% vim: tw=50 % 24/10/2022 10AM \subsection{Oscillation energy} A vibrating string has kinetic energy due to its motion (for example particle $\half mv^2$) \begin{flashcard}[KE-of-string] \prompt{Kinetic energy of a vibrating string?} \[ KE = \cloze{\half \mu \int_0^L \left( \pfrac{y}{t} \right)^2 \dd x} \] \end{flashcard} and potential energy due to stretching $\Delta x$ \begin{align*} PE &= T \Delta x \\ &= T \int_0^L \left( \sqrt{1 + \left( \pfrac{y}{x} \right)^2} - 1 \right) \dd x \\ &\approx \half T \int_0^L \left( \pfrac{y}{x} \right)^2 \dd x &&\text{for $\left| \pfrac{y}{x} \right| \ll 1$} \end{align*} \begin{hiddenflashcard}[PE-of-string] \prompt{Potential energy of a vibrating string?} \[ PE = \cloze{\half T \int_0^L \left( \pfrac{y}{x} \right)^2 \dd x} \] \end{hiddenflashcard} The total summed energy becomes ($c^2 = \frac{T}{\mu}$) \begin{flashcard}[total-energy-of-string] \prompt{Total energy of a vibrating string?} \[ E = \cloze{\half \mu \int_0^L \left[ \left( \pfrac{y}{t} \right)^2 + c^2 \left( \pfrac{y}{x} \right)^2 \right] \dd x \tag{3.13}} \] \end{flashcard} Substitute (3.10) and use orthogonality (1.1) \begin{align*} E &= \half \mu \sum_{n = 1}^\infty \int_0^L \left[ \left( -\frac{n\pi c}{L} C_n \sin \frac{n \pi ct}{L} + \frac{n\pi c}{2} D_n \cos \frac{n\pi ct}{L} \right)^2 \sin^2 \frac{n\pi x}{L} \right. \\ &\hspace{5em} \left. + c^2 \left( C_n \cos \frac{n\pi ct}{L} + D_n \sin \frac{n\pi ct}{L} \right)^2 \frac{n^2\pi^2}{L} \cos^2 \frac{n\pi x}{L} \right] \dd x \\ &= \frac{1}{4} \mu \sum_{n = 1}^\infty \frac{n^2\pi^2 c^2}{L} \left( C_n^2 + D_n^2 \right) \tag{3.14} \\ &= \sum_{\text{normal modes}} [\text{energy in $n$-th mode}] \end{align*} This is constant, so energy is conserved in time (no dissipation). \subsection{Wave reflection and transmission} Recall travelling wave solution (3.12). A simple \emph{harmonic} travelling wave is \[ y = \Re[A e^{-\omega(t - x/c)}] = |A| \cos \left( \omega \left( t - \frac{x}{c} \right) + \phi \right) \] where the \emph{phase} is $\phi = \arg A$ and wavelength is $\frac{2\pi c}{\omega}$. \myskip Consider a density discontinuity on a string at $x = 0$, with \[ \mu = \begin{cases} \mu_- & \text{for $x < 0$ hence $c_- = \sqrt{\frac{t}{\mu_-}}$} \\ \mu_+ & \text{for $x > 0$ hence $c_+ = \sqrt{\frac{T}{\mu_+}}$} \end{cases} \] assuming constant tension. Incident wave on junction \begin{center} \includegraphics[width=0.6\linewidth] {images/d2f372c4537e11ed.png} \end{center} Boundary (or junction) conditions at $x = c$: \begin{itemize} \item String does not break, i.e. $y$ is continuous for all $t$. \[ \implies A + B = D \tag{$*$} \] \item Forces balance $T \left. \pfrac{y}{x} \right|_{x = 0_-} = T \left. \pfrac{y}{x} \right|_{x = 0_+}$ i.e. $\pfrac{y}{x}$ is continuous for all $t$ \[ \implies -\frac{i\omega A}{c_-} + \frac{i\omega B}{c_-} = -\frac{i\omega D}{c_+} \tag{\dag} \] \end{itemize} \begin{hiddenflashcard}[boundary-conditions-for-discontinuous-density-string] \prompt{Boundary conditions for a string with discontinuous density?} \begin{itemize} \item \cloze{$y$ continuous for all $t$ (string does not break).} \item \cloze{$\pfrac{y}{x}$ continuous for all $t$ (forces balance).} \end{itemize} \end{hiddenflashcard} \[ (*) - \frac{c_-}{i\omega} (\dag) \implies 2A = D + D \frac{c_-}{c_+} = \frac{D}{c_+} (c_+ + c_-) \] So given $A$, we have the solution: \[ D = \frac{2c_+}{c_- + c_+} A \qquad B = \frac{c_+ - c_-}{c_+ + c_-} A \tag{3.16} \] where $D$ is the transmitted amplitude and $B$ is the reflected amplitude. In general, different phase shift $\phi$ is possible. \myskip Limiting cases: \begin{enumerate}[(1)] \item Continuity $c_- = c_+ \implies D = A, B = 0$. \item Dirichlet boundary conditions $\frac{\mu_+}{\mu_-} \to \infty$ (fixed end $y = 0$ at $x = 0$) then $\frac{c_+}{c_-} \to 0 \implies D = 0, B = -A$ i.e. total reflection with opposite phase ($\phi = \pi$) \item Neumann boundary conditions $\frac{\mu_+}{\mu_-} \to 0$ (free end of string - very light string $x > 0$) then $\frac{c_+}{c_-} \to \infty \implies D = 2A, B = A$ (boundary condition $\left. \pfrac{y}{x} \right|_{x = 0}$). Total reflection with same phase ($\phi = 0$). \end{enumerate} \subsection{Wave equation in 2D plane polars} The 2D wave equation for $u(r, \theta, t)$ becomes \[ \boxed{\frac{1}{c^2} \pfrac[2]{u}{t} = \nabla^2 u} \tag{3.17} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/7d6a7fc6538011ed.png} \end{center} with boundary conditions at $r = 1$ on a unit disc (drum) \[ u(1, \theta, t) = 0 ~ \forall t \tag{3.18} \] (fixed rim) and initial conditions for $t = 0$ \[ u(r, \theta, 0) = \phi(r, \theta), \quad \pfrac{u}{t} (r, \theta, 0) = \psi(r, \theta) \tag{3.19} \] \subsubsection*{Temporal separation} Substitute \[ u(r, \theta, t) = T(t) V(r, \theta) \tag{3.20} \] into (3.17) to get \[ \ddot{T} + \lambda c^2 T = 0 \tag{3.21} \] \[ \nabla^2 V + \lambda V = 0 \tag{3.22} \] which in polars is \[ \pfrac[2]{V}{r} + \frac{1}{r} \pfrac{V}{r} + \frac{1}{r^2} \pfrac[2]{V}{\theta} + \lambda V = 0 \] \subsubsection*{Spatial separation} Now try \[ V(r, \theta) = R(r) H(\theta) \] in (3.22): \[ H'' + \mu H = 0 \tag{3.23} \] \[ r^2 R'' + rR' + (\lambda r^2 - \mu)R = 0 \tag{3.24} \] where $\lambda, \mu$ are separation constants. \myskip Polar solution: Configuration implies periodic boundary conditions \[ H(0)= H(2\pi) \] with $\mu > 0$, so the eigenvalue $\mu = m^2$ ($m$ integer) with solution \[ H_m(\theta) = A_m \cos m\theta + B_m \sin m\theta \tag{3.25} \] Radial equation: divide (3.24) by $r$ to bring it into Sturm Liouville form (2.7) with $\mu = m^2$ \[ \dfrac{}{r} (rR') - \frac{m^2}{r}R = -\lambda r R \quad (0 \le r \le 1) \tag{3.26} \] where $p(r) = r$, $q(r) = \frac{m^2}{r}$ and weight $\omega(r) = r$, with self-adjoint boundary conditions with $R(1) = 0$ and bounded at $R(0)$, since $p(0) = 0$ a regular singular point. \subsubsection*{Bessel's equation} Substitute $z \equiv \sqrt{\lambda r}$ in (3.26) to find \[ \boxed{z^2 \dfrac[2]{R}{z} + z \dfrac{R}{z} + (z^2 - m^2) R = 0} \tag{3.27} \] which is Bessel's equation \begin{flashcard}[bessels-equation] \prompt{Bessel's equation?} \[ \cloze{(zR')' + \left( z - \frac{m^2}{z} \right) R} = \cloze{0} \] \end{flashcard} Frobenius solution: substitute power series \[ R = z^p \sum_{n = 0}^\infty a_n z^n \] to obtain \[ \sum_n a_n [(n + p)(n + p - 1) z^{n + p} + (n + p) z^{n + p} + z^{n + p + 2} - m^2 z^{n + p}] = 0 \] Equate powers of $z$: considering coefficient of $z^p$, \[ p^2 - m^2 = 0 \implies p = m, -m \]