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1 Quantum Mechanics

1.1 Particles and Waves in Classical Mechanics

Basic concepts of classical mechanics.

Particles

Definition. Point-particle is an object carrying energy E and momentum p in
infinitesimally small point of space.

Particle determined by x (position) and v = %X = %X (velocity). Newton’s second law
is that
mi = F(x(t), x(t))

Solving Newton’s second law determines x(¢) and x(t) for all ¢ > ¢y once initial conditions
known (x(tp),%(t0)).

Waves
Definition. Any real or complex-valued function with periodicity in time / space.
e Take function of time ¢:
fE+T) = f(t)
where T # 0 is the period.
1
V= —
T
is the frequency and
9 2w
=] V= —
w T T
is the angular frequency.
e Take function of space x
fl@+A) = f(z)
where X is the wavelength.
2w
K=—
A
is the wave number.
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Example. In 1 dimension, electromagnetic wave obeys equation

0? 0?

with ¢ € R. Solutions:
fr(z,t) = Ay exp(FiKz — iwt)

with A4 € C (amplitude of wave) and w = c¢K (dispersion relation), hence

Example. In 3 dimensions, electromagnetic wave obeys equation

0%f(x,1)
T — 62v2f(x, t) = 0 (2)
need f(z,t), %(x,to) to get unique solution. Solution:

f(x,t) = Aexp(iK - x — iwt)

with w = ¢|K].

Note. e These kind of waves arise as solutions of other governing equations
provided a different dispersion relation.

e For all governing equations, superposition principle holds if f;, fo solutions
implies f = f1 + fo is a solution.

1.2 Particle-like Behaviour of Wave
1.2.I Black-body Radiation (1900)

1.2.IT Photo-electric effect (1905)

1.2.IIT Compton scattering (1923)

1.2.1 Black Body Radiation

When a body heated at temperature T, it radiates light at different frequencies
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Classical prediction:
E = KgT

where E is energy of each wave and Kp is Boltzmann constant

w?

— I KT ——
(w) x Kp 2.3
Planck:

I (w) x

huw
2.3
e exp(%)—l

h is reduced Planck constant:

h
"= o
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lecture 2 1.2.11 Photo electric effect
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As change I and w of incident light
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classical expectation:

(i) incident light carries E o I as I increases there is enough E to break the bond of
e~ with atom Vw.

(ii) emission rate should be constant as I increases
surprising facts:
(1) Below wpin no e~ emission
(2) Emax depended on w not on I
(3) emission rate increases as I increases
1905 Einstein
e light quantified in small quanta, called photon

e each photon carries
F=hw

P =iK
e phenomenon of e~ emission comes from scattering of single photon off single e™.
Emin = 0 = hwmin — ¢
(¢ is the binding energy of e~ with atom of metal)
Ernax = hwmax — ¢

as I increases, the number of protons increases, so the amount of scattering increases,
so there is a higher e~ emission rate.



1.2.111 Compton scattering

1923: X-rays scattering off free electron

()
Yo e ER X-Reay
Vb o “\'l‘\ o«
N
i ; szqwm\b)
v - e a(,m/\‘rfkumj
pfqvl(’n[j OL "W(quqp) X‘/\O‘jb. o) = .

Recall Dynamics and Relativity example sheet 4 question 7:

’P

g2 _ me _me
2 |d |p|

Why is this the peak?

E = hw
P =K = |P|=hK|=h"
C

w/

q=mK = |q|:h|K’|:h?

Take (2) and plug in (1)
1 1 h
— =—+ —(1 —cosb)

w ow me

[ Note. h — 0, W' — w.

1.3 Atomic spectra

1897: Thomson, plum-pudding model of atoms.
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1909: Rutherford

scattering pattern — Rutherford model

—

¢

The Rutherford model did not work because
(i) e~ moves on circular orbits would radiate

(ii) e~ would collapse on nucleus due to Coulomb force



(iii) model did not explain spectra measured.
1 1
Wmin = 27TCRO <n2 — /rn2>
(c is the speed of light, Ry is the Rydberg constant, wy,y, is the light emitted by atoms
when hit by light and n,m € N)

1913 (Bohr): e~ orbits around nucleus are quantised so that L (= orbital angular mo-

mentum) takes discrete values
L, =nh

Proposition. Quantisation of . = quantisation of r, v, E.

Proof.
hmer
L=mevr = v= = v, = n—r
mer
Coulomb force:
e 1
FCoul _
dmeg 2
Newton’s second law:
FCoul = Meare,
e? 1 B v? 4reoh?
dreg 2 o i
0 e
4w €0h2
— ro = 5
Mee
(min radius / Bohr radius)
2
B o_ 1 2 e 1
n mev, —
2 dmeg ry
e2 1
 8megrg n2

n =1, £ = —13.6eV GROUND LEVEL.
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ABuin _ 2 \°/1 1
- — 9rc =
Wmin h 4dmeghc n? m2

1.4 The wave-like behaviour of particles

1923: De Broglie hypothesis: V particle of V mass associated with ) wave having

)
Ok
P
K==%
h

1927: Davison and Geemer e~ off crystals interference pattern was consistent with De
Broglie.

10
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2 Foundation of Quantum Mechanics

Linear Algebra Quantum Mechanics
vector (n-dimensional complex value) state
v, {e;}, v— (v1,...,05) ¥, basis x — ¥(x,t)
vector space C" L?(R?) complex-valued square integrable functions
inner product (v,w) = viwy + -+ + viwy, (1, @) [gs V™ (x, 1) p(x, t)d3z
linear map C"* — C", use matrix L?(R3) — I2(R3) operators 0, ¢ =0y

2.1 Wave Function and Probabilistic Interpretation

Classical mechanics: x,% (or equivalently p = mx) determine dynamics of the particle.

Quantum mechanics: 1 described by 1(x,t) determine dynamics of the particle (in a
probabilistic way)

Definition. v is the state of the particle.

<
Definition. v (x,t) complex coefficient of ¢ in the continuous basis of x, i.e. ¥(x,t)
is 9 in x representation and is called wavefunction. 1 (x,t) : R® — C that satisfies
mathematical properties dictated by its physics interpretation.

Interpretations

Born’s rule / probabilistic interpretation.

The probability density for particle to sits at x at given time ¢
px, 1) o i (x, 1)

p(x,t)dV is the probability that the particle sits in some small volume V' centred at x
is proportional to square modulus of 1 (x,t).

Mathematical Properties

(i) Because the particle has to be somewhere implies that wavefunction has to be
normalisable (or squareQintegrable) in R3:

v v d = [ o Pds = A < oc
R3 R3

with N € R and NV # 0.

11



(ii) Because total probability has to be 1,

[ Note. Often drop v and write wavefunctions as 1, then normalise at the end. ]

Note. If i(x,t) = e’ (x,t) with a € R then |1)(x,t)[> = |1h(x,)|? so ¢ and 1) are
equivalent state.

Non-examinable aside:
State corresponds to rays in vector space of wave functions [¢] is the equivalence class
of vectors under equivalence relation 11 ~ 1y <= 11 = "*s.

Hilbert Space

Definition. The set of all square-integrable functions in R? is called Hilbert space
H or L?(R3).

Proposition. If ¢, 19 € H then ¢ = a191 + asps #0 € H (a1, az € C).

Theorem 1. If ¢;(x,t) and w9(x,t) are square-integrable then also ¥(x,t) =
a1 (%, t) + agtpa(x, t) is square-integrable.

Proof.
/ﬁ%@m%%zm<m
R3

/ﬂ%mm%%zm<w
R3

12



by triangle identities for complex numbers,
[ oPats = [ o) + atax 0P
R3 R3
< [ arva(x, )] + azax, )P
R

= [ Uarin (.0 + azin(x. O + 2lariillaztol)d’a

< [ Zlarin(x O + 2azvalx P’
R

= 2|a1|°N1 + 2|az° N3

< 00

2.2 Inner Product

Definition. Inner product in H is defined as

(Y, ) = /R3 lﬁ*(X,t)qﬁ(x,t)d?’x

Theorem 2. If ¢, ¢ € H then their inner product is guaranteed to exist.

Proof.
/ [0 (x, )P’ = M < o0
R3

/ l6(x, £)[2d%z = N < oo
R3

wdll = | [ 0 00x s
R3
< \/ [ wtxopars [ (oot
=V MNMN;
< 00 ]
Start of
lecture 4

13

(Cauchy Schwarz)
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Properties of inner product

(i) (P, ) = (¢, )"

(ii) antilinear in first entry, linear in second entry. So Vai,as € C,

(a11 + ath2, @) = ai (i1, @) + a3(ya, ¢)
(1, 0101 + azda = a1 (P, p1) + a2 (2, p2)

(iii) inner product of ¥ € H with itself is non-negative

W) = [ 1l P> 0

Definition. The norm of wave function v is the real function
[l = v, )
Definition. Wavefunction ¢ is normalised if |[¢]| = 1.

Definition. Two wave functions 1, ¢ are orthogonal if

(¢, ¢) =0

Definition. A set of wavefunctions {1} is orthonormal if

<wm7 wn> = 5mn

<
Definition. A set of wavefunctions {1} is complete if for all ¢ € H can be written
as a linear combination of them

VoeH ¢= ety  cn€C P EH
n=0

t Lemma 1. If {¢,,} form a complete orthonormal basis of H then ¢, = (¢, ¢). J

14



Proof.

<¢na¢> = <¢na Z le/}m>

m=0

= Z Cm<wn7 1/’m>
m=0

o0
= Z cmOmn

m=0
=cy O

2.3 Time-dependent Schrodinger equation

Recap: first postulate of quantum mechanics is Born’s rule
P(x,1) = plx, )d*x = [t:(x, 1) Pdx

The second postulate is time dependent Schrédinger equation (TDSE):

hQ
ih?;f(x, t) = —%V%(x, t) + U(x)(x,t)

where U(x) € R (potential).
e First derivative in ¢: once ¥(x,tg) is known, we can find out ¥ (z,t) at all times.

e asymmetry between t and x, so time dependent Schrodinger equation is a non-
relativistic equation.

Heuristic interpretation
e~ diffraction (interference) — e~ behaves like waves
Y(x,t) o< expli(k - x — wt)]

almost describes the dynamics of e~. Take De-Broglie

9] E
kbg = — = —
A
for free particle
p|® P> _ b
2m v 2mh 2m| |
dispersion relation for a particle-wave
w o [k|?

15



while for light-waves
w o |K|
if expli(k - x — wt)] is a solution of the equation for the wave of e~ and if w = ;- |k|?
then
| 2 k?2
expli(k - x) — ZQ—fit] = expli(kz — —ht)]

by dimensional analysis.

Properties

) S [0(x, )2 A3z = N < 0.

Proof.
= / [ (x,t)|?d3z
WJ(X t)]*d’
but 9 81/1 o
o (s 1) = e o+
Now TDSE gives 5
oY b U
ot 2mV V- 711}
and TDSE* gives 5
pr zh 9 U
ot V YT hd)
0 * _ . L * o *
— S =V [Ty vy
dNV ih «| _
T LY [Zm(w Vi — VY ] -
because 1, ¢* are such that ||, |¢*| — 0 as |x| — oo. O

(ii) Normalisation of wavefunction constant in time == probability is conserved

Ip(x,1)
ot

+V-J(x,t)=0

360) =~ -] = L (o, Ve 1) — (5 1)V (x5, )]

(the conserved probability current of quantum physics states).

16



Start of
lecture 5

2.4 Expectation values and operators

How to extract info from 7

Definition. Observable = any property of the particle describe by v that can be
measured.

In Quantum mechanics — operator acting on v, measurement — expectation value of
an operator.

2.5.1 Heuristic interpretation

From probabilistic interpretation, if want to measure the position of particle:

(z) = /_oo 2|z, 1)2dz = /_OO W (@, D, Bz

O,—>1—>z

Expectation value of an observable is the mean (average) of infinite series of measure-
ments performed on particles on the same state.

d
) = m %
= m% /OO Y*axpda
. /
_ihm 11} oyp*
T om ) <¢ EX 3:E> v (TDSE)
i @ 000y,

= —zh/ P~ —dx
0
/oow <_Zh8x> Pdx
position — z

momentum — —ih%

2.5.2 Hermitian operators

In C" linear map C* — C"

17
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In quantum mechanics linear maps H — H

O:9 =1 &= (0v)(z1)

Definition. An operator O is any linear map H — H such that

O(a11 + agihs) = a10(th1) + a20(ths)

with a1,a0 € C, ¥1,19 € H.

Examples

e finite differential operators
N

0
an(X)%

m=0

with p,(x) a polynomial. In particular, z and —iha% are special cases.

e Translation

~

Sa 2 (@) = P(x —a)

e Parity

Pp(z) = ¢(-x)

Definition. The Hermitian conjugate Ot of an operator O is the operator such that

(OT o1, 42) = (01, 0nha)  Vab,4po € H

Verify (from the properties of the inner product) that
° (alAl + CLQAQ)T = a’{fq + agflg for any ay,as € C
e (AB)I = BTAT.

Definition. An operator O is Hermitian if

O =0 = (Oyy,1h3) = (W1, 00)

All physics quantities in quantum mechanics are represented by Hermitian operators.

J

18



Examples

(i) & :9(x,t) = x(x,t) verify that &f = & <« (&)1, 109) = P129s) for Y1,y € H

(z1h1,12) :/_ (xp1) 1poda :/_ Yiwpodr = (Y1, x1h)

~

(ii) P:(x,t) — —ih%(m,t} verify:

(P, ho) = /OO (—Zhagl) YPodx

—00

= ih[yihe]®, — iR / 1/11 (91,[12

B o .02
- [ (‘max> ‘

= <¢1,P¢2>
(iii) Kinetic energy
. pQ 2¢
T:ap(x,t) — %W%t) = —%ﬁw(x t)

(iv) potential energy

A

U :op(x,t) = UX)p(x,t) = Ux)p(X,t)
(v) total energy

n? 02

H:(x,t) = (T + U)p(z,t) = (—maﬂ + U(a:)) Y(x, t)

Exercise: prove that H (the Hamiltonian operator) is Hermitian.

Theorem 3. The eigenvalue of Hermitian operators are real.

Proof. Let A be a Hermitian operator with eigenvalue a € C

(0, A) = (¢, ap) = a(yh,¥)) = a

But A Hermitian:

(W, Ap) = (Ap,¥) = (), ¥) = a* (¥, ) = a*

19
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Theorem 4. If A Hermitian operator, 11,19 normalised eigenfunctions of A with
eigenvalues a1, as with a; # as then v, and 9 are orthogonal.

Proof. We have ) R
Ay =arpr Ao =axhy  aj,aa €R

Then

a1 (1, 12) = aj (i1, ¥2)
= (a1,91,v2)
= (Atpy, 1))
= (b1, Agby)
= (41, Ag)
= (1, arp2)
= az(y1,P2)

so (11,1h2) = 0 since a; # as. O

Theorem 5. The discrete (or continuous) set of eigenfunctions of any Hermitian
operator together form a complete orthonormal basis of H.

N

P(a,t) =Y i, t)

=1

ci € C, {¢;} a set of eigenfunctions of A = At

2.5.3 Expectation values and operators

So far: every quantum observable is represented by a Hermitian operator 0.
(I) The possible outcomes of measurement of the observable O are eigenvalues of 0.

(I) If Ohas discrete set of normalised eigenfunctions {¢;} with distinct eigenvalues
{Ai}, the measurement of O on a particle described by 1 has probability

P(O = Ap) = |ail* = [{¢5,9)?

where ¢ = Zf\;l a; ;.

20
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(IIT) If {¢;} is a set of orthonormal eigenfunctions of O and {;};c; complete set of
orthonormal eigenfunctions with some eigenvalue A

PO=X)=>laf

sanity check
N N
> ail? = (aii, i)
i=1 i=1
N
= Z <ai¢i7 a]¢]>
ij=1
= (1, )
=1

(IV) The projection postulate: If O measured on 1 at time ¢ and the outcome of
measure is A; then the wave function of ¢ instantaneously after measurement
becomes v); (eigenfunction with eigenvalues) [if O has degenerate eigenfunction
with some eigenvalue X then the wavefunction becomes 1) = >, a;v]

Definition (Projection operator). Given ¢ =) a;¢; = > . (1;,1)1; define

B i p — (i, )

We can now define expectation value of an observable measured on state 1

(O)y + > _NP(O = N)

:Z)\i‘ai‘Q
= DAl )

_ <Z<¢i,¢>¢i,zxj<¢j,w>wj>

i J
= (4,0¢)
~ [ v @n0u(e. s
Property: X X R X
(aA+bB)y = a{A)y + b(B)y
a,beR.
Interpretation:

21



e The physics implication of projection postulate is that if O is measured twice, the
outcome of second measure (of At between measures is small) is the same as first
with probability 1.

e (Born’s rule) If ¢(x,t) is the state that gives the desired outcome of a measurement
on a state 1 (x,t), probability of such outcome is given by

1, )7 = \ [ w06t 0 ’

2.5 Time independent Schrédinger equation (TISE)
Let’s rewrite TDSE in 1D

m‘?;f(:c,t) = —;;g?g(a:,t) +U(x)y(x, t) = Hip(x,t) (1)
try ansatz (try solution)
P, t) = T(t)x(X) (2)
Plug (2) into (1)
LX) = T AX(X)

divide by T'(t)x(x)
1 0T Hy(z)
— il (t) = =5~ 3
0o = @ 3)
Both LHS and RHS have to be equal to a constant E, so

1 oT

mz’ha(t) = E = T(t)=e BN (4)
with £ € R. So TISE is
Hx(z) = Ex(x) 5
2 92 )
T (@) + Ula)x() = Ex(a)

e TDSE is eigenvalue equation for H operator.

e cigenvalues of H are all possible outcomes of measure of energy of state .

2.6 Stationary states
We found a particular solution of TDSE

b(x,t) = x(a)e F"

FE eigenvalue associated with eigenfunction y.

22
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L Definition. These solutions are called stationary states. J

Why?
plz,t) = [Pz, 1)|* = |x(2)]?
If we apply theorem 2.6 to O=H

Theorem 6. Every solution of TDSE can be written as a linear combination of
stationary states.

e For system that has a discrete set of eigenvalues of H ,
E,=F,FE,,...

n €N ‘
b t) = 3 anxn(z)e

e For system that has a continuous set of eigenvalues of H, E (@)

vlat) = [ Al@)a@)e P/ Mda
where A € C, a € R.
e |a,|?, |A(a)|?>da probability of measuring the particle energy to be Ej, = E(a).

Imagine a system with only 2 energy eigenvalues Fy # FEo we can write the state 1 at
time ¢

P(e,t) = arxa()e P 4 agyg(a)e RN
= Y(2,0) = a1x1(2) + azx2(x)
if a = 0 then 1/’(%0) = a?X?(a)’ lb(%t) = a2X2($)6_iE2t/h for all i, ’1/}(:1:70”2 =
| (x, )2, If a; # 0 and ag # 0,
’¢<$,t)‘2 _ ‘G1X1€_iE1t/h + a2X2€_iE2t/ﬁ’2

(Ey — Eg)t>

= ai|x1]* + a3|x2|* + 2a1a2x1 (z) x2 () cos ( -

23
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3 1 dimensional solutions of Schrodinger equation
TISE (Time independent Schrodinger equation):

Hx(X) = Ex(z)
@)+ Ule)x(@) = Bx()
577 X x(z) = Ex
with £ € R. We will solve TISE in 3 cases:
3.1 Bound states
3.2 Free particle

3.3 scattering states.

3.1 Bound states

3.1.1 Infinite potential well

U(a:):{o x| <a

+oo |z| >0
a€RT.
e for |x| > 0, x(z) = 0 otherwise U - x = 0o so boundary condition x(+a) = 0.
e for |z| < a we look for solutions of

2
I(r) = Ex(a)
= X"(x) + k*x(z) =0

with k& = 2?2]3 and we also have x(£a) = 0. Solution:

x(x) = Asin(kz) + B cos(kz)
x(a) =0, x(—a) = 0 implies
Asin(ka) =0, Bcos(ka) =0

so two options:

(i) A=0, cos(ka) =0 then k, = 57, n an odd integer.
Xn(z) = B cos(knx)

the even solutions.

24



(ii) B =0, sin(ka) = 0 then k, = ZX, n even integer.
Xn(z) = Asin(k,x)
the odd solutions.
Determine A, B by requiring normalisation of eigenfunction

¢ i
/'Xn(w)IdeZO:A:B: Q

Solution: eigenvalues of H are

eigenfunction of H

.image
(i) Ground state has E # 0. Note (contrarily to classical mechanics)
2

(il) n — 00, |xn(x)|* — const (Classical mechanics limits)

In classical mechanics

In this case particle free inside the wall

— MNconstant = Pconstant

Proposition. If quantum system has non-degenerate eigenstates (E; # Ej for i # j)
then, if U(x) = U(—=x) the eigenfunction of H have to be either odd or even.

Proof. If U(z) = U(—=x) then TISE invariant under x — —z. If x(x) is a solution with
eigenvalue F, then also x(—x) solution and x(—z) = ax(z) solutions must be the same
up to a normalisation factor c. Then

X(z) = x(—(—2)) = ax(—z) = o’ x(x)
— o?’=1 = a=+1
= x(z) = £x(-2) O

25



3.1.2 Finite potential well
0 <
Ulz) = x| <a
Up |z|>a

Consider E > 0 (E < 0 does not exist in this case) and E < Uy (bound state) We look
for odd / even eigenfunction

(i) even parity bound states

x(—z) = x(z)
solve
h2
_%Xﬂ(m) = Ex(x) ‘:(}| <a (I)
h2
—5X(@) = (B~ To)x(@)  |a| >a (Im)

(1) X"(x) + k>x(x) = 0 with k = /22E

x(z) = Asin(kzx) + B cos(kz)

but A =0 (even parity)
x(z) = Bcos(kzx)

(I1) X"(x) — K'x(x) = 0 with k = / 2nUe=E)

x(x) = cetFr 4 peh

but impose normalisability implies £ > a, ¢ = 0, x < —a, D = 0. Impose
even parity C = D.

To summarise:

Ceke r < —a
X(x) =< Beos(kz) |z] <a
Ce k= x>a

Impose continuity of x(x) at = +a, x'(x) at = +a. Then
x(a) — Ce e = B cos(ka)

X' (a) — —kCe % = —kB sin(ka)

if take ratio from definition
ktan(ka) =k

26



Define rescaled variables ¢ = ka, n = ka.
Etang =1

&+t =rg

2
1")2 _ mUO

a2

h2

TR

eigenvalues of H corespond to points of intersection

h2

B —
" 9ma?

§,2L n=1,...,p

Note. Uy >0 = 19y >0 — E, = %Q(Qn —1)27%, x — xn of infinite

8ma
well.

Xl

27
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Exercise:
(1) Use the unused condition in system to write C' in terms of B

(2) Impose normalisation to 1 to find B.

3.1.3 Harmonic Oscillator

U(>)

1
U(x) = 51{:302
k € R elastic constant. w = \/%. Classical mechanics: Newton 2 is & (t) = —w?x(t).

— x(t) = Asinwt + Bcoswt

with T' = %” period oscillations.
Quantum mechanics:

h? 1
— (@) + ymetaty(z) = Bx(a) (1)
We know:
e Discrete eigenvalues
e even / odd eigenfunctions
Change of variables:
6 = @
- hw
Plug into (1)
d?x 2
—dT»Q(f)+f x(§) = ex(¢) (2)
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Solve it by starting from a particular solution

e=1 <E0:h;>

Xo(6) = e €72

Plug (3) into (2) with e = 1 works. We found one eigenvalues Ey = %”, Xo(x) = Ae™

ansatz:

To find other eigenfunction of H take general form

() = f(e)e &/
Plug (4) into (2)
azf . df

*@+2€£+(175)f:0

Use power series method (§ = 0 regular point)

f(f) = Z an&"
n=0

an € R. Clearly
df <
§— = nan&"
€

;1?; = in(n —1)a" 2 = i(n +1)(n + 2)ang2™
Plug (6)-(8) into (5): - -
i[(n +1)(n+ 2)anto — 2na, + (¢ — 1)a, " =0
n=0
g (2n —e+1)

-
(n+1)(n+2) "
Because of parity of eigenfunction:

e Either a,, =0 for odd n (f(§) = f(—&)) even eigenfunction

e or a, =0 for even n, (f(§) = —f(—¢£)) odd eigenfunction.

(3)

mw .2
2k ©

(4)

Proposition. If series (6) does not terminate then eigenfunction of H would not

be normalisable.
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Proof. Suppose that the series in (6) does not terminate. Hence can look at asymptotic

behaviour of series. Take (0)

[ ) 2
n—+ -z
an n
as n — oo. This is same asymptotic behaviour as

o

X #2m
o) = =2 =3 b
m=0 ’ m=0

where
for m even

1
b =4 ™
0 for m odd

asymptotic behaviour of g(§)

as m — oo. So if €§°/2 and f (€) have same asymptotic behaviour

Y(&) ~ e 82 = 812 oo

Given that the series (6) terminates then there exists Nsuch that
ant2 =0
with ay # 0. Plug (10) into (9)

(2N —-e+1)
WETINE DV 2

== 2N —-e+4+1=0

aN:0

Plugging in definition of

1

eigenvalues N =0, Ey = %
Eny1 — By = hw

eigenfunction (&) = fy(€)e €72
xn (=€) = (1) xw (€)
Hermite polynomials are defined with recursive relation

dN
N€§2

dgy ()

fn(€) = (1)

30
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N | Ex| fn(§)
0% 1
1| 3 3
2 | 2% | (1-2¢%)
3 5% (6-38)
3.2 The free particle
TISE (U(z) = 0):
hQ "
~3-X(X) = Ex(a)
2mE
() + S x(@) = 0
L= 27};12E
xz) = e
h2k? ;
E; = o xi(z) = e®

¢k;(-75, t) _ Xk(ﬂj‘)e_iEkt/h _ ei(kx—hkz/Qm)

This wave function is not square-integrable:

| otetpae= [~ =

This is a consequence of

/OO [(z,t)Pde = N < 0o = lim dz|p(z, )] = 0

oo R—00 J|z|>R
How do we deal with unbound states?

Option 1 Build a linear superposition of not-normalisable states that is normalisable
(section 3.2.1)

Option 2 We ignore the problem but change interpretation (section 3.2.2)

3.2.1 Gaussian Wave Packet
vlat) = [ ARk

(A(k) is a continuous coefficient of linear combination) A possible option is Gaussian
wave packet:

A(k) = Acp(k) = exp [—%(k: _ ko)Q] o R ky €R
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where

TRV _ihk‘2
F(k) = 2(k ko)” + ikx o

t

1 it
_ - <g+ z) k2 + (koo + iz)k
2 m

Complete the square:

2 0o 2
= Ygp(z,t) = exp [2ﬁa —1—5] / exp [—g (k — g) ] dk

Shift contour k = k — g Let v =Im (g)

Yap(x,t) = exp [62 + (5] /OOW exp (—%l?) dk

2a —00—1V

Using standard Gaussian integral
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We get
27 2
t)=1/— — 4+
var(e.0) =\ 2 exp | - +0]
Exercise: Write )gp(x,t) by substituting (3, o, d and normalise it to 1.
B =koo +ix [%=kic? —k®+ 2ixkyo

The —z? in 3% implies that ¢gp is normalisable. Once gp is normalised, ¥ gp cen
define

2
_ _ m)
. (c
pcp(z,t) = |¢GP(wvt)‘2 = - w22y P 9 m:;
T (02 + ;TQ> (02 +75)
at t fixed:

(&2
5P

> 2C

width of distance

The centre of the distribution is ()

Yap*

() yop = / T (@, )aBp (@, ) da
= /00 xpgp(z,t)

oy
m

Error on position of particle:

Az = \[@2)yer — (@3, = % (“ * W)

m2c
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Az = \/g at t = 0. Az increases as t increases. Given ¥gp it is interesting to compute
(p), Ap

Whver = || Fanla.t) (<ih-Tap(e.0)) do
= hko

To calculate Ap on ©Ygp we have

(P)iep = P°kg

Yap

we need )

oo a2 _
Phice = [ Toplnt) (124 5Tcr(w0)) do
If you compute it and plug it into Ap THE FOLLOWING SECTION IS ALL WRONG,
IGNORE UNTIL TOLD TO STOP IGNORING.
h

Ap= ————
2(04—%)

_ _ 2 1 .
at t =0, Ap = h\/;, as t — 0o, Ap decreases as N What we learnt is

Axr — 00, Ap— 00 ast— 00

AxAp = g

STOP IGNORING.
At time t = 0, AzAp = %

The GP is a state of minimum uncertainty. Other A(k) would give you a normalisable

state but if you compute AxAp you would find something > %
Exercise: Compare what you find for ¢y (z,t)

Ax =00,Ap=0

<x>¢k =0, <x2>’¢'k = 00
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3.3.2 Beam interpretation

The idea: ignore normalisation problem and take x; = e as eigenfunction of H. Take

xp(z) = A AcC

, n2k2
Yz, t) = AehTe ot

but instead of x,(z) describing a single particle they describe a beam of particles with

Pr = hk
R2k?
E,=——
k 2m
with probability density
pk(.%’,t) = ’A‘Q
representing constant average density of particles. Compute probability current
: N W
it t) = =50 (w58 — 05k
dp 0j
{m*a—]
(lecture 3) In this case taking (*)
: 2 h 2 P .
Jr(x,t) = ]A\ = |A|*— = average flux of particles
m

3.3 Scattering states

What happens if we have an unbound potential U(x) and throw a particle on it

U
ko>0
l’fﬁﬂgm}f.ig'/
> forbide
(R a
e[ ed—f.)\
PO\/L d{’

Definition. Probability for particle to be reflected is given by the reflection coeffi-
cient

R= lim /—ooo|w(;p(:v,t)|2d:r
t—o0
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Definition. Probability for particle to be transmitted is given by the transmission
coefficient

oo
T = lim/ lhep (@, 1) [2dz
t—o0 0

Clearly T+ R = 1. Solving scattering problems using beam interpretation gives some
results for R and T, so we will use it.

3.4.1 Scattering off potential step

0 2<0
Ulz) = T=Y Uy eRrt
Uy >0

U Gse)

To find xx(z), solve TISE

h2
I h(@) + Ul@)xn(a) = Bxae)
Region I, z <0, U(x) = 0.
2mE
X))+ Exn(z) =0 k= b 0

Xn(x) —_ Aeikx +Be—ikzx

(A part is the beam of incident particles, B part is the beam of reflected particles).
Region II, z > 0, U(z) = Up.

—2
Xz(@) + k" xp(x) =0

2m(E — Up)

k= 3

k real for E > Uy, and imaginary for E < Uj.
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e For FF > Uy, B B
az(z) = Ce'*™ 4 De e
(the C term is the transmitted beam, and the D term is the incident beam from
00). D = 0 due to initial condition.

e For E > Uy,
xz(x) = Ce™ ™ 4 De™

where 1 = 4/ W. D = 0 otherwise x3z diverges at oo.

Putting I and II:

( ) Aeinx + Be—inx T § 0
() = -
Xn Ce'ke x>0

Impose continuity of x(z),x'(z) at z = 0 and get
A+B=C

ikA — ikB = ikC
p-k=Fy
k+k
2
2k,
k+k
We can view these in terms of particle flux

ih L 0X ox*
L Ve,
I, 2m <X ar N oz >

Compute for

e £ > U
_JR(AP =B z<0
hx
Jine(z,t) = E|A|2
hk
Jref(xat)E|B|2
hk
Jtrans(xut) = E|C|2
T\ 2
o drent _ B _ <k:—k)
Jinc ‘A|2 ]i'+ k
T — Jtrcms _ ‘C’2E _ 4]{E
Jinc |A|2 k (k +E)2
Interpretation:
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—R+T=1
—E—>Uy,k—0,T—0, R—1.
- F—o00, T—1, R—0.

o B < Uy. .
Jine ot :7*’42
(a,1) = )4
hk
Jre ot :732
st ="5)p
Jtrans(xvt) =0

R=1,T =0 but xz(x) # 0 from = > 0.

Scattering off potential barrier

0 <0 >
Ul) = r<0,x>a
Uy O0<zx<a
Consider E < Uy.
2mE
k= 2 >0
2m UO —F
Solution of TISE . B
ezkzx + Aeukzx x < 0

Be™"* 4 Ce* O<z<a
Detkr 4 Bem#7 2> ¢
=0

x(z) =

4 free coefficients with 4 boundary conditions given by continuity of x(X) and x/(x) at
z=0and z = a.
1+A=B+C

ik — ikA = —nB +nC
Be ™" 4 O = Detke
—nBe " 4+ nCe"® = ikDe'*®
Find dnk
(n — ik)? exp[(n + ik)a] — (n + ik)? exp[—(n — ik)q]
= T = |D|? = 4k*n?

D=-—
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Take limit Uy > F = na > 1

16]{72772 —2ma
(172 + k2)2 ——
o~ 3 VI - E)

T —

Recap of chapter 2

Hermitian operators <> observables

~ ~ A~

0F =0 <= (0v,0)=(,0,¢) V¢ € H

Have:

e Real eigenvalues (Theorem 2.1)

o If Oy = atpy, Othy = bipy with a # b then (1, 1)2) = 0 (Theorem 2.5)

e Eigenstates of Hermitian operator form a complete basis of . (Theorem 2.6)
Quantum measurement:

e Eigenvalues of O are possible outcomes of measurement of the observable O.

o If = 3", a;thi, Ui eigenstates of O then P(O = \;) = a? = |(¢i, ¥)|?

e Immediately after a measurement with outcome \;, the wave function becomes ;.
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4 Simultaneous measurements in Quantum Mechanics

4.1 Commutators

Definition. Commutator of two operators fl, B is the operator

[A,B] = AB - BA

Properties:

N

7B] = —[B,A]

°

\.D>>
Y

o [A,A]=0
e [A,BC) =[A, B|C + B[A, (]
e [A,B,C] = A[B,C]| +[A,C]B.

Exercise: Compute [Z,p] in 1 dimension.

Take v € H
py =x (—ih(;l) P(x) = —ihxgi}(m)
0 0
P = —zh%(dmﬁ(:ﬂ)) = —ihy(x) — zhxa—i}

—> [#,p¢ = i = [&,p] = ihl

Canonical commutator relation.

Definition. Two Hermitian operators A and B are simultaneously diagonalisable
in H is it exists a complete basis of joint eigenfunctions {¢;} such that

Ay = agp;
Bip; = bt

with a;, b; € R.

Theorem 7. Two Hermitian operators A and B are simultaneously diagonalisable

— [A,B]=0

Proof. = If A, B simultaneously diagonalisable then {1} set of joint eigenfunctions
that is a complete basis of H.

Vi [A, Bl = AByy; — BAy; = (ab; — bia;); =0
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Take v € H.

< If [A, B] = 0 and t; eigenfunction of A with eigenvalues a;.
0 = [A, Blyy = ABy; — BAY; = ABi; — a; By
SO
A(Bv;) = ai(B;)
B maps the eigenspace E; of A with eigenvalue a; into itself so B |5, is an Hermitian
operator of F;. Since this holds for all eigenspace F; of A, we can find a complete

basis of simultaneous eigenfunctions of A and B.
O

4.2 Heisenberg’s Uncertainty Principle

<
Definition. The uncertainty in a measurement of an observable A on a state 1 is

defined as
AyA = (A,Z,A)2

where

(A= (A, D)%)y = - (A= (A)yI)*pd’x
= [ @ A%pd3z + ((A)y)? / Yrapd3e — 2(A)y / Vv Aypdix
R3 R3 R3

+(A)} — (A)y)?

Lemma 2. (AyA)? >0 and (AyA) =0 <= 1) is eigenfunction of A.
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Proof.

(Call ¢ = (A — (A),I)1) Now prove that (AyA)2 =0 <= ¢ = 0.
= (AyA)? = (¢,¢) =0 if ¢ = 0 implies

i.e. 1 eigenfunction of A.

1. If ¢ is eigenfunction of A with eigenvalue a € R then
(A = (&, AY) = a(, ) =a
(A)y = (1, A%) = a®*(¢,0) = a®

using second definition,

(ApA)? = (A%)y — ((A)y)? =a® —a® =0

Lemma 3. If ¢, ¢ € H, then

(¢, )P < (6, ¢) (¥, )
and |(¢,9)|2 = (6, ¢)(«, ) if and only if ¢ = ay for a € C.

(proof comes from Schwarz inequality and is available in Maria Ubiali’s notes).

Theorem 8 (Generalised uncertainty theorem). If A and B observables and ¢ € H
then

—

(ApA)(AyB) 2 51 [4, By

Proof.
(AyA)? = (A= (A D)y, (A — (A)ypD)p)

Define
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B =B — (B)yI
Hence R R
(ApA)? = (A'y, A'y)

(AyB)? = (B'y), B')

Using lemma 4.3: R R
(AyA)*(AyB)? > (A4, B'y)|? (1)

and RHS is equal to |(¢, A’B'4)|? because A’ is Hermitian. Define

[A',B]1=AB - B'A (2)
{A',B'Y = A'B'+ B'A’ (3)
if A’ B’ Hermitian
A, Bl = —[A, B/| (4)
Now writing
A'B = (A, B+ {4, BY) (5)
Plug (5) into (1)
1 o
(ApA)P(AyB)* > er, (A", B'Y) + (v, {A", B'}y)[?

Given that:
o (v, {4, B}y) eR
o (,[A,B'|¢) =ir with r € R

then
(BpAP(AuBY 2 110, [ BI)E + o, (4 B}

—_

= (AyA)(AYB) > o|(4, [A, BlY)| -

2
Consequences of generalised uncertainty theorem

. [/1, B] = 0 if and only if there exists joint set of eigenstates which form a complete
basis of H which happens if and only if A, B can be measured simultaneously with
arbitrary precision on a given state.

e Take A =&, B = p. Given that [&,p] = ihl

o | St

= (Ayx)(Ayp) >

(Heisenberg’s uncertainty principle).
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We had shown explicitly that, if ¢ = ¥gp then

Do | St

(Apep)(Apgpp) =
at t = 0. (this is the minimum uncertainty). The reason for this lies in two lemmas:

(i) Lemma 4.5: % is a state of minimum uncertainty
— Y =tdapy a€R
(ii) Lemma 4.6: The condition for 4.5 to hold is
b(x)=Ce ™ ceC,beRT
Exercise: Verify that iy (z,t) = ekt e=Ert/h does not satisfy equation of Lemma 4.5.

4.3 Ehrenfest theorem

Time evolution of operators.

Theorem 9. The expectation value of an Hermitian operator A evolves according
to

Proof.

di(A / V¥ (x, t) Ap(z, t)dz

- / (" A

_/ (8¢*A¢+¢ w+¢*A8w>

0A
/ U (HA - AH>wdx+<8t>w

o0
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Examples

(1) Take A= H

— =0
(% =0)
(2) Take A = p.
52
.3l = | 3+ U@).8] v
= [U(@), 8l
= Ute) (i, ) vtat) - (-ing
0 8
= ihU ()= x,t)+m/y@5if(ﬁ)
— D _ i,
__ <3U
Tl
(3) A=2
. ~2
1.4 = |2+ U(0).4]
— 5l
1

—ihl ihl

ih

= ——D
m

d{@)y i, .

= _([H

_ Py
m

(matches the classical & = £)

4.4 Harmonic oscillator revisited (non-examinable)

~ p 1 9
H=— _
2m+2mw

(i’Q
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(k = mw?, elastic constant). Eigenvalues, eigenfunctions of H. Rewrite:

~ 1 )
—ihi
1 hw »
= 5, (0 +imw)(p — imwi) + —-1 (1)
Definition. Ladder operators
N 1 .
a4 = —(p — imw3) (2)
2m
At 1 .
a' = —(p + imwz)
2m
2 hw ~
:é‘H:ﬁﬁ+3J (4)
Compute
a,al] = L[p“ — MW, p + imwi]
b} 2m b
imw[A A] n imw[A A]
= —— |\ —_—
om P om p,x
= hwl (5)
[H,a) = [a',a,a]
= —hwa (6)

[H,a'] = hwal

Suppose x eigenfunction of H with eigenvalue F,

ﬁXzEX

Take (ax). What is its energy?
H(a,x) = [H,a]x + aHx
— —hwy + Eay
= (F — hw)ayx
ax) is eigenfunction of H with eigenvalue (E — fiw) and a'y) is eigenfunction of H with
eigenvalue (E + hw). Prove by induction:

(a"x) — eigenfunction with eigenvalue E — nhw
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(&Tnx) — eigenfunction with eigenvalue E + nhw

Using the fact that X
(H)yp =20

then 3 eigenfunction xg such that
axo =0

Find xq
1
—(p — twx =0
m(p )XO)

0
ipEXe tmwxxo =0
ox

= Xo(20 = ce M (20

. i hw - hw
Hyo = a'axo + - Ixo=Zx0

The excited states with £ > Ej

Eigenvalues

Start of
lecture 13
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5 3D solutions of Schrodinger equation

5.1 TISE in 3D for spherically symmetric potentials

h2
— 5, V2X(x) + U(x)x(x) = Ex(x)

Laplacian operator V2

e Cartesian coordinates (x,y, z):

e Spherical coordinates (r, 8, ¢)

o2 10? 1 [

62
r Or? ( r2sin2 6

11102 mGQ + —
S50\ 80 ) T 992

[&

T = rcos ¢sinf

y =rsin¢sind

z=rcos0

0<r<oo,0<0<m0<¢<27. Reminder:

/ dVv = / dx/ dy/ dz
R3
2T
/ dv = / d¢ / cosf / r2dr
R3 5 0

fo
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Definition. Spherically symmetric potential
U(x) =U(r,0,¢) =U(r)

Clearly, even with a spherically symmetric potential ¢(r, 6, ¢).

We start by focussing on a particular sub-class of solutions of TISE, i.e. on Radial
eigenfunctions (7). If x(r,0,¢) = x(r) then

2
V() = o (r(r)

Plugging this into TISE in 3D:

_h2 <d2X 2dy

om \ 32 TdT)‘FU(T)X:EX (%)

Normalisation condition for x € H:

/ X(r.6,)2dV < 0o
RS

= / |X(T)|2r2dr<oo
0

eigenfunctions x(r) must go to 0 sufficiently fast at 7 — oo and behave well (~ 1) (most
singular behaviour) at r — 0.

How to solve (x)? One way of doing it is to define

o(r) =rx(r)
n? d20(r) B
o a2 +U(r)o(r) = Eo(r) (xx)

This is like the 1D TISE defined only on R™ and with usual normalisation condition on
R2:

/ |0(r)]2d7‘ < 00
0

We want o(r) =0 at » = 0, o/(r) finite at r = 0.
— Solve (**) on R and look for odd solutions:

o(—r)=—o(r)
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Example: Spherically symmetric potential well

0 r<
U(r):{ "=9 L eRY,UyeRY
Uy r>a

>

TISE as (xx) and solve it for o(r) = rx(r) by analytically continuation on whole R and
looking only for odd solutions.
iz d?o(r)
2m  dr?

+U(r)o(r) = Eo(r)

Look for odd parity bound states
0<E<Uy

2mE — 2m(Uy — E)
K=\ T =y

Asin(kr) |r|<a

o(r) =< Be*r r>a
—Bethr r< —qa

odd solutions:

Boundary conditions for o(r):

e continuity of o(r) at r =a
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e continuity of o/(r) at r = a.
{Asin ka = Be ke
kAcoska = —kBe
= —kcot(ka) =k

From definition:
2mU; 0

2 1.2 —
k* + k2 = 2

Solve this graphically by defining
¢ = ka, —n = —Ccot(
n = ka —n? €2 =1l

Ifro<§ (&= Uy < %) then doesn’t exist solution. Two differences:
(1) Below a given threshold for Uy there does not exist bound state in 3D. (contrarily
to 1D in which there exists even bound state)

(2)

kr

B r>Q

{Asingkr) r<Q

o1
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5.2 Angular momentum in Quantum Mechanics

Classical mechanics:
L=xxp

When you have U(r) then

dL—'x +xxp=0
dt_X P+XXp=

In Dynamics and relativity the conservation of angular momentum implies that 3D —
2D (once take the plane L - x = 0) — 1D (solve Newton’s second law on e;).

Definition. Angular momentum operator

=

=XXP

L=—ihxxV
In 1D: p = —hZ
In 3D: p = —hV, x =x.

Write it in cartesian coordinates (z1,x2,x3)

N

L, = —h€ijk$j87xk — (ij-’ijﬁk)

i=1,2,3.

Recap of Quantum Mechanics in 3D (Section 5)

°
2

) 4 Uxx) = Ex(x) xR

2m
1D:
32
T oz2
. 0
D= —zh%
) 0?
N Or?
3D: o2 o o
V2= o b o
am% + ax% + 6x§
. ) ) L, 0 0
P = —Zhv = <—Zhaxl + —Zhaim, —haxg)
‘A |2 h2v2
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e Useful to write V? in spherical coordinate (r, 6, ¢)

1 0? . 1 §in 6 + 0 < 9 0 62
———— |sin — [ sinf—

ror2 r2sin2 6 00 8¢)2

e If U(x) = U(r) (spherically symmetric potential) we can find some special solutions
of TISE x(r) (radial solutions).

v2

o If take (zhf) = U(r), x(r,0, p—x(r)

2 2
o T LX) + U)X = Ex(r)

if define o(r) = rx(r), TISE for x(r) becomes

h? d%o(r)
Com dr2

+U(r)o(r) = Eo(r)

in RT, and with normalisation condition

/ |0(r)\2dr < 00
0

because of normalisation conditions o(r) — a as r — 0. But we found a = 0.
Why? If we allowed o(r) ~ a # 0 as 7 — 0 (which means x(r) ~ %) then H would
not be Hermitian.

Proof. For H to be Hermitian we need

(¢, Hx) = (Hp,x) Vo, x€H

(6, Fx) = /0 drr¢(r) Hx(r)
h2 oo dX
- _% 0 d ¢ < d?” >

[, dy o do]™ R odg
=5 - =X —d
2m [T (bdr " Xdr " 2m rdr ar ) X

(H¢,x)
If(;S(r)NBas%OwithB;éOthenx(r)Néasr%OWithAyéOthen

dx 2y d¢
- 74> 0
dr

as r — 0. O

r2¢

Due to Quantum Mechanics interpretation we classify x(r) ~ é as unphysical,
hence o(r) =0 at r = 0.

93



Continuing from before the recap

Properties:
e L; is Hermitian (Example sheet)

. [[A,l,ﬁj] # 0 if i # j (Example sheet). = different components of L cannot be
determined simultaneously.

Proof.

= iliL3x(21, 22, 73)

Definition. Total angular momentum operator i

L’=13+12+12

Properties:

e [L?,L;] = 0 (Example sheet)

e for U(r) [L?, H] =0 (%), [Li, H] = 0.
Proof. —
[ﬁiv i’j] = [&'mn@miﬁm i’j]
= 5imn[§3m]5na j}j]
= 5imn(£’m[ﬁna f%j} + [i'my jj]ﬁn)
= —ihaimjim

= iheijmim

(Li,83) = [Li, &3] + 25(Ls, 4]
= Z'he’;‘ijm(i'm.f?j + i’jﬁ?m)
=0
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— [Lu, U(r)] = 0 since r = /&3 + 33 + &3.
- [ﬁi,ﬁj] = 1heijmDPm (same proof as for xj)
- [Ll7ﬁ2] =0

and

(trivially) O

{ﬁ L2, ﬁz} set of mutually commuting operators. Take i = 3. —
(1) Can find joint eigenstates of these 3 operators that form a basis of H.

(2) eigenvalues of these 3 operators |L|, L,, E can be simultaneously measured at an
arbitrary precision.

(3) The set of operators is mazimal i.e. we cannot construct another independent op-
erator (other than /) that commutes with them.

To find joint eigenfunctions of L? and Ls write L in spherical coordinates (appendix 7
of Maria Ubiali’s notes)

ih(l’ga—xga,...,...)
0x3 0xo
D ()2 (2D ()2
ox1 Oox1 ) Or Oox1 ) 00 0x1 ) 0¢
And put
L3 = m@agb

- h? 0 0 ok
2 _ _ 02 [ sinp-L Z
L* = ) [smﬁae <81n980> + (9¢2]

Next time we will look for joint eigenfunction

Y (0,9)
such that .
L2 (6,6) = AY (8, 9) 1)
Start of
lecture 15 _haaqﬁy(e’ ¢) = hmY (6, ¢)
Find solutions
Y(0,0) =y(0)X(0)] (3)
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Plugging (3) into (2)
0

—ih <6¢X(¢)> WO = hm X (o))

X(g) =™

Given that wave function must be simple-valued in R?> = X (¢) must be invariant
under

¢ — ¢+ 27w
= ¥ =1 = meZ (4)
Plug (4) into (1) and find
10 (. 0y®) m? A
- 9 _ 0) = — 2o
sin 0 00 <Sm 06 > a2 V9 = v (5)

This is the associated Legendre equation (IB Methods) and it has solution

dim|
. Py(cosb)

y(0) = Pyy(cosd = (sin e)lmlm

(where P, is the associate Legendre polynomial and P, is the ordinary Legendre poly-
nomial). Because Pj(cosf) is a polynomial in cosf of degree |, — —I < m <[ and
(without proof) the eigenvalues of L? are

A=HR(1+1)
(1=0,1,2,...) Put everything together:
Yin(0,6) = Pim(cos 0)e™?
1=0,1,2,..., =1 <m <. Spherical harmonics:
L2Yin(0,6) = H1(1 = 1)Yi,m(09)
L3Yi,m(0,6) = mhY,m (0, ¢)
[, m are quantum numbers that characterise:
e [ — total angular momentum
e m — azimuthal number, z-component of L.

In classical mechanics
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—L|<L.<|Ll & —l<m<I
1

Y(),(J(lgaﬁb):\/fir [=0,m=0
Y1,0(9,¢)—\/%COSH I=1,m=0
1 )
Y141(0,¢) = mSin@eiw [l=1,m==1

All spherical harmonics are orthonormal (like all eigenfunctions of Hermitian operators)

(Yi,m, }/l’,m’) - 5ll’5mm’
2 1
/ dé / dcos 0} (8, ) Vi (0, &) = 61 G
0 -1
5.3 The Hydrogen atom

(+&> C'e)
o——

.-
f

Model proton (nucleus) to be stationary at the origin (m, — oo, or equivalently m, >

Me)

2
€ 1 _ achoulomb

Fcoulomb (T) - _471'8() ﬁ - or
e 1

dmeg r

Ucoulomb (T) =

/\U ()
/
7.
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Bound states E < 0.

h? e2
_%V2X(T7 0¢) - 471'80 ;X(T,0,¢) = EX(T797¢) (1)
Laplacian
1 82 1 0 a 82
2 _ I
\% rarz T+ 2 5in 0 (sm@aa s1n0 8(;52)
~ K2 0 8 82
2 .
L= ey [sm&ae 31119 8@52}
2 92 T2
— V= ‘25?'*; e
Plug (2) into (1)
h2 1 (9 i2 o2
oy (a 5TX(r, 0 <Z>)> zmergx(r,e,@ - 4ﬂ€0r><(r,0,¢) = Ex(r,0,6) (3)

Because of eigenfunction of H are also eigenfunction of L2 and Ly = x(r, 0, ¢) must
also be eigenfunction of L?, L.

= X(r,0,0) = R(r)Yim(0,9)

= L*x = R(r)LharYym(0,¢) = W*I(l + 1)R(r)Yim(0, ¢) (4)
Plug (4) into (3)
2 2 62
%fﬁyiw > VR Yookt 0 — 4 R() Vi3]
= ER(r)M (5)

We end up with a 1D equation for radial part R(r)

h2 @R 2dR 2 1 R+ 1)
-— — — R=FR 6
<d7“2 r dr > ( deg T 2mer? > (6)
Ver(r)
(Vegt(r) is a bit like in classical mechanics).
53.11=0
Vet (1) = Veoulomb (7). Rewrite (6) in terms of variables
2mE
2 _
=" >0
_ m
o 27‘('6()712
In terms of v2, 3 (6) becomes
d’R  2dR (B
dr2+rdr+<r_V>R_0 (7)

o8



(i) The asymptotic behaviour (rgoo) determined by

&R
W — VUV R = 0
R(T) ~ e:i:ru

as r — oo. Take R(r) ~ e~ because of normalisability.
(ii) At r = 0 eigenfunction has to be finite (~ A).

Exploiting (i) take ansatz

Plug (8) into (7) and find

F10) + 20— ) )+ 2 (B = 20) () = 0 )

(9) is a homogeneous linear ODE with regular point r = 0

flr)y=r° Z anr”
n=0
F1r)y =" an(c+n)yretn! (10)
n=0

f//(r) E Z an(c + n)(c +n— 1)Tc+n—2

n=0

Plug (10) into (9):

[e.9]
2

E an(c+n)(c4+n—1)rT"2 £ Z(1 = vr)ap(c+n)re™ 4 (B = 20)rct T =0
r

n=0

Constant power of 7 has coefficient (r¢~2)

apc(c —1) +2apc =0

= apc(c+1)=0
¢ = —1 (then X ~ é) or ¢ =0 (then X ~ A). So ¢ = 0 and the equation for the other

coefficients is

Z ann(n + 1a,_1(8 — 2vn)]r" 2 =0
n=1
2vn — 8

— gy =P, 11
“ n(n+1)a ! (11)

Start of
lecture 16
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Proposition. If f(r) =Y ° ;ja,r™ is infinite then R(r) is not normalisable.

Proof. Asymptotic behaviour of f(r) determined by

b, = (2,/)71, then

n!

Asymptotically f(r) ~ e, R(r) = f(r)e " sine’r. O

— the series must terminate. 3N > 0 such that

anN =0 with an— 750

p
— 2WN—-03=0 = v=—
v I3 V=08
Substituting v, 3,
e*me 1
En=—-—5=—
N 32022202 N?
with N =1,2,3,... same as Bohr’s energy spectrum. Eigenfunction Ry(7), substitute
2Nv = fin (11) and find
N —
In gy 071 (12)
ap—1 n(n+1)

Can use (12) to find coefficient of Ry(r).

N =1 , polynomial of degree 0, set ag = 1 then normalise

Ry (7“) = Ae 7"

N =2 |, polynomial of degree 1, set ag = 1,

2—1
“u (g) —2v
ao

— a1 = —vag = —V

Ro(r) = As(1 —wr)e™™"

60



N =3 , polynomial of degree 2, ag =1, a1 = —2v, as = %VQ
2 2.2\ _—vr
Rs3(r) = As(1 —2vr + Fidd )e

In general
Ry(r) = Ly(vr)e ™"

where L,, is the Laguerre polynomial of O(N — 1).

P(r) oc r?|Ry(r)]2.
Exercise: Compute A; and compare closest to nucleus radius to Bohr radius

. 3
<7°> x1=R1Yoo — 50’0

(Bohr radius is dg—y) =0)

5.3.21>0

2R 2dR (8 I(1+1)
z E_op— -
dr2+rdr+(r Y 2 )R 0

Asymptotic behaviour:

R(r) = f(r)e™™"

&2f 2 df (B (041
= drzﬂ“‘””(hf(r‘?”— 2 )>f=0

Power series

o0
firy=r° Z anr"
n=0
Plug (17) into (16) and identify lowest power of r and set coefficient to zero

aplo(c —1) +20 — 11+ 1)]r" 2 =0
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= o(c+1)—-1l(l4+1)=0

Sohave o =—l—1loro =1 Butifa:—l—lthenR(r)er%asr—>0,whichisnot
integrable near r = 0. But if 0 = [, then R(r) ~ 0 as » — 0 which is fine. Now we know

r) =r! Z anr" (18)
n=0

Plug (18) into (16) and find

_ 2v(n+1)— B
B (n+2l—1)

As before easy to show that R(r) would diverge unless
Inmax >0 such that ay,,.. =0,an,,.-17#0

Plug an,,.. in (19).

2V (Mpax +1) =8 =0
=N

2 - == = —

etm 1
b EN = _327r253Eﬁ2W) N = 1727"'

e Eigenvalues same but the degeneracy is larger VN, N = npa.x + . Can have
[1=0,1,....,N—1. -l <m <.

=

N—

l
D(N) = Y= (2+1)
’ l m=—1 =0

H

Il
=)

degeneracy
energy level N you have N? (linearly independent) states with same Ey.
e Eigenfunctions
XN (7,0, ) = R y(r)Yim (0, 6) = rlgne N Y0 (6, ¢)

gn,i(r) polynomial of degree (N — 1 — 1) defined by

N—-l-1
gna(r) = Y apr®
n=0
with ap = Q?V]l:iél_ﬁ (generalised Laguerre polynomials) quantum numbers N =
0,1,2,... (principal quantum numbers), [ = 0,..., N — 1 (total angular momen-
tum), m = —[,...,l (azimuthal quantum number).
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For N=41=0,
Rao(r) o (14 caor + dagr® + eaor)e "/

Ksﬁo/\

YOO(ea (;5) =

5
3

For N =4,1=1,
Rya(r) ocr(ean +daar + 64,17“2)6’7"5/8

/\\Kq), (’9

B

}/1,0(07 ¢)7 Yl,l (97 d))? le,fl (97 Cb)
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For N =4,1=2,

Ryo(r) o r2(C4,2 + anT)e—?B/S

Ry

L/ j
Y20(0,9), Yo41(0,0), Yo 42(0,¢). N =4,1=3
Ky
N %
D
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Ry3 = 7“3(0473)6*’”6/8
Y30,Y3 41, Y342, Y343,
Bohr model:

e Fn was correct

Bohr radius was sort of correct

o L2 = N2h% wrong. Instead L? = I(I + 1)Ah? with [ < N.

degeneracy wrong.

5.4 Periodic table
Z’ 6_7
X(X17X27 cee 7XZ) = X<X1> o X(XZ)

E = Z;VZI E;. It’s a poor approximation.
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