Quantum Mechanics

May 24, 2023

Contents

1	Qua	ntum Mechanics	3					
	1.1	Particles and Waves in Classical Mechanics	3					
	1.2	Particle-like Behaviour of Wave	4					
	1.3	Atomic spectra	7					
	1.4	The wave-like behaviour of particles	10					
2	Fou	ndation of Quantum Mechanics	11					
	2.1	Wave Function and Probabilistic Interpretation	11					
	2.2	Inner Product	13					
	2.3	Time-dependent Schrödinger equation	15					
	2.4	Expectation values and operators	17					
	2.5	Time independent Schrödinger equation (TISE)	22					
	2.6	Stationary states	22					
3	1 di	1 dimensional solutions of Schrödinger equation						
	3.1	Bound states	24					
	3.2	The free particle	31					
	3.3	Scattering states	35					
4	Sim	Simultaneous measurements in Quantum Mechanics						
	4.1	Commutators	40					
	4.2	Heisenberg's Uncertainty Principle	41					
	4.3	Ehrenfest theorem	44					
	4.4	Harmonic oscillator revisited (non-examinable) $\ldots \ldots \ldots \ldots \ldots$	45					
5	3D solutions of Schrödinger equation							
	5.1	TISE in 3D for spherically symmetric potentials	48					
	5.2	Angular momentum in Quantum Mechanics	52					
	5.3	The Hydrogen atom	57					
	5.4	Periodic table	65					

Lectures

Lecture 1Lecture 2 Lecture 3 Lecture 4 Lecture 5Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10Lecture 11Lecture 12 Lecture 13Lecture 14 Lecture 15 Lecture 16 Start of lecture 1

1 Quantum Mechanics

1.1 Particles and Waves in Classical Mechanics

Basic concepts of classical mechanics.

Particles

Definition. Point-particle is an object carrying energy E and momentum p in infinitesimally small point of space.

Particle determined by \mathbf{x} (position) and $\mathbf{v} = \dot{\mathbf{x}} = \frac{d}{dt}\mathbf{x}$ (velocity). Newton's second law is that

$$m\ddot{\mathbf{x}} = \mathbf{F}(\mathbf{x}(t), \dot{\mathbf{x}}(t))$$

Solving Newton's second law determines $\mathbf{x}(t)$ and $\dot{\mathbf{x}}(t)$ for all $t > t_0$ once initial conditions known $(\mathbf{x}(t_0), \dot{\mathbf{x}}(t_0))$.

Waves

is

Definition. Any real or complex-valued function with periodicity in time / space.

• Take function of time t:

$$f(t+T) = f(t)$$

where $T \neq 0$ is the period.

$$\nu = \frac{1}{T}$$

 $\omega = 2\pi\nu = \frac{2\pi}{T}$

• Take function of space x

where λ is the wavelength.

$$K = \frac{2\pi}{\lambda}$$

 $f(x+\lambda) = f(x)$

is the wave number.

Example. In 1 dimension, electromagnetic wave obeys equation

$$\frac{\partial^2 f(x,t)}{\partial t^2} - c^2 \frac{\partial^2 f(x,t)}{\partial x^2} = 0 \tag{1}$$

with $c \in \mathbb{R}$. Solutions:

$$f_{\pm}(x,t) = A_{\pm} \exp(\pm iKx - i\omega t)$$

with $A_{\pm} \in \mathbb{C}$ (amplitude of wave) and $\omega = cK$ (dispersion relation), hence

$$\lambda = \frac{2\pi c}{\omega} = \frac{c}{\nu}$$

Example. In 3 dimensions, electromagnetic wave obeys equation

$$\frac{\partial^2 f(\mathbf{x},t)}{\partial t^2} - c^2 \nabla^2 f(\mathbf{x},t) = 0$$
(2)

need $f(x, t_0)$, $\frac{df}{dt}(x, t_0)$ to get unique solution. Solution:

$$f(\mathbf{x},t) = A \exp(i\mathbf{K} \cdot \mathbf{x} - i\omega t)$$

with $\omega = c |\mathbf{K}|$.

Note. • These kind of waves arise as solutions of other governing equations provided a different dispersion relation.

• For all governing equations, superposition principle holds if f_1, f_2 solutions implies $f = f_1 + f_2$ is a solution.

1.2 Particle-like Behaviour of Wave

- 1.2.I Black-body Radiation (1900)
- 1.2.II Photo-electric effect (1905)
- 1.2.III Compton scattering (1923)

1.2.I Black Body Radiation

When a body heated at temperature T, it radiates light at different frequencies

Classical prediction:

$$E = K_B T$$

where E is energy of each wave and K_B is Boltzmann constant

$$\implies I(\omega) \propto K_B T \frac{\omega^2}{\pi^2 c^3}$$

Planck:

$$I(\omega) \propto \frac{\omega^2}{\pi^2 c^3} \frac{\hbar \omega}{\exp\left(\frac{\hbar \omega}{K_B T}\right) - 1}$$

 \hbar is reduced Planck constant:

$$\hbar = \frac{h}{2\pi}$$

Start of lecture 2

1.2.II Photo electric effect

As change I and ω of incident light

classical expectation:

- (i) incident light carries $E \propto I$ as I increases there is enough E to break the bond of e^- with atom $\forall \omega$.
- (ii) emission rate should be constant as I increases

surprising facts:

- (1) Below ω_{\min} no e^- emission
- (2) E_{max} depended on ω not on I
- (3) emission rate increases as I increases

1905 Einstein

- light quantified in small quanta, called photon
- each photon carries

$$E = \hbar \omega$$
$$\mathbf{P} = \hbar \mathbf{K}$$

• phenomenon of e^- emission comes from scattering of single photon off single e^- .

$$E_{\min} = 0 = \hbar\omega_{\min} - \phi$$

(ϕ is the binding energy of e^- with atom of metal)

$$E_{\rm max} = \hbar\omega_{\rm max} - \phi$$

as I increases, the number of protons increases, so the amount of scattering increases, so there is a higher e^- emission rate.

!.2.III Compton scattering

1923: X-rays scattering off free electron

Recall Dynamics and Relativity example sheet 4 question 7:

$$2\sin^2\frac{\theta}{2} = \frac{mc}{|\mathbf{q}|} - \frac{mc}{|\mathbf{p}|}$$

Why is this the peak?

$$E = \hbar\omega$$

$$\mathbf{P} = \hbar\mathbf{K} \implies |\mathbf{P}| = \hbar|\mathbf{K}| = \hbar\frac{\omega}{c}$$

$$\mathbf{q} = \hbar\mathbf{K}' \implies |\mathbf{q}| = \hbar|\mathbf{K}'| = \hbar\frac{\omega'}{c}$$

Take (2) and plug in (1)

$$\frac{1}{\omega'} = \frac{1}{\omega} + \frac{\hbar}{mc}(1 - \cos\theta)$$

Note. $\hbar \to 0, \, \omega' \to \omega$.

1.3 Atomic spectra

1897: Thomson, plum-pudding model of atoms.

1909: Rutherford

scattering pattern \rightarrow Rutherford model

The Rutherford model did not work because

- (i) e^- moves on circular orbits would radiate
- (ii) e^- would collapse on nucleus due to Coulomb force

(iii) model did not explain spectra measured.

$$\omega_{\min} = 2\pi c R_0 \left(\frac{1}{n^2} - \frac{1}{m^2}\right)$$

(c is the speed of light, R_0 is the Rydberg constant, ω_{\min} is the light emitted by atoms when hit by light and $n, m \in \mathbb{N}$)

1913 (Bohr): e^- orbits around nucleus are quantised so that L (= orbital angular momentum) takes discrete values

$$L_n = n\hbar$$

Proposition. Quantisation of $L \implies$ quantisation of r, v, E.

Proof.

$$L \equiv m_e vr \implies v = \frac{L}{m_e r} \implies v_n = n \frac{\hbar m_e r}{m_e r}$$

Coulomb force:

$$\mathbf{F}^{\text{Coul}} = \frac{e^2}{4\pi\varepsilon_0} \frac{1}{r^2} \mathbf{e}_r$$

Newton's second law:

$$\mathbf{F}^{\text{Coul}} = m_e a_r \mathbf{e}_r$$

$$\implies \frac{e^2}{4\pi\varepsilon_0} \frac{1}{r^2} = m_e \frac{v^2}{r} \implies r \equiv r_n = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} n^2$$

$$\implies r_0 = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2}$$

(min radius / Bohr radius)

$$E_n = \frac{1}{2}m_e v_n^2 - \frac{e^2}{4\pi\varepsilon_0} \frac{1}{r_n}$$
$$= -\frac{e^2}{8\pi\varepsilon_0 r_0} \frac{1}{n^2}$$

 $n = 1, E_1 = -13.6 eV$ GROUND LEVEL.

$$\omega_{\min} = \frac{\Delta E_{\min}}{\hbar} = 2\pi c \left(\frac{e^2}{4\pi\varepsilon_0\hbar c}\right)^2 \left(\frac{1}{n^2} - \frac{1}{m^2}\right)$$

1.4 The wave-like behaviour of particles

1923: De Broglie hypothesis: \forall particle of \forall mass associated with Q wave having

$$\omega = \frac{E}{\hbar}$$
$$\mathbf{K} = \frac{\mathbf{p}}{\hbar}$$

1927: Davison and Geemer e^- off crystals interference pattern was consistent with De Broglie.

Start of lecture 3

2 Foundation of Quantum Mechanics

Linear Algebra vector (*n*-dimensional complex value) $\mathbf{v}, \{e_i\}, \mathbf{v} \to (v_1, \dots, v_n)$ vector space \mathbb{C}^n inner product $\langle \mathbf{v}, \mathbf{w} \rangle = v_1^* w_1 + \dots + v_n^* w_n$ linear map $\mathbb{C}^n \to \mathbb{C}^n$, use matrix $\begin{array}{c} \text{Quantum Mechanics} \\ \text{state} \\ \psi \text{, basis } \mathbf{x} \to \psi(\mathbf{x},t) \\ L^2(\mathbb{R}^3) \text{ complex-valued square integrable functions} \\ \langle \psi, \phi \rangle \int_{\mathbb{R}^3} \psi^*(\mathbf{x},t) \phi(\mathbf{x},t) \mathrm{d}^3 x \\ L^2(\mathbb{R}^3) \to l^2(\mathbb{R}^3) \text{ operators } \hat{O}, \ \phi = \hat{O} \psi \end{array}$

2.1 Wave Function and Probabilistic Interpretation

Classical mechanics: $\mathbf{x}, \dot{\mathbf{x}}$ (or equivalently $\mathbf{p} = m\dot{\mathbf{x}}$) determine dynamics of the particle.

Quantum mechanics: ψ described by $\psi(\mathbf{x}, t)$ determine dynamics of the particle (in a probabilistic way)

Definition. ψ is the *state* of the particle.

Definition. $\psi(\mathbf{x}, t)$ complex coefficient of ψ in the continuous basis of \mathbf{x} , i.e. $\psi(\mathbf{x}, t)$ is ψ in \mathbf{x} representation and is called *wavefunction*. $\psi(\mathbf{x}, t) : \mathbb{R}^3 \to \mathbb{C}$ that satisfies mathematical properties dictated by its physics interpretation.

Interpretations

Born's rule / probabilistic interpretation.

The probability density for particle to sits at \mathbf{x} at given time t

$$\rho(\mathbf{x},t) \propto |\psi(\mathbf{x},t)|^2$$

 $\rho(\mathbf{x}, t) dV$ is the probability that the particle sits in some small volume V centred at \mathbf{x} is proportional to square modulus of $\psi(\mathbf{x}, t)$.

Mathematical Properties

 (i) Because the particle has to be somewhere implies that wavefunction has to be normalisable (or square0integrable) in R³:

$$\int_{\mathbb{R}^3} \psi^*(\mathbf{x}, t) \psi(\mathbf{x}, t) \mathrm{d}^3 x = \int_{\mathbb{R}^3} |\psi(\mathbf{x}, t)|^2 \mathrm{d}^3 x = \mathcal{N} < \infty$$

with $\mathcal{N} \in \mathbb{R}$ and $\mathcal{N} \neq 0$.

(ii) Because total probability has to be 1,

$$\overline{\psi}(\mathbf{x},t) = \frac{1}{\sqrt{N}}\psi(\mathbf{x},t)$$
$$\implies \int_{\mathbb{R}^3} |\overline{\psi}(\mathbf{x},t)|^2 \mathrm{d}^3 x = 1$$
$$\implies \rho(\mathbf{x},t) = |\overline{\psi}(\mathbf{x},t)|^2$$

Note. Often drop $\overline{\psi}$ and write wavefunctions as ψ , then normalise at the end.

Note. If $\tilde{\psi}(\mathbf{x},t) = e^{i\alpha}\psi(\mathbf{x},t)$ with $\alpha \in \mathbb{R}$ then $|\tilde{\psi}(\mathbf{x},t)|^2 = |\psi(\mathbf{x},t)|^2$ so ψ and $\tilde{\psi}$ are equivalent state.

Non-examinable aside:

State corresponds to rays in vector space of wave functions $[\psi]$ is the equivalence class of vectors under equivalence relation $\psi_1 \sim \psi_2 \iff \psi_1 = e^{i\alpha}\psi_2$.

Hilbert Space

Definition. The set of all square-integrable functions in \mathbb{R}^3 is called Hilbert space \mathcal{H} or $L^2(\mathbb{R}^3)$.

Proposition. If $\psi_1, \psi_2 \in \mathcal{H}$ then $\psi = a_1\psi_1 + a_2\psi_2 \neq 0 \in \mathcal{H}$ $(a_1, a_2 \in \mathbb{C})$.

Theorem 1. If $\psi_1(\mathbf{x},t)$ and $\psi_2(\mathbf{x},t)$ are square-integrable then also $\psi(\mathbf{x},t) = a_1\psi_1(\mathbf{x},t) + a_2\psi_2(\mathbf{x},t)$ is square-integrable.

Proof.

$$\int_{\mathbb{R}^3} |\psi_1(\mathbf{x}, t)|^2 \mathrm{d}^3 x = \mathcal{N}_1 < \infty$$
$$\int_{\mathbb{R}^3} |\psi_2(\mathbf{x}, t)|^2 \mathrm{d}^3 x = \mathcal{N}_2 < \infty$$

by triangle identities for complex numbers,

$$\begin{split} \int_{\mathbb{R}^3} |\psi(\mathbf{x},t)|^2 \mathrm{d}^3 x &= \int_{\mathbb{R}^3} |a_1 \psi_1(\mathbf{x},t) + a_2 \psi_2(\mathbf{x},t)|^2 \mathrm{d}^3 x \\ &\leq \int_{\mathbb{R}^3} (|a_1 \psi_1(\mathbf{x},t)| + |a_2 \psi_2(\mathbf{x},t)|)^2 \mathrm{d}^3 x \\ &= \int_{\mathbb{R}^3} (|a_1 \psi_1(\mathbf{x},t)|^2 + |a_2 \psi_2(\mathbf{x},t)|^2 + 2|a_1 \psi_1| |a_2 \psi_2|) \mathrm{d}^3 x \\ &\leq \int_{\mathbb{R}^3} 2|a_1 \psi_1(\mathbf{x},t)|^2 + 2|a_2 \psi_2(\mathbf{x},t)|^2 \mathrm{d}^3 x \\ &= 2|a_1|^2 \mathcal{N}_1 + 2|a_2|^2 \mathcal{N}_2 \\ &< \infty \end{split}$$

2.2 Inner Product

Definition. Inner product in \mathcal{H} is defined as

$$\langle \psi, \phi \rangle = \int_{\mathbb{R}^3} \psi^*(\mathbf{x}, t) \phi(\mathbf{x}, t) \mathrm{d}^3 x$$

Theorem 2. If $\psi, \phi \in \mathcal{H}$ then their inner product is guaranteed to exist.

Proof.

$$\int_{\mathbb{R}^3} |\psi(\mathbf{x}, t)|^2 \mathrm{d}^3 x = \mathcal{N}_1 < \infty$$
$$\int_{\mathbb{R}^3} |\phi(\mathbf{x}, t)|^2 \mathrm{d}^3 x = \mathcal{N}_2 < \infty$$

$$\begin{split} |\langle \psi, \phi \rangle| &= \left| \int_{\mathbb{R}^3} \psi^*(\mathbf{x}, t) \phi(\mathbf{x}, t) \mathrm{d}^3 x \right| \\ &\leq \sqrt{\int_{\mathbb{R}^3} |\psi(\mathbf{x}, t)|^2 \mathrm{d}^3 x} \int_{\mathbb{R}^3} |\phi(\mathbf{x}, t)|^2 \mathrm{d}^3 x} \qquad \text{(Cauchy Schwarz)} \\ &= \sqrt{\mathcal{N}_1 \mathcal{N}_2} \\ &< \infty \qquad \qquad \square \end{split}$$

Start of lecture 4

Properties of inner product

- (i) $\langle \psi, \phi \rangle = \langle \phi, \psi \rangle^*$
- (ii) antilinear in first entry, linear in second entry. So $\forall a_1, a_2 \in \mathbb{C}$,

$$\langle a_1\psi_1 + a_2\psi_2, \phi \rangle = a_1^* \langle \psi_1, \phi \rangle + a_2^* \langle \psi_2, \phi \rangle$$

$$\langle \psi_1, a_1\phi_1 + a_2\phi_2 = a_1\langle \psi, \phi_1 \rangle + a_2\langle \psi, \phi_2 \rangle$$

(iii) inner product of $\psi \in \mathcal{H}$ with itself is non-negative

$$\langle \psi, \psi \rangle = \int_{\mathbb{R}^3} |\psi(\mathbf{x}, t)|^2 \mathrm{d}^3 x > 0$$

Definition. The norm of wave function ψ is the real function

$$\|\psi\| \equiv \sqrt{\langle \psi, \psi \rangle}$$

Definition. Wavefunction ψ is normalised if $\|\psi\| = 1$.

Definition. Two wave functions ψ, ϕ are orthogonal if

 $\langle \psi, \phi \rangle = 0$

Definition. A set of wavefunctions $\{\psi_n\}$ is orthonormal if

$$\langle \psi_m, \psi_n \rangle = \delta_{mn}$$

Definition. A set of wavefunctions $\{\psi_n\}$ is complete if for all $\phi \in \mathcal{H}$ can be written as a linear combination of them

$$\forall \phi \in \mathcal{H} \qquad \phi = \sum_{n=0}^{\infty} c_n \psi_n \qquad c_n \in \mathbb{C}, \psi_n \in \mathcal{H}$$

Lemma 1. If $\{\psi_n\}$ form a complete orthonormal basis of \mathcal{H} then $c_n = \langle \psi_n, \phi \rangle$.

Proof.

$$\langle \psi_n, \phi \rangle = \left\langle \psi_n, \sum_{m=0}^{\infty} c_m \psi_m \right\rangle$$

=
$$\sum_{m=0}^{\infty} c_m \langle \psi_n, \psi_m \rangle$$

=
$$\sum_{m=0}^{\infty} c_m \delta_{mn}$$

=
$$c_n$$

2.3 Time-dependent Schrödinger equation

Recap: first postulate of quantum mechanics is Born's rule

$$P(\mathbf{x},t) = \rho(\mathbf{x},t) \mathrm{d}^3 \mathbf{x} = |\psi(\mathbf{x},t)|^2 \mathrm{d} \mathbf{x}$$

The second postulate is time dependent Schrödinger equation (TDSE):

$$i\hbar\frac{\partial\psi}{\partial t}(\mathbf{x},t) = -\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{x},t) + U(\mathbf{x})\psi(\mathbf{x},t)$$

where $U(\mathbf{x}) \in \mathbb{R}$ (potential).

- First derivative in t: once $\psi(x, t_0)$ is known, we can find out $\psi(x, t)$ at all times.
- asymmetry between t and x, so time dependent Schrödinger equation is a non-relativistic equation.

Heuristic interpretation

 e^- diffraction (interference) $\rightarrow e^-$ behaves like waves

$$\psi(x,t) \propto \exp[i(\mathbf{k} \cdot \mathbf{x} - \omega t)]$$

almost describes the dynamics of e^- . Take De-Broglie

$$kbg = \frac{\mathbf{p}}{\hbar} \qquad \omega = \frac{E}{\hbar}$$

for free particle

$$E = \frac{|\mathbf{p}|^2}{2m} \implies \omega = \frac{|\mathbf{p}|^2}{2m\hbar} = \frac{\hbar}{2m}|\mathbf{k}|^2$$

dispersion relation for a particle-wave

 $\omega \propto |\mathbf{k}|^2$

while for light-waves

$$\omega \propto |\mathbf{k}|$$

if $\exp[i(\mathbf{k} \cdot \mathbf{x} - \omega t)]$ is a solution of the equation for the wave of e^- and if $\omega = \frac{\hbar}{2m} |\mathbf{k}|^2$ then

$$\exp[i(\mathbf{k}\cdot\mathbf{x}) - i\frac{|\mathbf{k}|^2}{2m}\hbar t] = \exp[i(kx - \frac{k^2}{2m}\hbar t)]$$

by dimensional analysis.

Properties

(i) $\int_{\mathbb{R}^3} |\psi(\mathbf{x},t)|^2 \mathrm{d}^3 x = \mathcal{N} < \infty.$

Proof.

$$\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}t} = \frac{1}{t} \int_{\mathbb{R}^3} |\psi(\mathbf{x}, t)|^2 \mathrm{d}^3 x$$
$$= \int_{\mathbb{R}^3} \frac{\partial}{\partial t} |\psi(\mathbf{x}, t)|^2 \mathrm{d}^3 x$$

but

$$\frac{\partial}{\partial t}(\psi^*(\mathbf{x},t)\psi(\mathbf{x},t)) = \psi^*\frac{\partial\psi}{\partial t} + \frac{\partial\psi^*}{\partial t}\psi$$

Now TDSE gives

$$\frac{\partial \psi}{\partial t} = \frac{i\hbar}{2m} \nabla^2 \psi - i \frac{U}{\hbar} \psi$$

and TDSE* gives

$$\frac{\partial \psi^*}{\partial t} = -\frac{i\hbar}{2m} \nabla^2 \psi^* + i\frac{U}{\hbar} \psi^*$$
$$\implies \frac{\partial}{\partial t} (\psi^* \psi) = \nabla \cdot \left[\frac{i\hbar}{2m} (\psi^* \nabla \psi - \psi \nabla \psi^*) \right]$$
$$\implies \frac{d\mathcal{N}}{dt} = \int_{\mathbb{R}^3} \nabla \cdot \left[\frac{i\hbar}{2m} (\psi^* \nabla \psi - \psi \nabla \psi^*) \right] = 0$$

because ψ, ψ^* are such that $|\psi|, |\psi^*| \to 0$ as $|\mathbf{x}| \to \infty$.

(ii) Normalisation of wavefunction constant in time \implies probability is conserved

$$\frac{\partial \rho(\mathbf{x},t)}{\partial t} + \nabla \cdot \mathbf{J}(\mathbf{x},t) = 0$$
$$\mathbf{J}(\mathbf{x},t) = -[\cdots] = -\frac{i\hbar}{2m} [\psi^*(\mathbf{x},t)\nabla\psi(\mathbf{x},t) - \psi(\mathbf{x},t)\nabla\psi^*(\mathbf{x},t)]$$

(the conserved probability current of quantum physics states).

2.4 Expectation values and operators

How to extract info from ψ ?

Definition. Observable = any property of the particle describe by ψ that can be measured.

In Quantum mechanics \rightarrow operator acting on ψ , measurement \rightarrow expectation value of an operator.

2.5.1 Heuristic interpretation

From probabilistic interpretation, if want to measure the position of particle:

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\psi(x,t)|^2 \mathrm{d}x = \int_{-\infty}^{\infty} \psi^*(x,t) x \psi(x,t) \mathrm{d}x$$
$$O_x \to \hat{x} \to x$$

Start of Expectation value of an observable is the mean (average) of infinite series of measurelecture 5 ments performed on particles on the same state.

$$\begin{split} \langle p \rangle &= m \frac{\mathrm{d}\langle x \rangle}{\mathrm{d}t} \\ &= m \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} \psi^* x \psi \mathrm{d}x \\ &= m \int_{-\infty}^{\infty} x \frac{\partial}{\partial t} (\psi^* \psi) \\ &= \frac{i\hbar m}{2m} \int_{-\infty}^{\infty} x \frac{\partial}{\partial x} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right) \mathrm{d}x \end{split} \tag{TDSE}$$
$$&= -\frac{i\hbar}{2} \int_{-\infty}^{\infty} \left(\psi^* \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^*}{\partial x} \right) \mathrm{d}x \\ &= -i\hbar \int_{-\infty}^{\infty} \psi^* \frac{\partial \psi}{\partial x} \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \psi^* \left(-i\hbar \frac{\partial}{\partial x} \right) \psi \mathrm{d}x \end{split}$$

position $\rightarrow x$ momentum $\rightarrow -i\hbar \frac{\partial}{\partial x}$

2.5.2 Hermitian operators

In \mathbb{C}^n linear map $\mathbb{C}^n \to \mathbb{C}^n$

$$T: \underbrace{\mathbf{v}}_{\in \mathbb{C}^n} \to \underbrace{\mathbf{w}}_{\in \mathbb{C}^n} \quad \mathbf{w} = T\mathbf{v}$$

In quantum mechanics linear maps $\mathcal{H} \to \mathcal{H}$

$$\hat{O}: \psi \to \tilde{\psi} \quad \tilde{\psi} = (\hat{O}\psi)(x,t)$$

Definition. An operator \hat{O} is any linear map $\mathcal{H} \to \mathcal{H}$ such that

$$\hat{O}(a_1\psi_1 + a_2\psi_2) = a_1\hat{O}(\psi_1) + a_2\hat{O}(\psi_2)$$

with $a_1, a_2 \in \mathbb{C}, \psi_1, \psi_2 \in \mathcal{H}$.

Examples

• finite differential operators

$$\sum_{m=0}^{N} p_n(X) \frac{\partial}{\partial x}$$

with $p_n(x)$ a polynomial. In particular, x and $-i\hbar \frac{\partial}{\partial x}$ are special cases.

• Translation

 $\hat{S}_a: \psi(x) \to \psi(x-a)$

• Parity

$$\hat{P}: \psi(x) \to \psi(-x)$$

Definition. The Hermitian conjugate \hat{O}^{\dagger} of an operator \hat{O} is the operator such that

$$\langle \hat{O}^{+}\psi_{1},\psi_{2}\rangle = \langle \psi_{1},\hat{O}\psi_{2}\rangle \quad \forall \psi_{1},\psi_{2} \in \mathcal{H}$$

Verify (from the properties of the inner product) that

- $(a_1\hat{A}_1 + a_2\hat{A}_2)^{\dagger} = a_1^*\hat{A}_1^{\dagger} + a_2^*\hat{A}_2^{\dagger}$ for any $a_1, a_2 \in \mathbb{C}$
- $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}.$

Definition. An operator \hat{O} is *Hermitian* if

$$\hat{O} = \hat{O}^{\dagger} \iff \langle \hat{O}\psi_1, \psi_2 \rangle = \langle \psi_1, \hat{O}\psi_2 \rangle$$

All physics quantities in quantum mechanics are represented by Hermitian operators.

Examples

(i) $\hat{x}: \psi(x,t) \to x\psi(x,t)$ verify that $\hat{x}^{\dagger} = \hat{x} \iff (\hat{x}\psi_1,\psi_2) = \psi_1\hat{x}\psi_2$ for $\psi_1,\psi_2 \in \mathcal{H}$

$$\langle x\psi_1,\psi_2\rangle = \int_{-\infty}^{\infty} (x\psi_1)^*\psi_2 \mathrm{d}x = \int_{-\infty}^{\infty} \psi_1^* x\psi_2 \mathrm{d}x = \langle \psi_1, x\psi_2\rangle$$

(ii) $\hat{P}: \psi(x,t) \to -i\hbar \frac{\partial \psi}{\partial x}(x,t)$ verify:

$$\begin{split} \langle \hat{P}\psi_1, \psi_2 \rangle &= \int_{-\infty}^{\infty} \left(-i\hbar \frac{\partial \psi_1}{\partial x} \right)^* \psi_2 \mathrm{d}x \\ &= i\hbar [\psi_1^* \psi_2]_{-\infty}^{\infty} - i\hbar \int_{-\infty}^{\infty} \psi_1^* \frac{\partial \psi_2}{\partial x} \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \psi_1^* \left(-i\hbar \frac{\partial \psi_2}{\partial x} \right) \mathrm{d}x \\ &= \langle \psi_1, \hat{P}\psi_2 \rangle \end{split}$$

(iii) Kinetic energy

$$\hat{T}:\psi(x,t)\rightarrow \frac{\hat{P}^2}{2m}\psi(x,t)=-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}\psi(x,t)$$

(iv) potential energy

$$\hat{U}:\psi(x,t)\to U(\hat{X})\psi(x,t)=U(x)\psi(X,t)$$

(v) total energy

$$\hat{H}:\psi(x,t)\rightarrow(\hat{T}+\hat{U})\psi(x,t)=\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+U(x)\right)\psi(x,t)$$

Exercise: prove that \hat{H} (the Hamiltonian operator) is Hermitian.

Theorem 3. The eigenvalue of Hermitian operators are real.

Proof. Let \hat{A} be a Hermitian operator with eigenvalue $a \in \mathbb{C}$

$$\langle \psi, \hat{A}\psi \rangle = \langle \psi, a\psi \rangle = a \langle \psi, \psi \rangle = a$$

But \hat{A} Hermitian:

$$\langle \psi, \hat{A}\psi \rangle = \langle \hat{A}\psi, \psi \rangle = \langle a\psi, \psi \rangle = a^* \langle \psi, \psi \rangle = a^*$$

 $\implies a = a^*.$

Theorem 4. If \hat{A} Hermitian operator, ψ_1, ψ_2 normalised eigenfunctions of \hat{A} with eigenvalues a_1, a_2 with $a_1 \neq a_2$ then ψ_1 and ψ_2 are orthogonal.

Proof. We have

$$\hat{A}\psi_1 = a_1\psi_1 \quad \hat{A}\ \psi_2 = a_2\psi_2 \qquad a_1, a_2 \in \mathbb{R}$$

Then

$$a_1 \langle \psi_1, \psi_2 \rangle = a_1^* \langle \psi_1, \psi_2 \rangle$$
$$= \langle a_1, \psi_1, \psi_2 \rangle$$
$$= \langle \hat{A}\psi_1, \psi_2 \rangle$$
$$= \langle \psi_1, \hat{A}\psi_2 \rangle$$
$$= \langle \psi_1, \hat{A}\psi_2 \rangle$$
$$= \langle \psi_1, a\psi_2 \rangle$$
$$= a_2 \langle \psi_1, \psi_2 \rangle$$

so $\langle \psi_1, \psi_2 \rangle = 0$ since $a_1 \neq a_2$.

Theorem 5. The discrete (or continuous) set of eigenfunctions of any Hermitian operator together form a complete orthonormal basis of \mathcal{H} .

$$\psi(x,t) = \sum_{i=1}^{N} c_i \psi_i(x,t)$$

 $c_i \in \mathbb{C}, \{\psi_i\}$ a set of eigenfunctions of $\hat{A} = \hat{A}^{\dagger}$.

Start of lecture 6

2.5.3 Expectation values and operators

So far: every quantum observable is represented by a Hermitian operator \hat{O} .

- (I) The possible outcomes of measurement of the observable O are eigenvalues of O.
- (II) If \hat{O} has discrete set of normalised eigenfunctions $\{\psi_i\}$ with distinct eigenvalues $\{\lambda_i\}$, the measurement of O on a particle described by ψ has probability

$$P(O = \lambda_I) = |a_i|^2 = |\langle \psi_i, \psi \rangle|^2$$

where $\psi = \sum_{i=1}^{N} a_i \psi_i$.

(III) If $\{\psi_i\}$ is a set of orthonormal eigenfunctions of \hat{O} and $\{\psi_i\}_{i \in I}$ complete set of orthonormal eigenfunctions with some eigenvalue λ

$$P(O = \lambda) = \sum_{i \in I} |a_i|^2$$

sanity check

$$\sum_{i=1}^{N} |a_i|^2 = \sum_{i=1}^{N} \langle a_i \psi_i, a_i \psi_i \rangle$$
$$= \sum_{i,j=1}^{N} \langle a_i \psi_i, a_j \psi_j \rangle$$
$$= \langle \psi, \psi \rangle$$
$$= 1$$

(IV) The projection postulate: If O measured on ψ at time t and the outcome of measure is λ_i then the wave function of ψ instantaneously after measurement becomes ψ_i (eigenfunction with eigenvalues) [if \hat{O} has degenerate eigenfunction with some eigenvalue λ then the wavefunction becomes $\psi = \sum_{i \in I} a_i \psi_i$]

Definition (Projection operator). Given $\psi = \sum_i a_i \psi_i = \sum_i \langle \psi_i, \psi \rangle \psi_i$ define $\hat{P}_i : \psi \to \langle \psi_i, \psi \rangle \psi_i$

We can now define expectation value of an observable measured on state ψ

$$\begin{split} \langle O \rangle_{\psi} + \sum_{i} \lambda_{i} P(O = \lambda_{i}) \\ &= \sum_{i} \lambda_{i} |a_{i}|^{2} \\ &= \sum_{i} \lambda_{i} |\langle \psi_{i}, \psi \rangle|^{2} \\ &= \left\langle \sum_{i} \langle \psi_{i}, \psi \rangle \psi_{i}, \sum_{j} \lambda_{j} \langle \psi_{j}, \psi \rangle \psi_{j} \right\rangle \\ &= \langle \psi, \hat{O}\psi \rangle \\ &= \int \psi^{*}(x, t) \hat{O}\psi(x, t) \mathrm{d}x \end{split}$$

Property:

$$\langle a\hat{A} + b\hat{B} \rangle_{\psi} = a \langle \hat{A} \rangle_{\psi} + b \langle \hat{B} \rangle_{\psi}$$

 $a, b \in \mathbb{R}.$

Interpretation:

- The physics implication of projection postulate is that if O is measured twice, the outcome of second measure (of Δt between measures is small) is the same as first with probability 1.
- (Born's rule) If $\phi(\mathbf{x}, t)$ is the state that gives the desired outcome of a measurement on a state $\psi(\mathbf{x}, t)$, probability of such outcome is given by

$$|\langle\psi,\phi
angle|^2 = \left|\int_{-\infty}^{\infty}\psi^*(x,t)\phi(x,t)\mathrm{d}x\right|^2$$

2.5 Time independent Schrödinger equation (TISE)

Let's rewrite TDSE in 1D

$$i\hbar\frac{\partial\psi}{\partial t}(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}(x,t) + U(x)\psi(x,t) = \hat{H}\psi(x,t) \tag{1}$$

try ansatz (try solution)

$$\psi(x,t) = T(t)\chi(X) \tag{2}$$

Plug (2) into (1)

$$i\hbar\frac{\partial T}{\partial t}(t)\chi(x) = T(t)\hat{H}\chi(X)$$

divide by $T(t)\chi(x)$

$$\frac{1}{T(t)}i\hbar\frac{\partial T}{\partial t}(t) = \frac{H\chi(x)}{\chi(x)}$$
(3)

Both LHS and RHS have to be equal to a constant E, so

$$\frac{1}{T(t)}i\hbar\frac{\partial T}{\partial t}(t) = E \implies T(t) = e^{-iEt/\hbar}$$
(4)

with $E \in \mathbb{R}$. So TISE is

$$\hat{H}\chi(x) = E\chi(x)$$

$$-\frac{\hbar^2}{2m}\frac{\partial^2\chi}{\partial x^2}(x) + U(x)\chi(x) = E\chi(x)$$
(5)

- TDSE is eigenvalue equation for \hat{H} operator.
- eigenvalues of \hat{H} are all possible outcomes of measure of energy of state ψ .

2.6 Stationary states

We found a particular solution of TDSE

$$\psi(x,t) = \chi(x)e^{-iEt/\hbar}$$

E eigenvalue associated with eigenfunction χ .

Definition. These solutions are called stationary states.

Why?

$$\rho(x,t) = |\psi(x,t)|^2 = |\chi(x)|^2$$

If we apply theorem 2.6 to $\hat{O} = \hat{H}$

Theorem 6. Every solution of TDSE can be written as a linear combination of stationary states.

• For system that has a discrete set of eigenvalues of \hat{H} ,

$$E_n = E_1, E_2, \ldots$$

 $n \in \mathbb{N}$

$$\psi(x,t) = \sum_{n} a_n \chi_n(x) e^{-iE_n t/\hbar}$$

• For system that has a continuous set of eigenvalues of \hat{H} , $E(\alpha)$

$$\psi(x,t) = \int A(\alpha)\chi_{\alpha}(\alpha)e^{-iE_{\alpha}t/\hbar}\mathrm{d}\alpha$$

where $A \in \mathbb{C}, \alpha \in \mathbb{R}$.

• $|a_n|^2$, $|A(\alpha)|^2 d\alpha$ probability of measuring the particle energy to be $E_h = E(\alpha)$.

Imagine a system with only 2 energy eigenvalues $E_1 \neq E_2$ we can write the state ψ at time t $\psi(c, t) = a_1 \chi_1(x) e^{-iE_1 t/\hbar} + a_2 \chi_2(x) e^{-iE_2 t/\hbar}$

$$\psi(c,t) = a_1 \chi_1(x) e^{-iE_1 t/\hbar} + a_2 \chi_2(x) e^{-iE_2 t/\hbar}$$
$$\implies \psi(x,0) = a_1 \chi_1(x) + a_2 \chi_2(x)$$

if $a_1 = 0$ then $\psi(x,0) = a_2\chi_2(\alpha)$, $\psi(x,t) = a_2\chi_2(x)e^{-iE_2t/\hbar}$ for all t, $|\psi(x,0)|^2 = |\psi(x,t)|^2$. If $a_i \neq 0$ and $a_2 \neq 0$,

$$\begin{aligned} |\psi(x,t)|^2 &= |a_1\chi_1 e^{-iE_1t/\hbar} + a_2\chi_2 e^{-iE_2t/\hbar}|^2 \\ &= a_1^2 |\chi_1|^2 + a_2^2 |\chi_2|^2 + 2a_1a_2\chi_1(x)\chi_2(x)\cos\left(\frac{(E_1 - E_2)t}{\hbar}\right) \end{aligned}$$

Start of lecture 7

3 1 dimensional solutions of Schrödinger equation

TISE (Time independent Schrödinger equation):

$$H\chi(X) = E\chi(x)$$
$$\frac{\hbar^2}{2m}\chi''(x) + U(x)\chi(x) = E\chi(x)$$

with $E \in \mathbb{R}$. We will solve TISE in 3 cases:

- 3.1 Bound states
- 3.2 Free particle
- 3.3 scattering states.

3.1 Bound states

3.1.1 Infinite potential well

$$U(x) = \begin{cases} 0 & |x| \le a \\ +\infty & |x| > 0 \end{cases}$$

 $a \in \mathbb{R}^+$.

- for |x| > 0, $\chi(x) = 0$ otherwise $U \cdot \chi = \infty$ so boundary condition $\chi(\pm a) = 0$.
- for $|x| \leq a$ we look for solutions of

$$-\frac{\hbar^2}{2m}\chi''(x) = E\chi(x)$$
$$\implies \chi''(x) + k^2\chi(x) = 0$$

with $k = \sqrt{\frac{2mE}{\hbar^2}}$ and we also have $\chi(\pm a) = 0$. Solution:

$$\chi(x) = A\sin(kx) + B\cos(kx)$$

 $\chi(a) = 0, \ \chi(-a) = 0$ implies

$$A\sin(ka) = 0, \quad B\cos(ka) = 0$$

so two options:

(i) A = 0, $\cos(ka) = 0$ then $k_n = \frac{n\pi}{2a}$, n an odd integer.

$$\chi_n(x) = B\cos(k_n x)$$

the even solutions.

(ii) B = 0, $\sin(ka) = 0$ then $k_n = \frac{n\pi}{2a}$, *n* even integer.

$$\chi_n(x) = A\sin(k_n x)$$

the odd solutions.

Determine A, B by requiring normalisation of eigenfunction

$$\int_{-a}^{a} |\chi_n(x)|^2 \mathrm{d}x = 0 \implies A = B = \sqrt{\frac{1}{Q}}$$

Solution: eigenvalues of \hat{H} are

$$E_n = \frac{\hbar^2}{2m} k_n^2 = \hbar^2 \frac{\pi^2}{8ma^2} n^2$$

eigenfunction of \hat{H}

$$\chi_n(x) = \sqrt{\frac{1}{Q}} \begin{cases} \cos\left(\frac{n\pi x}{2a}\right) & n = 1, 3, \dots \\ \sin\left(\frac{n\pi x}{2a}\right) & n = 2, 4, \dots \end{cases}$$

.image

- (i) Ground state has $E \neq 0$. Note (contrarily to classical mechanics)
- (ii) $n \to \infty$, $|\chi_n(x)|^2 \to \text{const}$ (Classical mechanics limits)

In classical mechanics

$$P(x) \propto \frac{1}{\mathcal{N}(x)}$$
 $P(x) = \frac{A}{\mathcal{N}(x)}$

In this case particle free inside the wall

$$\implies \mathcal{N}$$
constant $\implies P$ constant

Proposition. If quantum system has non-degenerate eigenstates $(E_i \neq E_j \text{ for } i \neq j)$ then, if U(x) = U(-x) the eigenfunction of \hat{H} have to be either odd or even.

Proof. If U(x) = U(-x) then TISE invariant under $x \to -x$. If $\chi(x)$ is a solution with eigenvalue E, then also $\chi(-x)$ solution and $\chi(-x) = \alpha \chi(x)$ solutions must be the same up to a normalisation factor α . Then

$$\chi(x) = \chi(-(-x)) = \alpha \chi(-x) = \alpha^2 \chi(x)$$
$$\implies \alpha^2 = 1 \implies \alpha = \pm 1$$
$$\implies \chi(x) = \pm \chi(-x)$$

3.1.2 Finite potential well

$$U(x) = \begin{cases} 0 & |x| \le a \\ U_0 & |x| > a \end{cases}$$

Consider E > 0 (E < 0 does not exist in this case) and $E < U_0$ (bound state) We look for odd / even eigenfunction

(i) even parity bound states

$$\chi(-x) = \chi(x)$$

solve

$$-\frac{\hbar^2}{2m}\chi''(x) = E\chi(x) \qquad |x| \le a \tag{I}$$

$$-\frac{\hbar^2}{2m}\chi''(x) = (E - U_0)\chi(x) \qquad |x| > a$$
(II)

(I)
$$\chi''(x) + k^2 \chi(x) = 0$$
 with $k = \sqrt{\frac{2mE}{\hbar^2}}$
 $\chi(x) = A \sin(kx) + B \cos(kx)$

but A = 0 (even parity)

$$\chi(x) = B\cos(kx)$$

(II)
$$\chi''(x) - \overline{k}^2 \chi(x) = 0$$
 with $k = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$
 $\chi(x) = ce^{+\overline{k}x} + De^{-\overline{k}x}$

but impose normalisability implies x > a, c = 0, x < -a, D = 0. Impose even parity C = D.

To summarise:

$$\chi(x) = \begin{cases} Ce^{\overline{k}x} & x < -a \\ B\cos(kx) & |x| \le a \\ Ce^{-\overline{k}x} & x > a \end{cases}$$

Impose continuity of $\chi(x)$ at $x = \pm a$, $\chi'(x)$ at $x = \pm a$. Then

$$\chi(a) \to Ce^{-ka} = B\cos(ka)$$

 $\chi'(a) \to -\overline{k}Ce^{-\overline{k}a} = -kB\sin(ka)$

if take ratio from definition

$$k \tan(ka) = \overline{k}$$
$$k^2 + \overline{k}^2 = \frac{2mU_0}{\hbar^2}$$

Define rescaled variables $\xi = ka, \eta = \overline{k}a$.

$$\xi \tan \xi = \eta$$
$$\xi^2 + \eta^2 = r_0^2$$
$$r_1^2 = \frac{2mU_0}{\hbar^2}a^2$$

eigenvalues of \hat{H} corespond to points of intersection

$$E_n = \frac{\hbar^2}{2ma^2} \xi_n^2 \quad n = 1, \dots, p$$

Exercise:

- (1) Use the unused condition in system to write C in terms of B
- (2) Impose normalisation to 1 to find B.

Start of lecture 8

3.1.3 Harmonic Oscillator

$$U(x) = \frac{1}{2}kx^2$$

 $k \in \mathbb{R}$ elastic constant. $\omega = \sqrt{\frac{k}{m}}$. Classical mechanics: Newton 2 is $\ddot{x}(t) = -\omega^2 x(t)$.

 $\implies x(t) = A \sin \omega t + B \cos \omega t$

with $T = \frac{2\pi}{\omega}$ period oscillations. Quantum mechanics:

$$-\frac{\hbar^2}{2m}\chi''(x) + \frac{1}{2}m\omega^2 x^2 \chi(x) = E\chi(x)$$
(1)

We know:

- Discrete eigenvalues
- even / odd eigenfunctions

Change of variables:

$$\xi^2 \equiv \frac{m\omega}{\hbar} x^2$$
$$\varepsilon \equiv \frac{2E}{\hbar\omega}$$

Plug into (1)

$$-\frac{\mathrm{d}^2\chi}{\mathrm{d}\xi^2}(\xi) + \xi^2\chi(\xi) = \varepsilon\chi(\xi)$$
(2)

Solve it by starting from a particular solution

$$\varepsilon = 1 \quad \left(E_0 = \frac{\hbar\omega}{2}\right)$$

$$\chi_0(\xi) = e^{-\xi^2/2} \tag{3}$$

Plug (3) into (2) with $\varepsilon = 1$ works. We found one eigenvalues $E_0 = \frac{\hbar\omega}{2}$, $\chi_0(x) = Ae^{-\frac{m\omega}{2\hbar}x^2}$ To find other eigenfunction of \hat{H} take general form

$$\xi(\xi) = f(\xi)e^{-\xi^2/x}$$
(4)

Plug (4) into (2)

ansatz:

$$-\frac{\mathrm{d}^2 f}{\mathrm{d}\xi^2} + 2\xi \frac{\mathrm{d}f}{\mathrm{d}\xi} + (1-\varepsilon)f = 0 \tag{5}$$

Use power series method ($\xi = 0$ regular point)

$$f(\xi) = \sum_{n=0}^{\infty} a_n \xi^n \tag{6}$$

 $a_n \in \mathbb{R}$. Clearly

$$\xi \frac{\mathrm{d}f}{\mathrm{d}\xi} = \sum_{n=0}^{\infty} n a_n \xi^n \tag{7}$$
$$\frac{\mathrm{d}^2 f}{\mathrm{d}\xi^2} = \sum_{n=0}^{\infty} n(n-1)a_n \xi^{n-2} = \sum_{n=0}^{\infty} (n+1)(n+2)a_{n+2}\xi^n$$

Plug (6)-(8) into (5):

$$\sum_{n=0}^{\infty} [(n+1)(n+2)a_{n+2} - 2na_n + (\varepsilon - 1)a_n]\xi^n = 0$$

$$\implies a_{n+2} = \frac{(2n - \varepsilon + 1)}{(n+1)(n+2)}a_n$$

Because of parity of eigenfunction:

- Either $a_n = 0$ for odd n $(f(\xi) = f(-\xi))$ even eigenfunction
- or $a_n = 0$ for even n, $(f(\xi) = -f(-\xi))$ odd eigenfunction.

Proposition. If series (6) does *not* terminate then eigenfunction of \hat{H} would *not* be normalisable.

Proof. Suppose that the series in (6) does *not* terminate. Hence can look at asymptotic behaviour of series. Take (0)

$$\frac{a_{n+2}}{a_n} \to \frac{2}{n}$$

as $n \to \infty$. This is same asymptotic behaviour as

$$g(\xi) = e^{\xi^2} = \sum_{m=0}^{\infty} \frac{\xi^{2m}}{m!} = \sum_{m=0}^{\infty} b_m \xi^m$$

where

$$b_m = \begin{cases} \frac{1}{m!} & \text{for } m \text{ even} \\ 0 & \text{for } m \text{ odd} \end{cases}$$

asymptotic behaviour of $g(\xi)$

$$\frac{b_{n+2}}{b_n} = \frac{\left(\frac{m}{2}\right)!}{\left(\frac{m}{2}+1\right)!} = \frac{2}{m+2} \to \frac{2}{m}$$

as $m \to \infty$. So if $e^{\xi^2/2}$ and $f(\xi)$ have same asymptotic behaviour

$$\chi(\xi) \sim e^{\xi^2} e^{-\xi^2/2} = e^{\xi^2/2} \to \infty$$

Г	-	-	-	
L				
L				

Given that the series (6) terminates then there exists N such that

$$a_{N+2} = 0 \tag{10}$$

with $a_N \neq 0$. Plug (10) into (9)

$$a_{N+2} = \frac{(2N - \varepsilon + 1)}{(N+1)(N+2)}a_N = 0$$
$$\implies 2N - \varepsilon + 1 = 0$$

Plugging in definition of ε

$$\implies E_N = \left(N + \frac{1}{2}\right)\hbar\omega$$

eigenvalues $N = 0, E_0 = \frac{\hbar\omega}{2}$

$$E_{N+1} - E_n = \hbar\omega$$

eigenfunction $\chi_N(\xi) = f_N(\xi)e^{-\xi^2/2}$

$$\chi_N(-\xi) = (-1)^N \chi_N(\xi)$$

Hermite polynomials are defined with recursive relation

$$f_N(\xi) = (-1)^N e^{\xi^2} \frac{\mathrm{d}^N}{\mathrm{d}\xi^N} (e^{-\xi^2})$$

Start of lecture 9

3.2 The free particle

TISE (U(x) = 0):

$$-\frac{\hbar^2}{2m}\chi''(X) = E\chi(x)$$
$$\chi''(x) + \frac{2mE}{\hbar^2}\chi(x) = 0$$

 $k = \sqrt{\frac{2mE}{\hbar^2}}$

$$\chi(x) = e^{ikx}$$
$$E_k = \frac{\hbar^2 k^2}{2m} \to \chi_k(x) = e^{ikx}$$
$$\psi_k(x,t) = \chi_k(x)e^{-iE_kt/\hbar} = e^{i(kx-\hbar k^2/2m)}$$

This wave function is *not* square-integrable:

$$\int_{-\infty}^{\infty} |\psi_k(x,t)|^2 \mathrm{d}x = \int_{-\infty}^{\infty} = \infty$$

This is a consequence of

$$\int_{-\infty}^{\infty} |\psi(x,t)|^2 \mathrm{d}x = \mathcal{N} < \infty \implies \lim_{R \to \infty} \int_{|x| > R} \mathrm{d}x |\psi(x,t)|^2 = 0$$

How do we deal with unbound states?

Option 1 Build a linear superposition of not-normalisable states that is normalisable (section 3.2.1)

Option 2 We ignore the problem but change interpretation (section 3.2.2)

3.2.1 Gaussian Wave Packet

$$\psi(x,t) = \int_{-\infty}^{\infty} A(k)\psi_k(x,t)\mathrm{d}k$$

 $\left(A(k) \text{ is a continuous coefficient of linear combination}\right)$ A possible option is Gaussian wave packet:

$$A(k) = A_{\rm GP}(k) = \exp\left[-\frac{\sigma}{2}(k-k_0)^2\right] \quad \sigma \in \mathbb{R}^+, k_0 \in \mathbb{R}$$

$$\psi_{\rm GP}(x,t) = \int_{-\infty}^{\infty} A_{\rm GP}(k)\psi_k(x,t)dk$$
$$\psi_{\rm GP}(x,t) = \int_{-\infty}^{\infty} \exp[F(k)]dk$$

where

$$F(k) = -\frac{\sigma}{2}(k - k_0)^2 + ikx - \frac{i\hbar k^2}{2m}t$$
$$= -\frac{1}{2}\left(\sigma + \frac{i\hbar t}{m}\right)k^2 + (k_0\sigma + ix)k$$
$$\alpha \equiv \sigma + \frac{i\hbar t}{m}$$
$$\beta \equiv k_0\sigma + ix$$
$$\delta = -\frac{\sigma}{2}k_0^2$$

Complete the square:

$$F(k) = -\frac{\alpha}{2} \left(k - \frac{\beta}{\alpha}\right)^2 + \frac{\beta^2}{2\alpha} + \delta$$
$$\implies Y_{\rm GP}(x,t) = \exp\left[\frac{\beta^2}{2\alpha} + \delta\right] \int_{-\infty}^{\infty} \exp\left[-\frac{\alpha}{2} \left(k - \frac{\beta}{\alpha}\right)^2\right] dk$$

Shift contour $\tilde{k} = k - \frac{\beta}{\alpha}$. Let $\nu = \text{Im}\left(\frac{\beta}{\alpha}\right)$.

$$\psi_{\rm GP}(x,t) = \exp\left[\frac{\beta^2}{2\alpha} + \delta\right] \int_{-\infty-i\nu}^{\infty-i\nu} \exp\left(-\frac{\alpha}{2}\tilde{k}^2\right) d\tilde{k}$$

Using standard Gaussian integral

$$I(\alpha) = \int_{-\infty}^{\infty} \exp(-ay^2) \mathrm{d}y = \sqrt{\frac{\pi}{a}}$$

We get

$$\psi_{\rm GP}(x,t) = \sqrt{\frac{2\pi}{\alpha}} \exp\left[\frac{\beta^2}{2\alpha} + \delta\right]$$

Exercise: Write $\psi_{\mathrm{GP}}(x,t)$ by substituting β, α, δ and normalise it to 1.

$$\beta = k_0 \sigma + ix \quad \beta^2 = k_0^2 \sigma^2 - k^2 + 2ixk_0 \sigma$$

The $-x^2$ in β^2 implies that $\psi_{\rm GP}$ is normalisable. Once $\psi_{\rm GP}$ is normalised, $\overline{\psi}_{\rm GP}$ cen define

$$\rho_{\rm GP}(x,t) = |\overline{\psi}_{\rm GP}(x,t)|^2 = \sqrt{\frac{\sigma}{\pi \left(\sigma^2 + \frac{\hbar^2 t^2}{m^2}\right)}} \exp\left[\frac{-\pi \left(x - \frac{\hbar k_0 t}{m}\right)^2}{(\sigma^2 + \frac{\hbar^2 t^2}{m^2})}\right]$$

at t fixed:

width of distance

$$\sqrt{\frac{1}{2}\left(\sigma + \frac{\hbar^2 t^2}{m^2 \sigma}\right)}$$

The centre of the distribution is $\langle x \rangle_{\psi_{\text{GP}}}$:

$$\begin{split} \langle x \rangle_{\psi_{\rm GP}} &= \int_{-\infty}^{\infty} \overline{\psi}_{\rm GP}^*(x,t) x \overline{\psi}_{\rm GP}(x,t) dx \\ &= \int_{-\infty}^{\infty} x \rho_{\rm GP}(x,t) \\ &= \frac{\hbar k_0}{m} t \end{split}$$

Error on position of particle:

$$\Delta x = \sqrt{\langle x^2 \rangle_{\psi_{\rm GP}} - \langle x \rangle_{\psi_{\rm GP}}^2} = \sqrt{\frac{1}{2} \left(\sigma + \frac{\hbar^2 t^2}{m^2 \sigma}\right)}$$

 $\Delta x = \sqrt{\frac{\pi}{2}}$ at t = 0. Δx increases as t increases. Given ψ_{GP} it is interesting to compute $\langle p \rangle$, Δp

$$\begin{split} \langle p \rangle_{\psi_{\rm GP}} &= \int_{-\infty}^{\infty} \overline{\psi}_{\rm GP}^*(x,t) \left(-i\hbar_x \overline{\psi}_{\rm GP}(x,t) \right) \mathrm{d}x \\ &= \hbar k_0 \\ \Delta p &= \sqrt{\langle p^2 \rangle_{\psi_{\rm GP}} - \langle p \rangle_{\psi_{\rm GP}}^2} \end{split}$$

To calculate Δp on $\psi_{\rm GP}$ we have

$$\langle p \rangle_{\psi_{\rm GP}}^2 = \hbar^2 k_0^2$$

we need

$$\langle p^2 \rangle_{\psi_{\rm GP}} = \int_{-\infty}^{\infty} \overline{\psi}_{\rm GP}^*(x,t) \left(-\hbar^2 \frac{{\rm d}^2}{{\rm d}x^2} \overline{\psi}_{\rm GP}(x,t) \right) {\rm d}x$$

If you compute it and plug it into Δp THE FOLLOWING SECTION IS ALL WRONG, IGNORE UNTIL TOLD TO STOP IGNORING.

$$\Delta p = \frac{\hbar}{\sqrt{2\left(\sigma + \frac{\hbar^2 t^2}{m\sigma}\right)}}$$

at t = 0, $\Delta p = \hbar \sqrt{\frac{2}{\sigma}}$, as $t \to \infty$, Δp decreases as $\frac{1}{\sqrt{a+t^2}}$ What we learnt is $\Delta x \to \infty, \Delta p \to \infty$ as $t \to \infty$ $\Delta x \Delta p = \frac{\hbar}{2}$ STOP IGNORING. At time t = 0, $\Delta x \Delta p = \frac{\hbar}{2}$.

The GP is a state of minimum uncertainty. Other A(k) would give you a normalisable state but if you compute $\Delta x \Delta p$ you would find something $> \frac{\hbar}{2}$. Exercise: Compare what you find for $\psi_k(x,t)$

$$\Delta x = \infty, \Delta p = 0$$
$$\langle x \rangle_{\psi_k} = 0, \langle x^2 \rangle_{\psi_k} = \infty$$

Start of lecture 10

3.3.2 Beam interpretation

The idea: ignore normalisation problem and take $\chi_k = e^{ikx}$ as eigenfunction of \hat{H} . Take

$$\chi_k(x) = A e^{ikx} \quad A \in \mathbb{C}$$
$$\psi_k(x,t) = A e^{ikx} e^{-i\frac{\hbar^2 k^2}{2m}t}$$

but instead of $\chi_n(x)$ describing a single particle they describe a beam of particles with

$$p_k = \hbar k$$
$$E_k = \frac{\hbar^2 k^2}{2m}$$

with probability density

$$\rho_k(x,t) = |A|^2$$

representing constant average density of particles. Compute probability current

$$j_k(x,t) = -\frac{i\hbar}{2m} \left(\psi_k^* \frac{\partial \psi}{\partial x} - \psi_k \frac{\partial \psi_k^*}{\partial x} \right)$$
$$\left[\frac{\partial \rho}{\partial t} + \frac{\partial j}{\partial x} = 0 \right]$$

(lecture 3) In this case taking (*)

$$j_k(x,t) = |A|^2 \frac{\hbar^k}{m} = |A|^2 \frac{p}{m}$$
 = average flux of particles

3.3 Scattering states

What happens if we have an unbound potential U(x) and throw a particle on it

Definition. Probability for particle to be reflected is given by the reflection coefficient

$$R = \lim_{t \to \infty} \int -\infty^0 |\psi_{\rm GP}(x,t)|^2 dx$$

Definition. Probability for particle to be transmitted is given by the transmission coefficient

$$T = \lim_{t \to \infty} \int_0^\infty |\psi_{\rm GP}(x,t)|^2 dx$$

Clearly T + R = 1. Solving scattering problems using beam interpretation gives some results for R and T, so we will use it.

3.4.1 Scattering off potential step

To find $\chi_k(x)$, solve TISE

$$-\frac{\hbar^2}{2m}\chi_n''(x) + U(x)\chi_n(x) = E\chi_n(x)$$

Region I, $x \leq 0$, U(x) = 0.

$$\chi_n''(x) + k^2 \chi_n(x) = 0 \quad k = \sqrt{\frac{2mE}{\hbar^2}} > 0$$
$$\chi_n(x) = Ae^{ikx} + Be^{-ikx}$$

(A part is the beam of incident particles, B part is the beam of reflected particles). Region II, x > 0, $U(x) = U_0$.

$$\chi_{\overline{k}}''(x) + \overline{k}^2 \chi_{\overline{k}}(x) = 0$$
$$\overline{k} = \sqrt{\frac{2m(E - U_0)}{\hbar^2}}$$

 \overline{k} real for $E \ge U_0$, and imaginary for $E < U_0$.

• For $E \ge U_0$,

$$\alpha_{\overline{k}}(x) = Ce^{i\overline{k}x} + De^{-i\overline{k}x}$$

(the C term is the transmitted beam, and the D term is the incident beam from ∞). D = 0 due to initial condition.

• For $E > U_0$,

$$\chi_{\overline{k}}(x) = Ce^{-\eta x} + De^{\eta x}$$

where $\eta = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$. D = 0 otherwise $\chi_{\overline{k}}$ diverges at ∞ . Putting I and II:

$$\chi_{n,\overline{k}}(x) = \begin{cases} Ae^{inx} + Be^{-inx} & x \leq 0\\ Ce^{i\overline{k}x} & x > 0 \end{cases}$$

Impose continuity of $\chi(x), \chi'(x)$ at x = 0 and get

$$A + B = C$$
$$ikA - ikB = i\overline{k}C$$
$$\implies B = \frac{k - \overline{k}}{k + \overline{k}}A$$
$$C = \frac{2k}{k + \overline{k}}A$$

We can view these in terms of particle flux

$$J(x,t) = -\frac{i\hbar}{2m} \left(\chi^* \frac{\partial \chi}{\partial x} - \chi \frac{\partial \chi^*}{\partial x} \right)$$

Compute for

•
$$E > U_0$$

$$J(x,t) = \begin{cases} \frac{\hbar k}{m} (|A|^2 - |B|^2) & x < 0\\ \frac{\hbar k}{m} |C|^2 & x \ge 0 \end{cases}$$
$$J_{inc}(x,t) = \frac{\hbar x}{m} |A|^2$$
$$J_{ref}(x,t) \frac{\hbar k}{m} |B|^2$$
$$J_{trans}(x,t) = \frac{\hbar \overline{k}}{m} |C|^2$$
$$R = \frac{J_{refl}}{J_{inc}} = \frac{|B|^2}{|A|^2} = \left(\frac{k - \overline{k}}{k + \overline{k}}\right)^2$$
$$T = \frac{J_{trans}}{J_{inc}} = \frac{|C|^2}{|A|^2} \frac{\overline{k}}{k} = \frac{4k\overline{k}}{(k + \overline{k})^2}$$

Interpretation:

$$-R + T = 1$$

$$-E \to U_0, \ \overline{k} \to 0, \ T \to 0, \ R \to 1.$$

$$-E \to \infty, \ T \to 1, \ R \to 0.$$

• $E < U_0$.

$$J_{inc}(x,t) = \frac{\hbar k}{m} |A|^2$$
$$J_{ref}(x,t) = \frac{\hbar k}{m} |B|^2$$
$$J_{trans}(x,t) = 0$$

 $R=1,\,T=0 \text{ but } \chi_{\overline{k}}(x)\neq 0 \text{ from } x>0.$

Scattering off potential barrier

$$U(x) = \begin{cases} 0 & x \le 0, x \ge a \\ U_0 & 0 < x < a \end{cases}$$

Consider $E < U_0$.

$$k = \sqrt{\frac{2mE}{\hbar^2}} > 0$$

$$\eta = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}} > 0$$

Solution of TISE

$$\chi(x) = \begin{cases} e^{ikx} + Ae^{iikx} & x \le 0\\ Be^{-\eta x} + Ce^{\eta x} & 0 < x < a\\ De^{ikx} + \underbrace{Ee^{-ikx}}_{=0} & x \ge a \end{cases}$$

4 free coefficients with 4 boundary conditions given by continuity of $\chi(X)$ and $\chi'(x)$ at x = 0 and x = a.

$$1 + A = B + C$$
$$ik - ikA = -\eta B + \eta C$$
$$Be^{-\eta a} + Ce^{\eta a} = De^{ika}$$
$$-\eta Be^{-\eta a} + \eta Ce^{\eta a} = ikDe^{ika}$$

Find

$$\begin{split} D &= -\frac{4\eta k}{(\eta - ik)^2 \exp[(\eta + ik)a] - (\eta + ik)^2 \exp[-(\eta - ik)a]} \\ & \Longrightarrow \ T = |D|^2 = 4k^2\eta^2 \end{split}$$

Take limit $U_0 \gg E \implies \eta a \gg 1$

$$T \to \frac{16k^2\eta^2}{(\eta^2 + k^2)^2} \underbrace{e^{-2ma}}_{e^{-\frac{2a}{\hbar}\sqrt{2m(U_0 - E)}}}$$

Start of lecture 11

1 Recap of chapter 2

Hermitian operators \leftrightarrow observables

$$\hat{O}^{+} = \hat{O} \iff (\hat{O}\psi, \phi) = (\psi, \hat{O}, \phi) \; \forall \psi, \phi \in \mathcal{H}$$

Have:

- Real eigenvalues (Theorem 2.1)
- If $\hat{O}\psi_1 = a\psi_1$, $\hat{O}\psi_2 = b\psi_2$ with $a \neq b$ then $(\psi_1, \psi_2) = 0$ (Theorem 2.5)
- Eigenstates of Hermitian operator form a complete basis of \mathcal{H} . (Theorem 2.6)

Quantum measurement:

- Eigenvalues of \hat{O} are possible outcomes of measurement of the observable O.
- If $\psi = \sum_i a_i \psi_i$, ψ_i eigenstates of \hat{O} then $P(O = \lambda_i) = a_i^2 = |(\psi_i, \psi)|^2$
- Immediately after a measurement with outcome λ_i , the wave function becomes ψ_i .

4 Simultaneous measurements in Quantum Mechanics

4.1 Commutators

Definition. Commutator of two operators \hat{A}, \hat{B} is the operator

 $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$

Properties:

- $[\hat{A}, \hat{B}] = -[\hat{B}, \hat{A}]$
- $[\hat{A}, \hat{A}] = 0$
- $[\hat{A}, \hat{B}\hat{C}] = [\hat{A}, \hat{B}]\hat{C} + \hat{B}[\hat{A}, \hat{C}]$
- $[\hat{A}, \hat{B}, \hat{C}] = \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B}.$

Exercise: Compute $[\hat{x}, \hat{p}]$ in 1 dimension. Take $\psi \in \mathcal{H}$

$$\hat{x}\hat{p}\psi = x\left(-i\hbar\frac{\partial}{\partial x}\right)\psi(x) = -i\hbar x\frac{\partial\psi}{\partial x}(x)$$
$$\hat{p}\hat{x}\psi = -i\hbar\frac{\partial}{\partial x}(x\psi(x)) = -i\hbar\psi(x) - i\hbar x\frac{\partial\psi}{\partial x}$$
$$\implies [\hat{x},\hat{p}]\psi = i\hbar\psi \implies [\hat{x},\hat{p}] = i\hbar\hat{I}$$

Canonical commutator relation.

Definition. Two Hermitian operators \hat{A} and \hat{B} are *simultaneously* diagonalisable in \mathcal{H} is it exists a complete basis of joint eigenfunctions $\{\psi_i\}$ such that

$$\hat{A}\psi_i = a_i\psi_i$$
$$\hat{B}\psi_i = b_i\psi_i$$

with $a_i, b_i \in \mathbb{R}$.

Theorem 7. Two Hermitian operators \hat{A} and \hat{B} are simultaneously diagonalisable

 $\iff [\hat{A},\hat{B}]=0$

Proof. \Rightarrow If \hat{A}, \hat{B} simultaneously diagonalisable then $\{\psi_i\}$ set of joint eigenfunctions that is a complete basis of \mathcal{H} .

$$\forall \psi_i \quad [\hat{A}, \hat{B}] \psi_i = \hat{A} \hat{B} \psi_i - \hat{B} \hat{A} \psi_i = (a_i b_i - b_i a_i) \psi_i = 0$$

Take $\psi \in \mathcal{H}$.

$$[\hat{A}, \hat{B} = \sum_{i} c_i [\hat{A}, \hat{B}] \psi_i = 0$$
$$\implies [\hat{A}, \hat{B}] = 0$$

 $\Leftarrow \text{ If } [\hat{A}, \hat{B}] = 0 \text{ and } \psi_i \text{ eigenfunction of } \hat{A} \text{ with eigenvalues } a_i.$

$$0 = [\hat{A}, \hat{B}]\psi_i = \hat{A}\hat{B}\psi_i - \hat{B}\hat{A}\psi_i = \hat{A}\hat{B}\psi_i - a_i\hat{B}\psi_i$$

 \mathbf{SO}

$$\hat{A}(\hat{B}\psi_i) = a_i(\hat{B}\psi_i)$$

 \hat{B} maps the eigenspace E_i of \hat{A} with eigenvalue a_i into itself so $\hat{B}|_{E_i}$ is an Hermitian operator of E_i . Since this holds for all eigenspace E_i of \hat{A} , we can find a complete basis of simultaneous eigenfunctions of \hat{A} and \hat{B} .

4.2 Heisenberg's Uncertainty Principle

Definition. The uncertainty in a measurement of an observable A on a state ψ is defined as

$$\Delta_{\psi}A = \sqrt{(\Delta_{\psi}A)^2}$$

where

$$(\Delta_{\psi}A)^{2} = \langle (\hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I})^{2} \rangle_{\psi} = \langle \hat{A}^{2} \rangle_{\psi} - (\langle \hat{A} \rangle_{\psi})^{2}$$

The two definitions are equivalent:

$$\begin{split} \langle (\hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I})^{2} \rangle_{\psi} &= \int_{\mathbb{R}^{3}} \psi^{*} (\hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I})^{2} \psi \mathrm{d}^{3} x \\ &= \int_{\mathbb{R}^{3}} \psi^{*} \hat{A}^{2} \psi \mathrm{d}^{3} x + (\langle \hat{A} \rangle_{\psi})^{2} \int_{\mathbb{R}^{3}} \psi^{*} \psi \mathrm{d}^{3} x - 2 \langle \hat{A} \rangle_{\psi} \int_{\mathbb{R}^{3}} \psi^{*} \hat{A} \psi \mathrm{d}^{3} x \\ &= \langle \hat{A}^{2} \rangle_{\psi} + (\langle \hat{A} \rangle_{\psi})^{2} - 2(\langle \hat{A} \rangle_{\psi})^{2} \\ &+ \langle \hat{A} \rangle_{\psi}^{2} - (\langle \hat{A} \rangle_{\psi})^{2} \end{split}$$

Lemma 2. $(\Delta_{\psi}A)^2 \ge 0$ and $(\Delta_{\psi}A) = 0 \iff \psi$ is eigenfunction of \hat{A} .

Proof.

$$\begin{aligned} (\Delta_{\psi}A)^2 &= \langle (\hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I})^2 \rangle_{\psi} \\ &= (\psi, (\hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I})^2 \psi) \\ &= ((\hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I}) \psi, (\hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I}) \psi) \\ &= \langle \phi, \phi \rangle \\ &\geq 0 \end{aligned}$$

(Call $\phi = (\hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I})\psi$) Now prove that $(\Delta_{\psi} A)^2 = 0 \iff \phi = 0$. $\Rightarrow (\Delta_{\psi} A)^2 = (\phi, \phi) = 0$ if $\phi = 0$ implies

$$\hat{A}\psi = \langle \hat{A} \rangle_{\psi}\psi$$

i.e. ψ eigenfunction of \hat{A} .

1. If ψ is eigenfunction of \hat{A} with eigenvalue $a \in \mathbb{R}$ then

$$\langle \hat{A} \rangle_{\psi} = (\psi, \hat{A}\psi) = a(\psi, \psi) = a$$

 $\langle \hat{A} \rangle_{\psi} = (\psi, \hat{A}^2\psi) = a^2(\psi, \psi) = a^2$

using second definition,

$$(\Delta_{\psi}A)^2 = \langle \hat{A}^2 \rangle_{\psi} - (\langle \hat{A} \rangle_{\psi})^2 = a^2 - a^2 = 0 \qquad \Box$$

Lemma 3. If $\psi, \phi \in \mathcal{H}$, then

$$|(\phi,\psi)|^2 \le (\phi,\phi)(\psi,\psi)$$

and $|(\phi,\psi)|^2 = (\phi,\phi)(\psi,\psi)$ if and only if $\phi = a\psi$ for $a \in \mathbb{C}$.

(proof comes from Schwarz inequality and is available in Maria Ubiali's notes).

Theorem 8 (Generalised uncertainty theorem). If A and B observables and $\psi \in \mathcal{H}$ then

$$(\Delta_{\psi}A)(\Delta_{\psi}B) \ge \frac{1}{2} |(\psi, [\hat{A}, \hat{B}]\psi)|$$

Proof.

$$(\Delta_{\psi}A)^2 = ((\hat{A} - \langle \hat{A} \rangle_{\psi}\hat{I})\psi, (\hat{A} - \langle \hat{A} \rangle_{\psi}\hat{I})\psi)$$

Define

$$\hat{A}' = \hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I}$$

$$\hat{B}' = \hat{B} - \langle \hat{B} \rangle_{\psi} \hat{I}$$

Hence

$$(\Delta_{\psi}A)^2 = (\hat{A}'\psi, \hat{A}'\psi)$$
$$(\Delta_{\psi}B)^2 = (\hat{B}'\psi, \hat{B}'\psi)$$

Using lemma 4.3:

$$(\Delta_{\psi}A)^2 (\Delta_{\psi}B)^2 \ge |(\hat{A}'\psi, \hat{B}'\psi)|^2 \tag{1}$$

and RHS is equal to $|(\psi, \hat{A}'\hat{B}'\psi)|^2$ because \hat{A}' is Hermitian. Define

$$[\hat{A}', \hat{B}'] = \hat{A}'\hat{B}' - \hat{B}'\hat{A}'$$
(2)

$$\{\hat{A}', \hat{B}'\} = \hat{A}'\hat{B}' + \hat{B}'\hat{A}'$$
(3)

if \hat{A}', \hat{B}' Hermitian

$$[\hat{A}', \hat{B}']^{\dagger} = -[\hat{A}', \hat{B}'] \tag{4}$$

Now writing

$$\hat{A}'\hat{B}' = \frac{1}{2}([\hat{A}', \hat{B}'] + \{\hat{A}', \hat{B}'\})$$
(5)

Plug (5) into (1)

$$(\Delta_{\psi}A)^{2}(\Delta_{\psi}B)^{2} \geq \frac{1}{4} |(\psi, [\hat{A}', \hat{B}']\psi) + (\psi, \{A', B'\}\psi)|^{2}$$

Given that:

- $(\psi, \{\hat{A}', \hat{B}'\}\psi) \in \mathbb{R}$
- $(\psi, [\hat{A}', \hat{B}']\psi) = ir \text{ with } r \in \mathbb{R}$

then

$$(\Delta_{\psi}A)^{2}(\Delta_{\psi}B)^{2} \geq \frac{1}{4} |(\psi, [\hat{A}', \hat{B}']\psi)|^{2} + \frac{1}{4} |\psi, \{\hat{A}', \hat{B}'\}\psi)|^{2}$$
$$\implies (\Delta_{\psi}A)(\Delta\psi B) \geq \frac{1}{2} |(\psi, [\hat{A}, \hat{B}]\psi)| \qquad \Box$$

Start of lecture 12

e 12 Consequences of generalised uncertainty theorem

- $[\hat{A}, \hat{B}] = 0$ if and only if there exists joint set of eigenstates which form a complete basis of \mathcal{H} which happens if and only if A, B can be measured simultaneously with arbitrary precision on a given state.
- Take $\hat{A} = \hat{x}, \hat{B} = \hat{p}$. Given that $[\hat{x}, \hat{p}] = i\hbar \hat{I}$

$$\implies (\Delta_{\psi} x)(\Delta_{\psi} p) \ge \frac{\hbar}{2}$$

(Heisenberg's uncertainty principle).

We had shown explicitly that, if $\psi = \psi_{\rm GP}$ then

$$(\Delta_{\psi_{\rm GP}} x)(\Delta_{\psi_{\rm GP}} p) = \frac{\hbar}{2}$$

at t = 0. (this is the minimum uncertainty). The reason for this lies in two lemmas:

(i) Lemma 4.5: ψ is a state of minimum uncertainty

$$\iff \hat{x}\psi = ia\hat{p}\psi \quad a \in \mathbb{R}$$

(ii) Lemma 4.6: The condition for 4.5 to hold is

$$\psi(x) = Ce^{-bx^2} \quad c \in \mathbb{C}, b \in \mathbb{R}^+$$

Exercise: Verify that $\psi_k(x,t) = e^{ikx}e^{-E_kt/\hbar}$ does not satisfy equation of Lemma 4.5.

4.3 Ehrenfest theorem

Time evolution of operators.

Theorem 9. The expectation value of an Hermitian operator \hat{A} evolves according to $d \qquad i \qquad \langle \partial \hat{A} \rangle$

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{A}\rangle_{\psi} = \frac{i}{\hbar}\langle[\hat{H},\hat{A}]\rangle_{\psi} + \left\langle\frac{\partial\hat{A}}{\partial t}\right\rangle_{\psi}$$

Proof.

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{A} \rangle_{\psi} &= \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{\infty} \psi^*(x,t) \hat{A} \psi(x,t) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \frac{\partial}{\partial t} (\psi^* \hat{A} \psi) \mathrm{d}x \\ &= \int_{-\infty}^{\infty} \left(\frac{\partial \psi^*}{\partial t} \hat{A} \psi + \psi^* \frac{\partial \hat{A}}{\partial t} \psi + \psi^* \hat{A} \frac{\partial \psi}{\partial t} \right) \mathrm{d}x \\ &= \frac{i}{\hbar} \int_{-\infty}^{\infty} \psi^* (\hat{H} \hat{A} - \hat{A} \hat{H}) \psi \mathrm{d}x + \left\langle \frac{\partial \hat{A}}{\partial t} \right\rangle_{\psi} \\ &= \frac{i}{\hbar} \int_{-\infty}^{\infty} \psi^* [\hat{H}, \hat{A}] \psi \mathrm{d}x + \left\langle \frac{\partial \hat{A}}{\partial t} \right\rangle_{\psi} \\ &= \frac{i}{\hbar} \langle [\hat{H}, \hat{A}] \rangle_{\psi} + \left\langle \frac{\partial \hat{A}}{\partial t} \right\rangle_{\psi} \end{split}$$

Examples

(1) Take $\hat{A}=\hat{H}$

$$\implies \frac{\mathrm{d}\langle \hat{H} \rangle_{\psi}}{\mathrm{d}t} = 0$$

 $\left(\frac{\mathrm{d}E}{\mathrm{d}t}=0\right)$

(2) Take $\hat{A} = \hat{p}$.

$$\begin{split} [\hat{H}, \hat{p}]\psi &= \left[\frac{\hat{p}^2}{2m} + U(\hat{x}), \hat{p}\right]\psi \\ &= [U(\hat{x}), \hat{p}]\psi \\ &= U(x)\left(-i\hbar\frac{\partial}{\partial x}\right)\psi(x, t) - \left(-i\hbar\frac{\partial}{\partial x}\right)[U(x)\psi(x, t)\right) \\ &= \underbrace{i\hbar U(x)\frac{\partial\psi}{\partial x}(x, t)}_{\partial x} + \underbrace{i\hbar U(x)\frac{\partial\psi}{\partial x}(x, t)}_{\partial x} + i\hbar\frac{\partial U}{\partial x}(x)\psi(x, t) \\ &\Longrightarrow \frac{\mathrm{d}\langle \hat{p} \rangle_{\psi}}{\mathrm{d}t} &= \frac{i}{\hbar}\langle [\hat{H}, \hat{p}] \rangle_{\psi} \\ &= -\left\langle \frac{\partial U}{\partial x} \right\rangle_{\psi} \end{split}$$

(3) $\hat{A} = \hat{x}$

$$\begin{split} [\hat{H}, \hat{x}] &= \left[\frac{\hat{p}^2}{2m} + U(\hat{x}), \hat{x}\right] \\ &= \frac{1}{2m} [\hat{p}^2, \hat{x}^2] \\ &= \frac{1}{2m} (\hat{p} \underbrace{[\hat{p}, \hat{x}]}_{-i\hbar\hat{I}} + \underbrace{[\hat{p}, \hat{x}]}_{i\hbar\hat{I}} \hat{p}) \\ &= -\frac{i\hbar}{m} \hat{p} \\ \frac{\mathrm{d}\langle \hat{x} \rangle_{\psi}}{\mathrm{d}t} &= \frac{i}{\hbar} \langle [\hat{H}, \hat{x}] \rangle_{\psi} \\ &= \frac{\langle \hat{p} \rangle_{\psi}}{m} \end{split}$$

(matches the classical $\dot{x} = \frac{p}{m}$)

4.4 Harmonic oscillator revisited (non-examinable)

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2$$

 $(k = m\omega^2$, elastic constant). Eigenvalues, eigenfunctions of \hat{H} . Rewrite:

$$\hat{H} = \frac{1}{2m}(\hat{p} + im\omega\hat{x})(\hat{p} - im\omega\hat{x}) + \frac{i\omega}{2}\underbrace{[\hat{p}, \hat{x}]}_{-i\hbar\hat{I}}$$
$$= \frac{1}{2m}(\hat{p} + im\omega\hat{x})(\hat{p} - im\omega\hat{x}) + \frac{\hbar\omega}{2}\hat{I}$$
(1)

Definition. Ladder operators

$$\hat{a} = \frac{1}{\sqrt{2m}} (\hat{p} - im\omega\hat{x}) \tag{2}$$

$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2m}} (\hat{p} + im\omega\hat{x})$$
$$\implies \hat{H} = \hat{a}^{\dagger}\hat{a} + \frac{\hbar\omega}{2}\hat{I}$$
(4)

Compute

$$\begin{aligned} [\hat{a}, \hat{a}^{\dagger}] &= \frac{1}{2m} [\hat{p} - im\omega \hat{x}, \hat{p} + im\omega \hat{x}] \\ &= -\frac{im\omega}{2m} [\hat{x}, \hat{p}] + \frac{im\omega}{2m} [\hat{p}, \hat{x}] \\ &= \hbar\omega \hat{I} \end{aligned}$$
(5)

$$[\hat{H}, \hat{a}] = [\hat{a}^{\dagger}, \hat{a}, \hat{a}] \tag{2}$$

$$= -\hbar\omega\hat{a} \tag{6}$$

$$[\hat{H}, \hat{a}^{\dagger}] = \hbar \omega \hat{a}^{\dagger} \tag{7}$$

Suppose χ eigenfunction of \hat{H} with eigenvalue E,

$$H\chi = E\chi$$

Take $(\hat{a}\chi)$. What is its energy?

$$\hat{H}(\hat{a},\chi) = [\hat{H},\hat{a}]\chi + \hat{a}\hat{H}\chi$$
$$= -\hbar\omega\hat{\chi} + E\hat{a}\chi$$
$$= (E - \hbar\omega)\hat{a}\chi$$

 $\hat{a}\chi$) is eigenfunction of \hat{H} with eigenvalue $(E - \hbar\omega)$ and $\hat{a}^{\dagger}\chi$) is eigenfunction of \hat{H} with eigenvalue $(E + \hbar\omega)$. Prove by induction:

$$(\hat{a}^n\chi) \rightarrow$$
 eigenfunction with eigenvalue $E - n\hbar\omega$

 $(\hat{a}^{\dagger n}\chi) \rightarrow$ eigenfunction with eigenvalue $E+n\hbar\omega$

Using the fact that

$$\langle \hat{H} \rangle_{\psi} \ge 0$$

then \exists eigenfunction χ_0 such that

$$\hat{a}\chi_0 = 0$$

Find χ_0

$$\frac{1}{\sqrt{2m}}(\hat{p} - im\omega\hat{x})\chi_0) = 0$$
$$-i\hbar\frac{\partial\chi_0}{\partial x} - im\omega x\chi_0 = 0$$
$$\implies \chi_0(x0 = ce^{-m\omega x^2/2\hbar}$$
$$\hat{H}\chi_0 = \hat{a}^{\dagger}\hat{a}\chi_0 + \frac{\hbar\omega}{2}\hat{I}\chi_0 = \frac{\hbar\omega}{2}\chi_0$$

The excited states with $E > E_0$

$$\chi_n = (a^{\dagger})^n \chi_0$$

= $\frac{1}{(\sqrt{2m})^2} (\hat{p} + im\omega\hat{x})^n \chi_0$
= $\frac{c}{(\sqrt{2m})^n} \left(-i\hbar \frac{\partial}{\partial x} + im\omega x \right)^n e^{-m\omega x^2/2\hbar}$

Eigenvalues

$$E_n = \frac{\hbar\omega}{2} + n\hbar\omega = \left(n + \frac{1}{2}\right)\hbar\omega$$

Start of lecture 13

5 3D solutions of Schrödinger equation

5.1 TISE in 3D for spherically symmetric potentials

$$-\frac{\hbar^2}{2m}\nabla^2\chi(\mathbf{x}) + U(\mathbf{x})\chi(\mathbf{x}) = E\chi(\mathbf{x})$$

Laplacian operator ∇^2

• Cartesian coordinates (x, y, z):

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

• Spherical coordinates (r, θ, ϕ)

$$\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2}(R) + \frac{1}{r^2 \sin^2 \theta} \left[\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{\partial^2}{\partial \phi^2} \right]$$

 $x = r \cos \phi \sin \theta$ $y = r \sin \phi \sin \theta$ $z = r \cos \theta$

 $0 \leq r < \infty, \, 0 \leq \theta \leq \pi, \, 0 \leq \phi \leq 2\pi.$ Reminder:

$$\int_{\mathbb{R}^3} \mathrm{d}V = \int_{-\infty}^{\infty} \mathrm{d}x \int_{-\infty}^{\infty} \mathrm{d}y \int_{-\infty}^{\infty} \mathrm{d}z$$
$$\int_{\mathbb{R}^3} \mathrm{d}V = \int_0^{2\pi} \mathrm{d}\phi \int_{-1}^1 \mathrm{d} \underbrace{\cos\theta}_{\to \int_0^{\pi} \sin\theta \mathrm{d}\theta} \int_0^{\infty} r^2 \mathrm{d}r$$

Definition. Spherically symmetric potential

$$U(\mathbf{x}) = U(r, \theta, \phi) \equiv U(r)$$

Clearly, even with a spherically symmetric potential $\phi(r, \theta, \phi)$.

We start by focussing on a particular sub-class of solutions of TISE, i.e. on Radial eigenfunctions $\chi(r)$. If $\chi(r, \theta, \phi) = \chi(r)$ then

$$\nabla^2 \chi(r) = \frac{1}{r} \frac{\partial^2}{\partial r^2} (r \chi(r))$$

Plugging this into TISE in 3D:

$$\boxed{-\frac{\hbar^2}{2m}\left(\frac{\mathrm{d}^2\chi}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}\chi}{\mathrm{d}r}\right) + U(r)\chi = E\chi} \tag{(*)}$$

Normalisation condition for $\chi \in \mathcal{H}$:

$$\begin{split} &\int_{\mathbb{R}^3} |\chi(r,\theta,\phi)|^2 \mathrm{d} V < \infty \\ \implies &\int_0^\infty |\chi(r)|^2 r^2 \mathrm{d} r < \infty \end{split}$$

eigenfunctions $\chi(r)$ must go to 0 sufficiently fast at $r \to \infty$ and behave well $(\sim \frac{1}{r})$ (most singular behaviour) at $r \to 0$.

How to solve (*)? One way of doing it is to define

$$\sigma(r) \equiv r\chi(r)$$

$$\implies -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2 \sigma(r)}{\mathrm{d}r^2} + U(r)\sigma(r) = E\sigma(r) \qquad (**)$$

This is like the 1D TISE defined only on \mathbb{R}^+ and with usual normalisation condition on \mathbb{R}^2 :

$$\int_0^\infty |\sigma(r)|^2 \mathrm{d}r < \infty$$

We want $\sigma(r) = 0$ at r = 0, $\sigma'(r)$ finite at r = 0. \implies Solve (**) on \mathbb{R} and look for odd solutions:

$$\sigma(-r) = -\sigma(r)$$

Example: Spherically symmetric potential well

TISE as (**) and solve it for $\sigma(r) = r\chi(r)$ by analytically continuation on whole \mathbb{R} and looking only for *odd* solutions.

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\sigma(r)}{\mathrm{d}r^2} + U(r)\sigma(r) = E\sigma(r)$$

Look for odd parity bound states

$$0 \le E \le U_0$$
$$K = \sqrt{\frac{2mE}{\hbar^2}} \qquad \overline{k} = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$$

odd solutions:

$$\sigma(r) = \begin{cases} A\sin(kr) & |r| \le a \\ Be^{-\overline{k}r} & r > a \\ -Be^{+\overline{k}r} & r < -a \end{cases}$$

Boundary conditions for $\sigma(r)$:

• continuity of $\sigma(r)$ at r = a

• continuity of $\sigma'(r)$ at r = a.

$$\implies \begin{cases} A\sin ka = Be^{-\overline{k}a} \\ kA\cos ka = -\overline{k}Be^{-\overline{k}a} \\ \implies -k\cot(ka) = \overline{k} \end{cases}$$

From definition:

$$k^2 + \overline{k^2} = \frac{2mU_0}{\hbar^2}$$

Solve this graphically by defining

If $r_0 < \frac{\pi}{2}$ ($\iff U_0 < \frac{\pi^2 \hbar^2}{3ma^2}$) then doesn't exist solution. Two differences:

(1) Below a given threshold for U_0 there does not exist bound state in 3D. (contrarily to 1D in which there exists even bound state)

(2)

$$\chi(r) = \begin{cases} A \frac{\sin(kr)}{r} & r < Q \\ B \frac{e^{-kr}}{r} & r \ge Q \end{cases}$$

5.2 Angular momentum in Quantum Mechanics

Classical mechanics:

$$\mathbf{L} = \mathbf{x} \times \mathbf{p}$$

When you have U(r) then

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \dot{\mathbf{x}} \times \mathbf{p} + \mathbf{x} \times \dot{\mathbf{p}} = 0$$

In Dynamics and relativity the conservation of angular momentum implies that $3D \rightarrow 2D$ (once take the plane $\mathbf{L} \cdot \mathbf{x} = 0$) $\rightarrow 1D$ (solve Newton's second law on \mathbf{e}_r).

Definition. Angular momentum operator $\hat{\mathbf{L}} = \hat{\mathbf{x}} \times \hat{\mathbf{p}}$ $\hat{\mathbf{L}} = -i\hbar \mathbf{x} \times \nabla$ In 1D: $\hat{p} = -\hbar \frac{\partial}{\partial x}$ In 3D: $\hat{\mathbf{p}} = -\hbar \nabla$, $\hat{\mathbf{x}} = \mathbf{x}$.

Write it in cartesian coordinates (x_1, x_2, x_3)

$$\hat{L}_i = -\hbar \varepsilon_{ijk} x_j \frac{\partial}{\partial x_k} \qquad \rightarrow (\varepsilon_{ijk} \hat{x}_j \hat{p}_k)$$

i = 1, 2, 3.

•

Start of lecture 14

Recap of Quantum Mechanics in 3D (Section 5)

$$-\frac{\hbar^2}{2m}\nabla^2\chi(\mathbf{x}) + U(\mathbf{x})\chi(\mathbf{x}) = E\chi(\mathbf{x}) \qquad \mathbf{x} \in \mathbb{R}^3$$

1D:

$$+\frac{\partial^2}{\partial x^2}$$
$$\hat{p} = -i\hbar\frac{\partial}{\partial x}$$
$$\hat{p}^2 = -\hbar^2\frac{\partial^2}{\partial x^2}$$

3D:

$$\nabla^2 = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$$
$$\hat{\mathbf{p}} = -i\hbar\nabla = \left(-i\hbar\frac{\partial}{\partial x_1} + -i\hbar\frac{\partial}{\partial x_2}, -\hbar\frac{\partial}{\partial x_3}\right)$$
$$|\hat{\mathbf{p}}|^2 = -\hbar^2\nabla^2$$

• Useful to write ∇^2 in spherical coordinate (r, θ, ϕ)

$$\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{1}{r^2 \sin^2 \theta} \left[\sin \theta + \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{\partial^2}{\partial \phi^2} \right]$$

- If $U(\mathbf{x}) = U(r)$ (spherically symmetric potential) we can find some special solutions of TISE $\chi(r)$ (radial solutions).
- If take $(xhf) = U(r), \chi(r, \theta, \phi = \chi(r))$

$$-\frac{\hbar^2}{2mr}\frac{\partial^2}{\partial r^2}(r\chi(r)+U(r)\chi(r)=E\chi(r)$$

if define $\sigma(r) = r\chi(r)$, TISE for $\chi(r)$ becomes

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\sigma(r)}{\mathrm{d}r^2} + U(r)\sigma(r) = E\sigma(r)$$

in \mathbb{R}^+ , and with normalisation condition

$$\int_0^\infty |\sigma(r)|^2 \mathrm{d}r < \infty$$

because of normalisation conditions $\sigma(r) \to a$ as $r \to 0$. But we found a = 0. Why? If we allowed $\sigma(r) \approx a \neq 0$ as $r \to 0$ (which means $\chi(r) \sim \frac{a}{r}$) then \hat{H} would not be Hermitian.

Proof. For \hat{H} to be Hermitian we need

$$(\phi, \hat{H}\chi) = (\hat{H}\phi, \chi) \qquad \forall \phi, \chi \in \mathcal{H}$$

$$\begin{split} (\phi, \hat{H}\chi) &= \int_0^\infty \mathrm{d}r r^2 \phi(r) \hat{H}\chi(r) \\ &= -\frac{\hbar^2}{2m} \int_0^\infty \mathrm{d}r \phi \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}\chi}{\mathrm{d}r} \right) \\ &= -\frac{\hbar^2}{2m} \left[r^2 \phi \frac{\mathrm{d}\chi}{\mathrm{d}r} - r^2 \chi \frac{\mathrm{d}\phi}{\mathrm{d}r} \right]_0^\infty \underbrace{-\frac{\hbar^2}{2m} \mathrm{d}r \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}\phi}{\mathrm{d}r} \right) \chi}_{(\hat{H}\phi,\chi)} \end{split}$$

If $\phi(r) \sim B$ as $\rightarrow 0$ with $B \neq 0$ then $\chi(r) \sim \frac{A}{r}$ as $r \rightarrow 0$ with $A \neq 0$ then

$$r^2 \phi \frac{\mathrm{d}\chi}{\mathrm{d}r} - r^2 \chi \frac{\mathrm{d}\phi}{\mathrm{d}r} \not\to 0$$

as $r \to 0$.

Due to Quantum Mechanics interpretation we classify $\chi(r) \sim \frac{A}{r}$ as unphysical, hence $\sigma(r) = 0$ at r = 0.

Continuing from before the recap

Properties:

- \hat{L}_i is Hermitian (Example sheet)
- $[\hat{L}_i, \hat{L}_j] \neq 0$ if $i \neq j$ (Example sheet). \implies different components of **L** cannot be determined simultaneously.

$$[\hat{L}_i, \hat{L}_j] = i\hbar\varepsilon_{ijk}\hat{L}_k$$

Proof.

$$\begin{split} [\hat{L}_1, \hat{L}_2]\chi(x_1, x_2, x_3) &= -\hbar^2 \left[\left(x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2} \right) \left(x_3 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_3} \right) - \left(x_3 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_3} \right) \left(x_2 \frac{\partial}{\partial x_3} - x_1 \frac{\partial}{\partial x_2} \right) \chi(x_1, x_2, x_3) \\ &= -\hbar^2 \left(x_2 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_2} \right) \chi(x_1, x_2, x_3) \\ &= i\hbar \hat{L}_3 \chi(x_1, x_2, x_3) \end{split}$$

Definition. Total angular momentum operator \hat{L}^2

$$\hat{L}^2 = \hat{L}_1^2 + \hat{L}_2^2 + \hat{L}_3^2$$

Properties:

- $[\hat{L}^2, \hat{L}_i] = 0$ (Example sheet)
- for U(r) $[\hat{L}^2, \hat{H}] = 0$ (*), $[\hat{L}_i, \hat{H}] = 0$.

Proof. –

_

$$\begin{split} [L_i, \hat{x}_j] &= [\varepsilon_{imn} \hat{x}_m \hat{p}_n, \hat{x}_j] \\ &= \varepsilon_{imn} [\hat{x}_m \hat{p}_n, \hat{x}_j] \\ &= \varepsilon_{imn} (\hat{x}_m [\hat{p}_n, \hat{x}_j] + [\hat{x}_m, \hat{x}_j] \hat{p}_n) \\ &= -i\hbar \varepsilon_{imj} \hat{x}_m \\ &= i\hbar \varepsilon_{ijm} \hat{x}_m \end{split}$$

$$\begin{aligned} [\hat{L}_i, \hat{x}_j^2] &= [\hat{L}_i, \hat{x}_j] + \hat{x}_j [\hat{L}_i, \hat{x}_j] \\ &= i\hbar\varepsilon_{ijm}(\hat{x}_m\hat{x}_j + \hat{x}_j\hat{x}_m) \\ &= 0 \end{aligned}$$

$$- [\hat{L}_u, U(r)] = 0 \text{ since } r = \sqrt{\hat{x}_1^2 + \hat{x}_2^2 + \hat{x}_3^2}.$$

$$- [\hat{L}_i, \hat{p}_j] = i\hbar\varepsilon_{ijm}\hat{p}_m \text{ (same proof as for } x_j)$$

$$- [\hat{L}_i, \hat{p}^2] = 0$$

$$\implies [\hat{L}_i, \hat{H}] = 0$$

and

$$[\hat{L}^2, \hat{H}] = 0$$

(trivially)

- $\{\hat{H}, \hat{L}^2, \hat{L}_i\}$ set of mutually commuting operators. Take i = 3. \Longrightarrow
- (1) Can find joint eigenstates of these 3 operators that form a basis of \mathcal{H} .
- (2) eigenvalues of these 3 operators $|\mathbf{L}|$, L_z , E can be simultaneously measured at an arbitrary precision.
- (3) The set of operators is maximal i.e. we cannot construct another independent operator (other than \hat{I}) that commutes with them.

To find joint eigenfunctions of \hat{L}^2 and \hat{L}_3 write $\hat{\mathbf{L}}$ in spherical coordinates (appendix 7 of Maria Ubiali's notes)

$$i\hbar \left(x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2}, \dots, \dots \right)$$
$$\frac{\partial}{\partial x_1} = \left(\frac{\partial r}{\partial x_1} \right) \frac{\partial}{\partial r} + \left(\frac{\partial \theta}{\partial x_1} \right) \frac{\partial}{\partial \theta} + \left(\frac{\partial \phi}{\partial x_1} \right) \frac{\partial}{\partial \phi}$$

And put

$$\hat{L}_3 = -i\hbar \frac{\partial}{\partial \phi}$$
$$\hat{L}^2 = -\frac{\hbar^2}{\sin^2 \theta} \left[\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{\partial^2}{\partial \phi^2} \right]$$

Next time we will look for joint eigenfunction

 $Y(\theta, \phi)$

such that

$$\begin{cases} \hat{L}^2 Y(\theta, \phi) = \lambda Y(\theta, \phi) \tag{1}$$

$$\begin{bmatrix}
 L_3 Y(\theta, \phi) = \hbar m Y(\theta, \phi) \quad (2)$$

Start of lecture 15

$$-\hbar \frac{\partial}{\partial \phi} Y(\theta, \phi) = \hbar m Y(\theta, \phi)$$

 $Y(\theta,\phi) = y(\theta)X(\phi)$ (3)

Find solutions

Plugging (3) into (2)

$$-i\hbar\left(\frac{\partial}{\partial\phi}X(\phi)\right)y(\theta) = \hbar m X(\phi)y(\theta)$$
$$X(\phi) = e^{im\phi}$$

Given that wave function must be simple-valued in $\mathbb{R}^3 \implies X(\phi)$ must be invariant under

$$\phi \to \phi + 2\pi$$
$$\implies e^{i2m\pi} = 1 \implies m \in \mathbb{Z}$$
(4)

Plug (4) into (1) and find

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial y(\theta)}{\partial\theta} \right) - \frac{m^2}{\sin^2\theta} y(\theta) = -\frac{\lambda}{\hbar^2} y(\theta)$$
(5)

This is the associated Legendre equation (IB Methods) and it has solution

$$y(\theta) = P_{l,m}(\cos\theta = (\sin\theta)^{|m|} \frac{\mathrm{d}^{|m|}}{\mathrm{d}(\cos\theta)^{|m|}} P_l(\cos\theta)$$

(where $P_{l,m}$ is the associate Legendre polynomial and P_l is the ordinary Legendre polynomial). Because $P_l(\cos \theta)$ is a polynomial in $\cos \theta$ of degree l, $\implies -l \leq m \leq l$ and (without proof) the eigenvalues of \hat{L}^2 are

$$\lambda = \hbar^2 l(l+1)$$

(l = 0, 1, 2, ...) Put everything together:

$$Y_{l,m}(\theta,\phi) = P_{l,m}(\cos\theta)e^{im\phi}$$

 $l = 0, 1, 2, \dots, -l \le m \le l$. Spherical harmonics:

$$\hat{L}^2 Y_{l,m}(\theta,\phi) = \hbar^2 l(l=1) Y_{l,m}(\theta\phi)$$

$$L_3 Y_{l,m}(\theta,\phi) = m\hbar Y_{l,m}(\theta,\phi)$$

l, m are quantum numbers that characterise:

- $l \rightarrow$ total angular momentum
- $m \rightarrow$ azimuthal number, z-component of L.

In classical mechanics

$$-|\mathbf{L}| \le L_z \le |\mathbf{L}| \leftrightarrow -l \le m \le l$$
$$Y_{0,0}(\theta, \phi) = \frac{1}{\sqrt{4\pi}} \qquad l = 0, m = 0$$
$$Y_{1,0}(\theta, \phi) = \frac{3}{\sqrt{4\pi}} \cos \theta \qquad l = 1, m = 0$$
$$Y_{1,\pm 1}(\theta, \phi) = \frac{1}{\sqrt{4\pi}} \sin \theta e^{\pm i\phi} \qquad l = 1, m = \pm 1$$

All spherical harmonics are orthonormal (like all eigenfunctions of Hermitian operators)

$$(Y_{l,m}, Y_{l',m'}) = \delta_{ll'} \delta_{mm'}$$
$$\int_0^{2\pi} \mathrm{d}\phi \int_{-1}^1 \mathrm{d}\cos\theta Y_{lm}^*(\theta, \phi) Y_{l'm'}(\theta, \phi) = \delta_{ll'} \delta_{mm'}$$

5.3 The Hydrogen atom

Model proton (nucleus) to be stationary at the origin $(m_p \to \infty)$, or equivalently $m_p \gg m_e$

$$F_{\text{coulomb}}(r) = -\frac{e^2}{4\pi\varepsilon_0} \frac{1}{r^2} = -\frac{\partial U_{\text{coulomb}}}{\partial r}$$
$$U_{\text{coulomb}}(r) = -\frac{e^3}{4\pi\varepsilon_0} \frac{1}{r}$$

Bound states E < 0.

$$-\frac{\hbar^2}{2m_e}\nabla^2\chi(r,\theta\phi) - \frac{e^2}{4\pi\varepsilon_0}\frac{1}{r}\chi(r,\theta,\phi) = E\chi(r,\theta,\phi)$$
(1)

Laplacian

$$\nabla^{2} = \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r + \frac{1}{r^{2} \sin^{2} \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{\partial^{2}}{\partial \phi^{2}} \right)$$
$$\hat{L}^{2} = \frac{\hbar^{2}}{\sin^{2} \theta} \left[\sin \theta \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{\partial^{2}}{\partial \phi^{2}} \right]$$
$$\implies -\hbar^{2} \nabla^{2} = -\frac{\hbar^{2}}{r} \frac{\partial^{2}}{\partial r^{2}} r + \frac{\hat{L}^{2}}{r^{2}}$$
(2)

Plug (2) into (1)

$$-\frac{\hbar^2}{2m_e}\frac{1}{r}\left(\frac{\partial^2}{\partial r^2}r\chi(r,\theta,\phi)\right) + \frac{\hat{L}^2}{2m_er^2}\chi(r,\theta,\phi) - \frac{e^2}{4\pi\varepsilon_0r}\chi(r,\theta,\phi) = E\chi(r,\theta,\phi) \quad (3)$$

Because of eigenfunction of \hat{H} are also eigenfunction of \hat{L}^2 and $\hat{L}_3 \implies \chi(r,\theta,\phi)$ must also be eigenfunction of \hat{L}^2 , \hat{L}_3 .

$$\implies \chi(r,\theta,\phi) = R(r)Y_{l,m}(\theta,\phi)$$
$$\implies \hat{L}^2\chi = R(r)LharY_{l,m}(\theta,\phi) = \hbar^2 l(l+1)R(r)Y_{l,m}(\theta,\phi)$$
(4)

Plug (4) into (3)

$$-\frac{\hbar^2}{2m_e} \left(\frac{\mathrm{d}^2 R(r)}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}R(r)}{\mathrm{d}r} \right) \underline{Y}_{l,m}(\theta, \phi) + \frac{\hbar^2}{2m_e r^2} l(l+1)R(r) \underline{Y}_{l,m}(\theta, \phi) - \frac{e^2}{4\pi\varepsilon_0} R(r) \underline{Y}_{l,m}(\theta, \phi) \\ = ER(r) \underline{Y}_{l,m}(\theta, \phi) \tag{5}$$

We end up with a 1D equation for radial part R(r)

$$-\frac{\hbar^2}{2m} \left(\frac{\mathrm{d}^2 R}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}R}{\mathrm{d}r} \right) + \underbrace{\left(-\frac{e^2}{4\pi\varepsilon_0} \frac{1}{r} + \frac{\hbar^2 l(l+1)}{2m_e r^2} \right)}_{V_{\mathrm{eff}}(r)} R = ER \tag{6}$$

 $(V_{\rm eff}(r)$ is a bit like in classical mechanics).

5.3.1 l = 0

 $V_{\text{eff}}(r) \rightarrow V_{\text{coulomb}}(r)$. Rewrite (6) in terms of variables

$$\nu^2 \equiv -\frac{2mE}{\hbar^2} > 0$$
$$\beta \equiv \frac{e^2m}{2\pi\varepsilon_0\hbar^2}$$

In terms of ν^2 , β (6) becomes

$$\frac{\mathrm{d}^2 R}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}R}{\mathrm{d}r} + \left(\frac{\beta}{r} - \nu^2\right)R = 0 \tag{7}$$

(i) The asymptotic behaviour $(r \phi \infty)$ determined by

$$\frac{\mathrm{d}^2 R}{\mathrm{d}r^2} - \nu^2 R = 0$$
$$R(r) \sim e^{\pm r\nu}$$

as $r \to \infty$. Take $R(r) \sim e^{-r\nu}$ because of normalisability.

(ii) At r = 0 eigenfunction has to be finite (~ A).

Exploiting (i) take ansatz

$$R(r) = f(r)e^{-\nu r} \tag{8}$$

Plug (8) into (7) and find

$$f''(r) + \frac{2}{r}(1 - \nu r)f'(r) + \frac{1}{r}(\beta - 2\nu)f(r) = 0$$
(9)

(9) is a homogeneous linear ODE with regular point r = 0

$$f(r) = r^{c} \sum_{n=0}^{\infty} a_{n} r^{n}$$

$$f'(r) = \sum_{n=0}^{\infty} a_{n} (c+n) r^{c+n-1}$$

$$f''(r) = \sum_{n=0}^{\infty} a_{n} (c+n) (c+n-1) r^{c+n-2}$$
(10)

Plug (10) into (9):

$$\sum_{n=0}^{\infty} a_n (c+n)(c+n-1)r^{c+n-2} + \frac{2}{r}(1-\nu r)a_n (c+n)r^{c+n-1} + (\beta - 2\nu)r^{c+n-1}] = 0$$

Constant power of r has coefficient (r^{c-2})

$$a_0c(c-1) + 2a_0c = 0$$

 $\implies a_0 c(c+1) = 0$

c=-1 (then $X\sim \frac{A}{r})$ or c=0 (then $X\sim A).$ So c=0 and the equation for the other coefficients is

$$\sum_{n=1}^{\infty} a_n n(n+1)a_{n-1}(\beta - 2\nu n)]r^{n-2} = 0$$
$$\implies a_n = \frac{2\nu n - \beta}{n(n+1)}a_{n-1} \tag{11}$$

Start of lecture 16

Proposition. If $f(r) = \sum_{n=0}^{\infty} a_n r^n$ is infinite then R(r) is not normalisable.

Proof. Asymptotic behaviour of f(r) determined by

$$\frac{a_n}{a_{n-1}} \stackrel{n \to \infty}{\longrightarrow} \frac{2\nu}{n}$$

This is the same asymptotic behaviour as

$$g(r) = e^{2\nu r} = \sum_{n=0}^{\infty} \frac{(2\nu)^n}{n!} r^n$$

 $b_n = \frac{(2\nu)^n}{n!}$, then

 $\frac{b_n}{b_{n-1}} \stackrel{n \to \infty}{\longrightarrow} \frac{2\nu}{n}$

Asymptotically $f(r) \sim e^{2\nu r}$, $R(r) = f(r)e^{-\nu r}\sin e^{\nu}r$.

 \implies the series must terminate. $\exists N > 0$ such that

$$a_N = 0$$
 with $a_{N-} \neq 0$
 $\implies 2\nu N - \beta = 0 \implies \nu = \frac{\beta}{2N}$

Substituting ν, β ,

$$E_N = -\frac{e^4 m_e}{32\pi^2 \varepsilon_0^2 \hbar^2} \frac{1}{N^2}$$

with N = 1, 2, 3, ... same as Bohr's energy spectrum. Eigenfunction $R_N(r)$, substitute $2N\nu = \beta$ in (11) and find

$$\frac{a_n}{a_{n-1}} = -2\nu \frac{N-n}{n(n+1)}$$
(12)

Can use (12) to find coefficient of $R_N(r)$.

N = 1, polynomial of degree 0, set $a_0 = 1$ then normalise

$$R_1(r) = A_1 e^{-\nu r}$$

 ${\cal N}=2\,$, polynomial of degree 1, set $a_0=1,$

$$\frac{a_1}{a_0} \stackrel{(12)}{=} -2\nu \frac{2-1}{2} \implies a_1 = -\nu a_0 = -\nu$$
$$R_2(r) = A_2(1-\nu r)e^{-\nu r}$$

 $N=3\,$, polynomial of degree 2, $a_0=1,\,a_1=-2\nu,\,a_2=\frac{2}{3}\nu^2$

$$R_3(r) = A_3(1 - 2\nu r + \frac{2}{3}\nu^2 r^2)e^{-\nu r}$$

In general

$$R_N(r) = L_N(\nu r)e^{-\nu r}$$

where L_n is the Laguerre polynomial of O(N-1).

 $P(r) \propto r^2 |R_N(r)|^2$. Exercise: Compute A_1 and compare closest to nucleus radius to Bohr radius

$$\langle \hat{r} \rangle_{\chi_1 = R_1 Y_{00}} = \frac{3}{2} a_0$$

(Bohr radius is $\left. \frac{\mathrm{d}P(r)}{\mathrm{d}r} \right|_{r=a_0} = 0$)

5.3.2 *l* > 0

$$\frac{\mathrm{d}^2 R}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}R}{\mathrm{d}r} + \left(\frac{\beta}{r} - 2\nu - \frac{l(l+1)}{r^2}\right)R = 0 \tag{14}$$

Asymptotic behaviour:

$$R(r) = f(r)e^{-\nu r} \tag{15}$$

$$\implies \frac{\mathrm{d}^2 f}{\mathrm{d}r^2} + \frac{2}{r}(1-\nu r)\frac{\mathrm{d}f}{\mathrm{d}r} + \left(\frac{\beta}{r} - 2\nu - \frac{l(l+1)}{r^2}\right)f = 0 \tag{16}$$

Power series

$$f(r) = r^{\sigma} \sum_{n=0}^{\infty} a_n r^n \tag{17}$$

Plug (17) into (16) and identify lowest power of r and set coefficient to zero

$$a_0[\sigma(\sigma - 1) + 2\sigma - l(l+1)]r^{\sigma - 2} = 0$$

$$\implies \sigma(\sigma+1) - l(l+1) = 0$$

So have $\sigma = -l - 1$ or $\sigma = l$. But if $\sigma = -l - 1$ then $R(r) \sim \frac{1}{r^{l+1}}$ as $r \to 0$, which is not integrable near r = 0. But if $\sigma = l$, then $R(r) \sim 0$ as $r \to 0$ which is fine. Now we know

$$f(r) = r^l \sum_{n=0}^{\infty} a_n r^n \tag{18}$$

Plug (18) into (16) and find

$$a_n = \frac{2\nu(n+l) - \beta}{n(n+2l-1)} a_{n-1}$$
(19)

As before easy to show that R(r) would diverge unless

$$\exists n_{\max} > 0$$
 such that $a_{n_{\max}} = 0, a_{n_{\max}-1} \neq 0$

Plug $a_{n_{\max}}$ in (19).

$$2\nu \underbrace{(n_{\max} + l)}_{\equiv N} -\beta = 0$$
$$\implies 2\nu N - \beta = 0 \implies \nu = \frac{\beta}{2N}$$

•
$$E_N = -\frac{e^4 m_E}{32\pi^2 \varepsilon_0^2 \hbar^2} \frac{1}{N^2}, N = 1, 2, \dots$$

• Eigenvalues same but the degeneracy is larger $\forall N, N = n_{\max} + l$. Can have $l = 0, 1, \dots, N - 1$. $-l \leq m \leq l$.

$$\underbrace{D(N)}_{\text{degeneracy}} = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} 1 = \sum_{l=0}^{N-1} (2l+1) = N^2$$

energy level N you have N^2 (linearly independent) states with same E_N .

• Eigenfunctions

$$\chi_{N,l,m}(r,\theta,\phi) = R_{N,l}(r)Y_{l,m}(\theta,\phi) = r^l g_{N,l} e^{-r/2N} Y_{l,m}(\theta,\phi)$$

 $g_{n,l}(r)$ polynomial of degree (N-l-1) defined by

$$g_{N,l}(r) = \sum_{n=0}^{N-l-1} a_k r^k$$

with $a_k = \frac{2\nu}{k} \frac{k+l-N}{k+2l+1}$ (generalised Laguerre polynomials) quantum numbers $N = 0, 1, 2, \ldots$ (principal quantum numbers), $l = 0, \ldots, N-1$ (total angular momentum), $m = -l, \ldots, l$ (azimuthal quantum number).

For $N = 4 \ l = 0$,

$$R_{4,0}(r) \propto (1 + c_{4,0}r + d_{4,0}r^2 + e_{4,0}r^2)e^{-r\beta/8}$$

$$Y_{00}(\theta,\phi) = \frac{1}{\sqrt{4\pi}},$$

For
$$N = 4, l = 1$$
,

$$R_{4,1}(r) \propto r(c_{4,1} + d_{4,1}r + e_{4,1}r^2)e^{-r\beta/8}$$

 $Y_{1,0}(\theta,\phi), Y_{1,1}(\theta,\phi), Y_{1,-1}(\theta,\phi).$

For N = 4, l = 2, $R_{4,2}(r) \propto r^2(c_{4,2} + d_{r,2}r)e^{-2\beta/8}$

 $Y_{2,0}(\theta,\phi), \, Y_{2,\pm 1}(\theta,\phi), \, Y_{2,\pm 2}(\theta,\phi). \ N=4, \, l=3$

$$R_{4,3} = r^3(c_{4,3})e^{-r\beta/8}$$

 $Y_{3,0}, Y_{3,\pm 1}, Y_{3,\pm 2}, Y_{3\pm 3}.$

Bohr model:

- E_N was correct
- Bohr radius was sort of correct
- $L^2 = N^2 \hbar^2$ wrong. Instead $L^2 = l(l+1)\hbar^2$ with l < N.
- degeneracy wrong.

5.4 Periodic table

 $z,\,e^-,$

$$\chi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_z) = \chi(\mathbf{x}_1) \cdots \chi(\mathbf{x}_z)$$

 $E = \sum_{j=1}^{N} E_j$. It's a poor approximation.