% vim: tw=50 % 26/10/2022 10AM \noindent Regular solution $p = m$, has recursion solution \[ (n + m)^2 a_n + a_{n - 2} - m^2 a_n = 0 \] \[ \implies a_n = \frac{-1}{n(n + 2m)}a_{n - 2} \] Put $n \to 2n'$ \[ \implies a_{2n'} = \frac{-1}{4n'(n' + m)}a_{2n' - 2} \] so stepping up from $a_0$ we have (dropping primes) \[ a_{2n} = \frac{(-1)^n}{2^{2n} n! (n + m)(n + m - 1) \cdots (m + 1)} a_0 \] Take $a_0 = \frac{1}{2^m m!}$ (convention) to find the \emph{Bessel function of the first kind}: \[ J_m(z) = \left( \frac{z}{2} \right)^m \sum_{n = 0}^\infty \frac{(-1)^n}{n! (n + m)!} \left( \frac{z}{2} \right)^{2n} \tag{3.2} \] Exercise: Use $y = \sqrt{z} R$ in Bessel equation (3.27) to find \[ y'' + y \left( 1 + \frac{1}{4z} - \frac{m^2}{z^"} \right) = 0 \] So as $z \to \infty$, $y'' = -y$ so we have solutions \[ R = \frac{1}{\sqrt{z}} (A \cos z + B \sin z) .\] Also works for $m = \gamma$ (non-integer) if $(n + m)! \to \Gamma(n + m + 1)$. Second solution with $p = -m$ (integer) is the Neumann function (Bessel function of the second kind) \[ Y_m(z) = \lim_{\gamma \to m} \frac{J_\gamma(z) \cos(\gamma \pi) - J_{-\gamma}(z)}{\sin \gamma\pi} \] Exercise$^*$: Use (3.28) to show that \[ \dfrac{}{z} (z^m J_m(z)) = z^m J_{m - 1}(z) \] and hence \[ J_m'(z) + \frac{m}{z} J_m(z) = J_{m - 1}(z) \tag{3.29} \] Repeat with $z^{-m}$ to find \emph{recursion relations}. \[ J_{m - 1}(z) + J_{m + 1}(z) = \frac{2m}{z} J_m(z) \tag{3.30} \] \[ J_{m - 1}(z) - J_{m + 1}(z) = 2J'_m(z) \] Asymptotic behaviour $J_m(z), Y_m(z)$: \begin{itemize} \item Small $z \to 0$, $J_0(z) \to 1$, $J_m(z) \to \frac{1}{m!} \left( \frac{z}{2} \right)^m$, $m > 0$. \[ Y_0(z) \to \frac{2}{\pi}\ln \left( \frac{z}{2} \right), \quad Y_m(z) \to -\frac{(m - 1)!}{\pi} \left( \frac{2}{z} \right)^m \tag{3.31} \] ($Y_m$ is divergent as $z \to 0$) \item Large $z \to \infty$: oscillatory solutions: \[ J_m(z) \approx \sqrt{\frac{2}{\pi z}} \cos \left( z - \frac{m\pi}{2} - \frac{\pi}{4} \right) \tag{3.32} \] \[ Y_m(z) \approx \sqrt{\frac{2}{\pi z}} \sin \left( z - \frac{m\pi}{2} - \frac{\pi}{4} \right) \] \end{itemize} \subsubsection*{Zeros of Bessel function $J_m(z)$} Define $j_{mn}$ to be $n$-th zero, \[ J_m(j{mn}) = 0 \quad (z > 0) \] From (3.32) this occurs when (approximately) \[ \cos \left( z - \frac{m\pi}{2} - \frac{\pi}{4} \right) = 0 \] i.e. $z - \frac{m\pi}{2} - \frac{\pi}{4} = n\pi - \frac{\pi}{2}$ (modal point). So zero at \[ z \approx n\pi + \frac{m\pi}{2} - \frac{\pi}{4} \equiv \tilde{j}_{mn} \tag{3.33} \] (Accuracy: $\frac{j_{mn} - \tilde{j}_{mn}}{j_{mn}} < \frac{0.1}{n}$, for $n > \frac{m^2}{2}$ (non-examinable)) \\ For $J_0(z)$ actual values are \[ j_{01} = 2.405, \quad j_{02} = 5.520, \quad j_{03} = 8.653 \] \[ j_{0n} \approx n\pi - \frac{\pi}{4} \] (precision $\sim \frac{1\%}{n}$). \begin{center} \includegraphics[width=0.6\linewidth] {images/d0319d92551111ed.png} \end{center} \subsection{2D Wave equation (continued): Vibrating drum} From section 3.8, radial solutions to (3.26) become \[ R_m(z) = R_m(\sqrt{\lambda} r) = A J_m(\sqrt{\lambda} r) + B Y_m(\sqrt{\lambda} r) \] Impose boundary conditions: \begin{itemize} \item Regularity at $r = 0 \implies B = 0$ by (3.31) \item Unit disk $r = 1$ with $R = 0$ implies \[ J_m(\sqrt{\lambda}) = 0 \] But these zeros occur at \[ j_{mn} (\approx \tilde{j}_{mn} = n\pi + \frac{m\pi}{2} - \frac{\pi}{4}) \] so our eigenvalues must be \[ \lambda_{mn} = j_{mn}^2 \tag{3.34} \] \end{itemize} With the polar mode (3.26) the spatial solution is \[ V_{mn}(r, \theta) = H_m(\theta) R_{mn}(\sqrt{\lambda_{mn}} r) = (A_{mn} \cos m\theta + B_{mn} \sin m\theta) J_m (j_{mn} r) \tag{3.35} \] The temporal solution to (3.21) $\ddot{T} = -\lambda c^2 T$ are $T_{mn}(t) = \cos (j_{mn} ct)$ and $\sin(j_{mn} ct)$. For our linear homogeneous PDE (3.17)we can sum together to obtain general solution (noting the special case for $m = 0$): \begin{align*} u(r, \theta, t) &= \sum_{n = 1}^\infty J_0 (j_{mn} r) (A_{0n} \cos (j_{0n} ct) + C_{0n} \sin (j_{0n} ct)) \\ &+ \sum_{m = 1}^\infty \sum_{n = 1}^\infty J_m(j_{mn} r) (A_{nm} \cos m\theta + B_{nm} \sin m\theta) \cos (j_{mn} ct) \\ &+ \sum_{m = 1}^\infty \sum_{n = 1}^\infty J_m (j_{mn} r) (C_{mn} \cos m\theta + D_{mn} \sin m\theta) \sin (j_{nm} ct) \tag{3.36} \end{align*} Now impose \emph{initial conditions} (3.19) at $t = 0$ \[ u(r, \theta, 0) = \phi(r, \theta) = \sum_{m = 0}^\infty \sum_{n = 1}^\infty J_m(j_{mn} r) \times (A_{nn} \cos m\theta + B_{nn} \sin m\theta) \tag{3.37} \] \[ \pfrac{u}{t}(r, \theta, 0) = \psi(r, \theta) = \sum_{m = 0}^\infty \sum_{n = 1}^\infty j_{mn} c J_m (j_{mn} r) \times (C_{mn} \cos m\theta + D_{mn} \sin m\theta) \] Orthogonality: Find coefficients by multiplying by $J_m$, $\cos$, $\sin$ and exploit orthogonality (1.1-3) and Example sheet 1, Q8. \begin{align*} \int_0^1 J_m(j_{mn} r) J_m(j_{m k} r) r \dd r &= \half [J'_m (j_{mn})]^2 \delta_{nk} \tag{3.28} \\ &= \half [J_{m + 1}(j_{mn})]^2 \delta_{nk} && \text{by recursion} \tag{3.29} \end{align*} Now integrate to obtain $A_{mn}$ \[ \int_0^{2\pi} \dd \theta \cos p\theta \int_0^1 r \dd r J_{pq}(j_{pq} r) \phi(r, \theta) = \frac{\pi}{2} [J_{p + 1}(j_{pq})]^2 A_{pq} \] Exercises: Find $B$, $C$, $D$. \begin{example*} Initial radial profile. \[ u(r, \theta, 0) = \phi(r) = 1 - r^2 \] \[ \implies m = 0, \quad B_{mn} = 0, A_{mn} = 0, m \neq n \] \[ \pfrac{u}{t}(r, \theta, 0) = 0 \] \[ \implies C_{mn} = D_{mn} = 0 \] We need to find: \begin{align*} A_{0n} &= \frac{2}{J_1(j_{0n})^2} \int_0^1 J_0(j_{0n} r) (1 - r^2) r \dd r \\ &= \frac{2}{J_1(j_{0n})^2} \frac{J_2(j_{0n})}{j_{0n}^2} \\ &\approx \frac{J_2(j_{0n})}{n} \end{align*} as $n \to \infty$. (Exercise$^*$ using (3.29-30)). \end{example*}