)2⟩ψ =

∫
R3

ψ∗(Â− ⟨Â⟩ψ Î)2ψd3x

=

∫
R3

ψ∗Â2ψd3x+ (⟨Â⟩ψ)2
∫
R3

ψ∗ψd3x− 2⟨Â⟩ψ
∫
R3

ψ∗Âψd3x

= ⟨Â2⟩ψ + (⟨Â⟩ψ)2 − 2(⟨Â⟩ψ)2

+ ⟨Â⟩2ψ − (⟨Â⟩ψ)2

Lemma 2. (∆ψA)
2 ≥ 0 and (∆ψA) = 0 ⇐⇒ ψ is eigenfunction of Â.
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Proof.

(∆ψA)
2 = ⟨(Â− ⟨Â⟩ψ Î)2⟩ψ
= (ψ, (Â− ⟨Â⟩ψ Î)2ψ)
= ((Â− ⟨Â⟩ψ Î)ψ, (Â− ⟨Â⟩ψ Î)ψ)
= ⟨ϕ, ϕ)
≥ 0

(Call ϕ = (Â− ⟨Â⟩ψ Î)ψ) Now prove that (∆ψA)
2 = 0 ⇐⇒ ϕ = 0.

⇒ (∆ψA)
2 = (ϕ, ϕ) = 0 if ϕ = 0 implies

Âψ = ⟨Â⟩ψψ

i.e. ψ eigenfunction of Â.

1. If ψ is eigenfunction of Â with eigenvalue a ∈ R then

⟨Â⟩ψ = (ψ, Âψ) = a(ψ,ψ) = a

⟨Â⟩ψ = (ψ, Â2ψ) = a2(ψ,ψ) = a2

using second definition,

(∆ψA)
2 = ⟨Â2⟩ψ − (⟨Â⟩ψ)2 = a2 − a2 = 0

Lemma 3. If ψ, ϕ ∈ H, then

|(ϕ, ψ)|2 ≤ (ϕ, ϕ)(ψ,ψ)

and |(ϕ, ψ)|2 = (ϕ, ϕ)(ψ,ψ) if and only if ϕ = aψ for a ∈ C.

(proof comes from Schwarz inequality and is available in Maria Ubiali’s notes).

Theorem 8 (Generalised uncertainty theorem). If A and B observables and ψ ∈ H
then

(∆ψA)(∆ψB) ≥ 1

2
|(ψ, [Â, B̂]ψ)|

Proof.

(∆ψA)
2 = ((Â− ⟨Â⟩ψ Î)ψ, (Â− ⟨Â⟩ψ Î)ψ)

Define
Â′ = Â− ⟨Â⟩ψ Î
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B̂′ = B̂ − ⟨B̂⟩ψ Î

Hence
(∆ψA)

2 = (Â′ψ, Â′ψ)

(∆ψB)2 = (B̂′ψ, B̂′ψ)

Using lemma 4.3:
(∆ψA)

2(∆ψB)2 ≥ |(Â′ψ, B̂′ψ)|2 (1)

and RHS is equal to |(ψ, Â′B̂′ψ)|2 because Â′ is Hermitian. Define

[Â′, B̂′] = Â′B̂′ − B̂′Â′ (2)

{Â′, B̂′} = Â′B̂′ + B̂′Â′ (3)

if Â′, B̂′ Hermitian
[Â′, B̂′]† = −[Â′, B̂′] (4)

Now writing

Â′B̂′ =
1

2
([Â′, B̂′] + {Â′, B̂′}) (5)

Plug (5) into (1)

(∆ψA)
2(∆ψB)2 ≥ 1

4
|(ψ, [Â′, B̂′]ψ) + (ψ, {A′, B′}ψ)|2

Given that:

� (ψ, {Â′, B̂′}ψ) ∈ R

� (ψ, [Â′, B̂′]ψ) = ir with r ∈ R

then

(∆ψA)
2(∆ψB)2 ≥ 1

4
|(ψ, [Â′, B̂′]ψ)|2 + 1

4
|ψ, {Â′, B̂′}ψ)|2

=⇒ (∆ψA)(∆ψB) ≥ 1

2
|(ψ, [Â, B̂]ψ)|

Start of
lecture 12 Consequences of generalised uncertainty theorem

� [Â, B̂] = 0 if and only if there exists joint set of eigenstates which form a complete
basis of H which happens if and only if A,B can be measured simultaneously with
arbitrary precision on a given state.

� Take Â = x̂, B̂ = p̂. Given that [x̂, p̂] = iℏÎ

=⇒ (∆ψx)(∆ψp) ≥
ℏ
2

(Heisenberg’s uncertainty principle).

43

https://notes.ggim.me/QM#lecturelink.12


We had shown explicitly that, if ψ = ψGP then

(∆ψGP
x)(∆ψGP

p) =
ℏ
2

at t = 0. (this is the minimum uncertainty). The reason for this lies in two lemmas:

(i) Lemma 4.5: ψ is a state of minimum uncertainty

⇐⇒ x̂ψ = iap̂ψ a ∈ R

(ii) Lemma 4.6: The condition for 4.5 to hold is

ψ(x) = Ce−bx
2

c ∈ C, b ∈ R+

Exercise: Verify that ψk(x, t) = eikxe−Ekt/ℏ does not satisfy equation of Lemma 4.5.

4.3 Ehrenfest theorem

Time evolution of operators.

Theorem 9. The expectation value of an Hermitian operator Â evolves according
to

d

dt
⟨Â⟩ψ =

i

ℏ
⟨[Ĥ, Â]⟩ψ +

〈
∂Â

∂t

〉
ψ

Proof.

d

dt
⟨Â⟩ψ =

d

dt

∫ ∞

−∞
ψ∗(x, t)Âψ(x, t)dx

=

∫ ∞

−∞

∂

∂t
(ψ∗Âψ)dx

=

∫ ∞

−∞

(
∂ψ∗

∂t
Âψ + ψ∗∂Â

∂t
ψ + ψ∗Â

∂ψ

∂t

)
dx

=
i

ℏ

∫ ∞

−∞
ψ∗(ĤÂ− ÂĤ)ψdx+

〈
∂Â

∂t

〉
ψ

=
i

ℏ

∫ ∞

−∞
ψ∗[Ĥ, Â]ψdx+

〈
∂Â

∂t

〉
ψ

=
i

ℏ
⟨[Ĥ, Â]⟩ψ +

〈
∂Â

∂t

〉
ψ
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Examples

(1) Take Â = Ĥ

=⇒
d⟨Ĥ⟩ψ
dt

= 0

(dEdt = 0)

(2) Take Â = p̂.

[Ĥ, p̂]ψ =

[
p̂2

2m
+ U(x̂), p̂

]
ψ

= [U(x̂), p̂]ψ

= U(x)

(
−iℏ ∂

∂x

)
ψ(x, t)−

(
−iℏ ∂

∂x

)
[U(x)ψ(x, t)

=
��������
iℏU(x)

∂ψ

∂x
(x, t) +

��������
iℏU(x)

∂ψ

∂x
(x, t) + iℏ

∂U

∂x
(x)ψ(x, t)

=⇒
d⟨p̂⟩ψ
dt

=
i

ℏ
⟨[Ĥ, p̂]⟩ψ

= −
〈
∂U

∂x

〉
ψ

(3) Â = x̂

[Ĥ, x̂] =

[
p̂2

2m
+ U(x̂), x̂

]
=

1

2m
[p̂2, x̂2]

=
1

2m
(p̂ [p̂, x̂]︸ ︷︷ ︸

−iℏÎ

+ [p̂, x̂]︸ ︷︷ ︸
iℏÎ

p̂)

= − iℏ
m
p̂

d⟨x̂⟩ψ
dt

=
i

ℏ
⟨[Ĥ, x̂]⟩ψ

=
⟨p̂⟩ψ
m

(matches the classical ẋ = p
m)

4.4 Harmonic oscillator revisited (non-examinable)

Ĥ =
p̂2

2m
+

1

2
mω2x̂2
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(k = mω2, elastic constant). Eigenvalues, eigenfunctions of Ĥ. Rewrite:

Ĥ =
1

2m
(p̂+ imωx̂)(p̂− imωx̂) +

iω

2
[p̂, x̂]︸ ︷︷ ︸
−iℏÎ

=
1

2m
(p̂+ imωx̂)(p̂− imωx̂) +

ℏω
2
Î (1)

Definition. Ladder operators

â =
1√
2m

(p̂− imωx̂) (2)

â† =
1√
2m

(p̂+ imωx̂)

=⇒ Ĥ = â†â+
ℏω
2
Î (4)

Compute

[â, â†] =
1

2m
[p̂− imωx̂, p̂+ imωx̂]

= − imω
2m

[x̂, p̂] +
imω

2m
[p̂, x̂]

= ℏωÎ (5)

[Ĥ, â] = [â†, â, â]

= −ℏωâ (6)

[Ĥ, â†] = ℏωâ† (7)

Suppose χ eigenfunction of Ĥ with eigenvalue E,

Ĥχ = Eχ

Take (âχ). What is its energy?

Ĥ(â, χ) = [Ĥ, â]χ+ âĤχ

= −ℏωχ̂+ Eâχ

= (E − ℏω)âχ

âχ) is eigenfunction of Ĥ with eigenvalue (E − ℏω) and â†χ) is eigenfunction of Ĥ with
eigenvalue (E + ℏω). Prove by induction:

(ânχ) → eigenfunction with eigenvalue E − nℏω
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(â†nχ) → eigenfunction with eigenvalue E + nℏω

Using the fact that
⟨Ĥ⟩ψ ≥ 0

then ∃ eigenfunction χ0 such that
âχ0 = 0

Find χ0
1√
2m

(p̂− imωx̂)χ0) = 0

−iℏ∂χ0

∂x
− imωxχ0 = 0

=⇒ χ0(x0 = ce−mωx
2/2ℏ

Ĥχ0 = â†âχ0 +
ℏω
2
Îχ0 =

ℏω
2
χ0

The excited states with E > E0

χn = (a†)nχ0

=
1

(
√
2m)2

(p̂+ imωx̂)nχ0

=
c

(
√
2m)n

(
−iℏ ∂

∂x
+ imωx

)n
e−mωx

2/2ℏ

Eigenvalues

En =
ℏω
2

+ nℏω =

(
n+

1

2

)
ℏω

Start of
lecture 13
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5 3D solutions of Schrödinger equation

5.1 TISE in 3D for spherically symmetric potentials

− ℏ2

2m
∇2χ(x) + U(x)χ(x) = Eχ(x)

Laplacian operator ∇2

� Cartesian coordinates (x, y, z):

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

� Spherical coordinates (r, θ, ϕ)

∇2 =
1

r

∂2

∂r2
(R) +

1

r2 sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂ϕ2

]

x = r cosϕ sin θ

y = r sinϕ sin θ

z = r cos θ

0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. Reminder:∫
R3

dV =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz

∫
R3

dV =

∫ 2π

0
dϕ

∫ 1

−1
d cos θ︸︷︷︸
→

∫ π
0 sin θdθ

∫ ∞

0
r2dr
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Definition. Spherically symmetric potential

U(x) = U(r, θ, ϕ) ≡ U(r)

Clearly, even with a spherically symmetric potential ϕ(r, θ, ϕ).

We start by focussing on a particular sub-class of solutions of TISE, i.e. on Radial
eigenfunctions χ(r). If χ(r, θ, ϕ) = χ(r) then

∇2χ(r) =
1

r

∂2

∂r2
(rχ(r))

Plugging this into TISE in 3D:

− ℏ2

2m

(
d2χ

dr2
+

2

r

dχ

dr

)
+ U(r)χ = Eχ (∗)

Normalisation condition for χ ∈ H:∫
R3

|χ(r, θ, ϕ)|2dV <∞

=⇒
∫ ∞

0
|χ(r)|2r2dr <∞

eigenfunctions χ(r) must go to 0 sufficiently fast at r → ∞ and behave well (∼ 1
r ) (most

singular behaviour) at r → 0.

How to solve (∗)? One way of doing it is to define

σ(r) ≡ rχ(r)

=⇒ − ℏ2

2m

d2σ(r)

dr2
+ U(r)σ(r) = Eσ(r) (∗∗)

This is like the 1D TISE defined only on R+ and with usual normalisation condition on
R2: ∫ ∞

0
|σ(r)|2dr <∞

We want σ(r) = 0 at r = 0, σ′(r) finite at r = 0.
=⇒ Solve (∗∗) on R and look for odd solutions:

σ(−r) = −σ(r)
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Example: Spherically symmetric potential well

U(r) =

{
0 r ≤ a

U0 r > a
a ∈ R+, U0 ∈ R+

TISE as (∗∗) and solve it for σ(r) = rχ(r) by analytically continuation on whole R and
looking only for odd solutions.

− ℏ2

2m

d2σ(r)

dr2
+ U(r)σ(r) = Eσ(r)

Look for odd parity bound states
0 ≤ E ≤ U0

K =

√
2mE

ℏ2
k =

√
2m(U0 − E)

ℏ2

odd solutions:

σ(r) =


A sin(kr) |r| ≤ a

Be−kr r > a

−Be+kr r < −a

Boundary conditions for σ(r):

� continuity of σ(r) at r = a
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� continuity of σ′(r) at r = a.

=⇒

{
A sin ka = Be−ka

kA cos ka = −kBe−ka

=⇒ −k cot(ka) = k

From definition:

k2 + k2 =
2mU0

ℏ2
Solve this graphically by defining

ζ = ka, → η = −ζ cot ζ

η = ka → η2 + ξ2 = r20

If r0 <
π
2 ( ⇐⇒ U0 <

π2ℏ2
3ma2

) then doesn’t exist solution. Two differences:

(1) Below a given threshold for U0 there does not exist bound state in 3D. (contrarily
to 1D in which there exists even bound state)

(2)

χ(r) =

{
A sin(kr)

r r < Q

B e−kr

r r ≥ Q
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5.2 Angular momentum in Quantum Mechanics

Classical mechanics:
L = x× p

When you have U(r) then
dL

dt
= ẋ× p+ x× ṗ = 0

In Dynamics and relativity the conservation of angular momentum implies that 3D →
2D (once take the plane L · x = 0) → 1D (solve Newton’s second law on er).

Definition. Angular momentum operator

L̂ = x̂× p̂

L̂ = −iℏx×∇

In 1D: p̂ = −ℏ ∂
∂x

In 3D: p̂ = −ℏ∇, x̂ = x.

Write it in cartesian coordinates (x1, x2, x3)

L̂i = −ℏεijkxj
∂

∂xk
→ (εijkx̂j p̂k)

i = 1, 2, 3.
Start of
lecture 14 Recap of Quantum Mechanics in 3D (Section 5)

�

− ℏ2

2m
∇2χ(x) + U(x)χ(x) = Eχ(x) x ∈ R3

1D:

+
∂2

∂x2

p̂ = −iℏ ∂
∂x

p̂2 = −ℏ2
∂2

∂x2

3D:

∇2 =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

p̂ = −iℏ∇ =

(
−iℏ ∂

∂x1
+−iℏ ∂

∂x2
,−ℏ

∂

∂x3

)
|p̂|2 = −ℏ2∇2
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� Useful to write ∇2 in spherical coordinate (r, θ, ϕ)

∇2 =
1

r

∂2

∂r2
r +

1

r2 sin2 θ

[
sin θ +

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂ϕ2

]
� If U(x) = U(r) (spherically symmetric potential) we can find some special solutions
of TISE χ(r) (radial solutions).

� If take (xhf) = U(r), χ(r, θ, ϕ=χ(r)

− ℏ2

2mr

∂2

∂r2
(rχ(r) + U(r)χ(r) = Eχ(r)

if define σ(r) = rχ(r), TISE for χ(r) becomes

− ℏ2

2m

d2σ(r)

dr2
+ U(r)σ(r) = Eσ(r)

in R+, and with normalisation condition∫ ∞

0
|σ(r)|2dr <∞

because of normalisation conditions σ(r) → a as r → 0. But we found a = 0.
Why? If we allowed σ(r) ≈ a ̸= 0 as r → 0 (which means χ(r) ∼ a

r ) then Ĥ would
not be Hermitian.

Proof. For Ĥ to be Hermitian we need

(ϕ, Ĥχ) = (Ĥϕ, χ) ∀ϕ, χ ∈ H

(ϕ, Ĥχ) =

∫ ∞

0
drr2ϕ(r)Ĥχ(r)

= − ℏ2

2m

∫ ∞

0
drϕ

d

dr

(
r2

dχ

dr

)
= − ℏ2

2m

[
r2ϕ

dχ

dr
− r2χ

dϕ

dr

]∞
0

− ℏ2

2m
dr

d

dr

(
r2

dϕ

dr

)
χ︸ ︷︷ ︸

(Ĥϕ,χ)

If ϕ(r) ∼ B as → 0 with B ̸= 0 then χ(r) ∼ A
r as r → 0 with A ̸= 0 then

r2ϕ
dχ

dr
− r2χ

dϕ

dr
̸→ 0

as r → 0.

Due to Quantum Mechanics interpretation we classify χ(r) ∼ A
r as unphysical,

hence σ(r) = 0 at r = 0.
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Continuing from before the recap

Properties:

� L̂i is Hermitian (Example sheet)

� [L̂i, L̂j ] ̸= 0 if i ̸= j (Example sheet). =⇒ different components of L cannot be
determined simultaneously.

[L̂i, L̂j ] = iℏεijkL̂k

Proof.

[L̂1, L̂2]χ(x1, x2, x3) = −ℏ2
[(
x2

∂

∂x3
− x3

∂

∂x2

)(
x3

∂

∂x1
− x1

∂

∂x3

)
−
(
x3

∂

∂x1
− x1

∂

∂x3

)(
x2

∂

∂x3
− x3

∂

∂x2

)]
χ(x1, x2, x3)

= −ℏ2
(
x2

∂

∂x1
− x1

∂

∂x2

)
χ(x1, x2, x3)

= iℏL̂3χ(x1, x2, x3)

Definition. Total angular momentum operator L̂2

L̂2 = L̂2
1 + L̂2

2 + L̂2
3

Properties:

� [L̂2, L̂i] = 0 (Example sheet)

� for U(r) [L̂2, Ĥ] = 0 (∗), [L̂i, Ĥ] = 0.

Proof. –

[L̂i, x̂j ] = [εimnx̂mp̂n, x̂j ]

= εimn[x̂mp̂n, x̂j ]

= εimn(x̂m[p̂n, x̂j ] + [x̂m, x̂j ]p̂n)

= −iℏεimj x̂m
= iℏεijmx̂m

–

[L̂i, x̂
2
j ] = [L̂i, x̂j ] + x̂j [L̂i, x̂j ]

= iℏεijm(x̂mx̂j + x̂j x̂m)

= 0
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– [L̂u, U(r)] = 0 since r =
√
x̂21 + x̂22 + x̂23.

– [L̂i, p̂j ] = iℏεijmp̂m (same proof as for xj)

– [L̂i, p̂
2] = 0

=⇒ [L̂i, Ĥ] = 0

and
[L̂2, Ĥ] = 0

(trivially)

{Ĥ, L̂2, L̂i} set of mutually commuting operators. Take i = 3. =⇒

(1) Can find joint eigenstates of these 3 operators that form a basis of H.

(2) eigenvalues of these 3 operators |L|, Lz, E can be simultaneously measured at an
arbitrary precision.

(3) The set of operators is maximal i.e. we cannot construct another independent op-
erator (other than Î) that commutes with them.

To find joint eigenfunctions of L̂2 and L̂3 write L̂ in spherical coordinates (appendix 7
of Maria Ubiali’s notes)

iℏ
(
x2

∂

∂x3
− x3

∂

∂x2
, . . . , . . .

)
∂

∂x1
=

(
∂r

∂x1

)
∂

∂r
+

(
∂θ

∂x1

)
∂

∂θ
+

(
∂ϕ

∂x1

)
∂

∂ϕ

And put

L̂3 = −iℏ ∂

∂ϕ

L̂2 = − ℏ2

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂ϕ2

]
Next time we will look for joint eigenfunction

Y (θ, ϕ)

such that {
L̂2Y (θ, ϕ) = λY (θ, ϕ) (1)

L̂3Y (θ, ϕ) = ℏmY (θ, ϕ) (2)

Start of
lecture 15 −ℏ

∂

∂ϕ
Y (θ, ϕ) = ℏmY (θ, ϕ)

Find solutions
Y (θ, ϕ) = y(θ)X(ϕ) (3)
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Plugging (3) into (2)

−iℏ
(
∂

∂ϕ
X(ϕ)

)
���y(θ) = ℏmX(ϕ)���y(θ)

X(ϕ) = eimϕ)

Given that wave function must be simple-valued in R3 =⇒ X(ϕ) must be invariant
under

ϕ→ ϕ+ 2π

=⇒ ei2mπ = 1 =⇒ m ∈ Z (4)

Plug (4) into (1) and find

1

sin θ

∂

∂θ

(
sin θ

∂y(θ)

∂θ

)
− m2

sin2 θ
y(θ) = − λ

ℏ2
y(θ) (5)

This is the associated Legendre equation (IB Methods) and it has solution

y(θ) = Pl,m(cos θ = (sin θ)|m| d|m|

d(cos θ)|m|Pl(cos θ)

(where Pl,m is the associate Legendre polynomial and Pl is the ordinary Legendre poly-
nomial). Because Pl(cos θ) is a polynomial in cos θ of degree l, =⇒ −l ≤ m ≤ l and
(without proof) the eigenvalues of L̂2 are

λ = ℏ2l(l + 1)

(l = 0, 1, 2, . . . ) Put everything together:

Yl,m(θ, ϕ) = Pl,m(cos θ)e
imϕ

l = 0, 1, 2, . . . , −l ≤ m ≤ l. Spherical harmonics:

L̂2Yl,m(θ, ϕ) = ℏ2l(l = 1)Yl,m(θϕ)

L̂3Yl,m(θ, ϕ) = mℏYl,m(θ, ϕ)

l, m are quantum numbers that characterise:

� l → total angular momentum

� m→ azimuthal number, z-component of L.

In classical mechanics
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−|L| ≤ Lz ≤ |L| ↔ −l ≤ m ≤ l

Y0,0(θ, ϕ) =
1√
4π

l = 0,m = 0

Y1,0(θ, ϕ) =
3√
4π

cos θ l = 1,m = 0

Y1,±1(θ, ϕ) =
1√
4π

sin θe±iϕ l = 1,m = ±1

All spherical harmonics are orthonormal (like all eigenfunctions of Hermitian operators)

(Yl,m, Yl′,m′) = δll′δmm′∫ 2π

0
dϕ

∫ 1

−1
d cos θY ∗

lm(θ, ϕ)Yl′m′(θ, ϕ) = δll′δmm′

5.3 The Hydrogen atom

Model proton (nucleus) to be stationary at the origin (mp → ∞, or equivalently mp ≫
me)

Fcoulomb(r) = − e2

4πε0

1

r2
= −∂Ucoulomb

∂r

Ucoulomb(r) = − e3

4πε0

1

r
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Bound states E < 0.

− ℏ2

2me
∇2χ(r, θϕ)− e2

4πε0

1

r
χ(r, θ, ϕ) = Eχ(r, θ, ϕ) (1)

Laplacian

∇2 =
1

r

∂2

∂r2
r +

1

r2 sin2 θ

(
sin θ

∂

∂θ
sin θ

∂

∂θ
+

∂2

∂ϕ2

)
L̂2 =

ℏ2

sin2 θ

[
sin θ

∂

∂θ
sin θ

∂

∂θ
+

∂2

∂ϕ2

]
=⇒ −ℏ2∇2 = −ℏ2

r

∂2

∂r2
r +

L̂2

r2
(2)

Plug (2) into (1)

− ℏ2

2me

1

r

(
∂2

∂r2
rχ(r, θ, ϕ)

)
+

L̂2

2mer2
χ(r, θ, ϕ)− e2

4πε0r
χ(r, θ, ϕ) = Eχ(r, θ, ϕ) (3)

Because of eigenfunction of Ĥ are also eigenfunction of L̂2 and L̂3 =⇒ χ(r, θ, ϕ) must
also be eigenfunction of L̂2, L̂3.

=⇒ χ(r, θ, ϕ) = R(r)Yl,m(θ, ϕ)

=⇒ L̂2χ = R(r)LharYl,m(θ, ϕ) = ℏ2l(l + 1)R(r)Yl,m(θ, ϕ) (4)

Plug (4) into (3)

− ℏ2

2me

(
d2R(r)

dr2
+

2

r

dR(r)

dr

)
�����Yl,m(θ, ϕ) +

ℏ2

2mer2
l(l + 1)R(r)�����Yl,m(θ, ϕ)−

e2

4πε0
R(r)�����Yl,m(θ, ϕ)

= ER(r)�����Yl,m(θ, ϕ) (5)

We end up with a 1D equation for radial part R(r)

− ℏ2

2m

(
d2R

dr2
+

2

r

dR

dr

)
+

(
− e2

4πε0

1

r
+

ℏ2l(l + 1)

2mer2

)
︸ ︷︷ ︸

Veff(r)

R = ER (6)

(Veff(r) is a bit like in classical mechanics).

5.3.1 l = 0

Veff(r) → Vcoulomb(r). Rewrite (6) in terms of variables

ν2 ≡ −2mE

ℏ2
> 0

β ≡ e2m

2πε0ℏ2

In terms of ν2, β (6) becomes

d2R

dr2
+

2

r

dR

dr
+

(
β

r
− ν2

)
R = 0 (7)
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(i) The asymptotic behaviour (rø∞) determined by

d2R

dr2
− ν2R = 0

R(r) ∼ e±rν

as r → ∞. Take R(r) ∼ e−rν because of normalisability.

(ii) At r = 0 eigenfunction has to be finite (∼ A).

Exploiting (i) take ansatz
R(r) = f(r)e−νr (8)

Plug (8) into (7) and find

f ′′(r) +
2

r
(1− νr)f ′(r) +

1

r
(β − 2ν)f(r) = 0 (9)

(9) is a homogeneous linear ODE with regular point r = 0

f(r) = rc
∞∑
n=0

anr
n

f ′(r) =

∞∑
n=0

an(c+ n)rc+n−1 (10)

f ′′(r) =

∞∑
n=0

an(c+ n)(c+ n− 1)rc+n−2

Plug (10) into (9):

∞∑
n=0

an(c+ n)(c+ n− 1)rc+n−2 +
2

r
(1− νr)an(c+ n)rc+n−1 + (β − 2ν)rc+n−1] = 0

Constant power of r has coefficient (rc−2)

a0c(c− 1) + 2a0c = 0

=⇒ a0c(c+ 1) = 0

c = −1 (then X ∼ A
r ) or c = 0 (then X ∼ A). So c = 0 and the equation for the other

coefficients is
∞∑
n=1

ann(n+ 1)an−1(β − 2νn)]rn−2 = 0

=⇒ an =
2νn− β

n(n+ 1)
an−1 (11)

Start of
lecture 16

59

https://notes.ggim.me/QM#lecturelink.16


Proposition. If f(r) =
∑∞

n=0 anr
n is infinite then R(r) is not normalisable.

Proof. Asymptotic behaviour of f(r) determined by

an
an−1

n→∞−→ 2ν

n

This is the same asymptotic behaviour as

g(r) = e2νr =

∞∑
n=0

(2ν)n

n!
rn

bn = (2ν)n

n! , then
bn
bn−1

n→∞−→ 2ν

n

Asymptotically f(r) ∼ e2νr, R(r) = f(r)e−νr sin eνr.

=⇒ the series must terminate. ∃N > 0 such that

aN = 0 with aN− ̸= 0

=⇒ 2νN − β = 0 =⇒ ν =
β

2N

Substituting ν, β,

EN = − e4me

32π2ε20ℏ2
1

N2

with N = 1, 2, 3, . . . same as Bohr’s energy spectrum. Eigenfunction RN (r), substitute
2Nν = β in (11) and find

an
an−1

= −2ν
N − n

n(n+ 1)
(12)

Can use (12) to find coefficient of RN (r).

N = 1 , polynomial of degree 0, set a0 = 1 then normalise

R1(r) = A1e
−νr

N = 2 , polynomial of degree 1, set a0 = 1,

a1
a0

(12)
= −2ν

2− 1

2
=⇒ a1 = −νa0 = −ν

R2(r) = A2(1− νr)e−νr
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N = 3 , polynomial of degree 2, a0 = 1, a1 = −2ν, a2 =
2
3ν

2

R3(r) = A3(1− 2νr +
2

3
ν2r2)e−νr

In general
RN (r) = LN (νr)e

−νr

where Ln is the Laguerre polynomial of O(N − 1).

P (r) ∝ r2|RN (r)|2.
Exercise: Compute A1 and compare closest to nucleus radius to Bohr radius

⟨r̂⟩χ1=R1Y00 =
3

2
a0

(Bohr radius is dP (r)
dr

∣∣∣
r=a0

= 0)

5.3.2 l > 0

d2R

dr2
+

2

r

dR

dr
+

(
β

r
− 2ν − l(l + 1)

r2

)
R = 0 (14)

Asymptotic behaviour:
R(r) = f(r)e−νr (15)

=⇒ d2f

dr2
+

2

r
(1− νr)

df

dr
+

(
β

r
− 2ν − l(l + 1)

r2

)
f = 0 (16)

Power series

f(r) = rσ
∞∑
n=0

anr
n (17)

Plug (17) into (16) and identify lowest power of r and set coefficient to zero

a0[σ(σ − 1) + 2σ − l(l + 1)]rσ−2 = 0
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=⇒ σ(σ + 1)− l(l + 1) = 0

So have σ = −l− 1 or σ = l. But if σ = −l− 1 then R(r) ∼ 1
rl+1 as r → 0, which is not

integrable near r = 0. But if σ = l, then R(r) ∼ 0 as r → 0 which is fine. Now we know

f(r) = rl
∞∑
n=0

anr
n (18)

Plug (18) into (16) and find

an =
2ν(n+ l)− β

n(n+ 2l − 1)
an−1 (19)

As before easy to show that R(r) would diverge unless

∃nmax > 0 such that anmax = 0, anmax−1 ̸= 0

Plug anmax in (19).
2ν (nmax + l)︸ ︷︷ ︸

≡N

−β = 0

=⇒ 2νN − β = 0 =⇒ ν =
β

2N

� EN = − e4mE

32π2ε20ℏ2
1
N2 , N = 1, 2, . . .

� Eigenvalues same but the degeneracy is larger ∀N , N = nmax + l. Can have
l = 0, 1, . . . , N − 1. −l ≤ m ≤ l.

D(N)︸ ︷︷ ︸
degeneracy

=

N−1∑
l=0

l∑
m=−l

1 =

N−1∑
l=0

(2l + 1) = N2

energy level N you have N2 (linearly independent) states with same EN .

� Eigenfunctions

χN,l,m(r, θ, ϕ) = RN,l(r)Yl,m(θ, ϕ) = rlgN,le
−r/2NYl,m(θ, ϕ)

gn,l(r) polynomial of degree (N − l − 1) defined by

gN,l(r) =
N−l−1∑
n=0

akr
k

with ak = 2ν
k
k+l−N
k+2l+1 (generalised Laguerre polynomials) quantum numbers N =

0, 1, 2, . . . (principal quantum numbers), l = 0, . . . , N − 1 (total angular momen-
tum), m = −l, . . . , l (azimuthal quantum number).
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For N = 4 l = 0,
R4,0(r) ∝ (1 + c4,0r + d4,0r

2 + e4,0r
2)e−rβ/8

Y00(θ, ϕ) =
1√
4π
,

For N = 4, l = 1,
R4,1(r) ∝ r(c4,1 + d4,1r + e4,1r

2)e−rβ/8

Y1,0(θ, ϕ), Y1,1(θ, ϕ), Y1,−1(θ, ϕ).
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For N = 4, l = 2,
R4,2(r) ∝ r2(c4,2 + dr,2r)e

−2β/8

Y2,0(θ, ϕ), Y2,±1(θ, ϕ), Y2,±2(θ, ϕ). N = 4, l = 3
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R4,3 = r3(c4,3)e
−rβ/8

Y3,0, Y3,±1, Y3,±2, Y3±3.

Bohr model:

� EN was correct

� Bohr radius was sort of correct

� L2 = N2ℏ2 wrong. Instead L2 = l(l + 1)ℏ2 with l < N .

� degeneracy wrong.

5.4 Periodic table

z, e−,
χ(x1,x2, . . . ,xz) = χ(x1) · · ·χ(xz)

E =
∑N

j=1Ej . It’s a poor approximation.
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