% vim: tw=50 % 19/10/2022 10AM \myskip Take $\lambda = l(l + 1)$ with $l$ integer, then one or other series terminates, i.e. $c_n = 0$ for all $n \ge l + 2$. These \emph{Legendre polynomials} $P_l(x)$ are coefficients of (2.21) on $-1 \le x \le 1$ with normalisation convention $P_l(1) = 1$. \begin{note*} $P_l(x)$ has $l$ zeros and $P_l(x)$ is odd if $l$ is odd, and if $l$ is even then $P_l(x)$ is even. \end{note*} \noindent Orthogonality: \[ \int_{-1}^1 P_n P_m \dd x = 0 \quad \forall m \neq n \] Normalization: \begin{flashcard}[legendre-normalization] \prompt{If $P_n$ is Legendre polynomial, then} \[ \int_{-1}^1 P_n^2 \dd x = \cloze{\frac{2}{2n + 1}} \tag{2.24} \] \end{flashcard} \begin{hiddenflashcard}[legendre-polynomials] \prompt{First few Legendre polynomials?} \begin{align*} P_0(x) &= \cloze{1} \\ P_1(x) &= \cloze{x} \\ P_2(x) &= \cloze{\half(3x^2 - 1)} \\ P_3(x) &= \cloze{\half(5x^3 - 3x)} \end{align*} \end{hiddenflashcard} Prove with Rodriques formula: \[ P_n(x) = \frac{1}{2^n x!} \left( \dfrac{}{x} \right)^n (x^2 - 1)^n \] (Example sheet 2, Q5) \\ Generating function (see later): \begin{align*} \sum_{n = 0}^\infty P_n(x) t^n &= \frac{1}{\sqrt{1 - 2xt + t^2}} \tag{2.23a} \\ &= 1 + \half(2xt - t^2) + \frac{3}{8} (2xt - t^2)^2 + \cdots \\ &= \ub{1}_{P_0} + \ub{x}_{P_1}t + \ub{\half (3x^2 - 1)}_{P_2} t^2 + \cdots \end{align*} Exercise: Verify $P_3$ and find $P_4$. (binomial expansion). \\ Recursion relations: \begin{flashcard}[Legendre-recursion] \prompt{Recursion relation for Legendre polynomials?} \[ \cloze{(l + 1)P_{l + 1}(x)} = \cloze{(2l + 1)xP_l(x) - lP_{l - 1}(x)} \] \end{flashcard} \[ (2l + 1) P_l(x) = \dfrac{}{x} (P_{l + 1}(x) - P_{l - 1}(x)) \] Eigenfunction expansions: Any function $f(x)$ on $-1 \le x \le 1$ can be expressed as \[ f(x) = \sum_{l = 0}^\infty a_l P_l(x) \tag{2.25} \] where \[ a_l = \frac{2l + 1}{2} \int_{-1}^1 f(x) P_l(x) \dd x \tag{2.26} \] Exercise: verify $f(x) = \frac{15}{2} x^2 - \frac{3}{2} = P_0(x) + 5P_2(x)$ using (2.26). \subsection{Sturm Liouville theory and inhomogeneous ODEs} Consider the inhomogeneous (with homogeneous boundary conditions) on $a \le x \le b$: \[ \mathcal{L} y = f(x) \equiv \omega(x)F(x) \tag{2.27} \] Given eigenfunctions $y_n(x)$ satisfying \[ \mathcal{L} y_n = \lambda_n \omega y_n \] \[ y(x) = \sum_n c_n y_n(x) \] \[ F(x) = \sum_n a_n y_n(x) \] where $a_n$ are known and $c_n$ are unknown. We use \[ a_n = \frac{\int_a^b \omega F y_n \dd x}{\int_a^b \omega y_n^2 \dd x} \] Substituting into (2.27): \[ \mathcal{L} y = \mathcal{L} \sum_n c_n y_n = \sum_n c_n \lambda_n \omega y_n = \omega \sum_n a_n y_n \] By orthogonality (2.13), $c_n \lambda_n = a_n$ or $c_n = \frac{a_n}{\lambda_n}$ so solution is \[ \boxed{ y(x) = \sum_{n = 1}^\infty \frac{a_n}{\lambda_n} y_n(x)} \tag{2.28} \] (assuming $\lambda_n \neq 0$ for all $n$). Recall Fourier series (1.22) \\ Generalisation: driving forces often induce a linear response term $\tilde{\lambda} \omega y$. \[ \mathcal{L} \tilde{\lambda} \omega y = f(x) \tag{2.29} \] where $\tilde{\lambda}$ is fixed. The solution (2.28) becomes \[ y(x) = \sum_{n = 1}^\infty \frac{a_n}{\lambda_n - \tilde{\lambda}} y_n(x) \tag{2.30} \] (again $\tilde{\lambda} \neq \lambda_n$ for all $n$). \subsubsection*{Integral solution and Green's function} Recall (2.28) \begin{align*} y(x) &= \sum_{n = 1}^\infty \frac{a_n}{\lambda_n} y_n(x) \\ &= \sum_n \frac{y_n(x)}{\lambda_n \mathcal{N}} \int_a^b \omega(\xi) F(\xi) y_n(\xi) \dd \xi \\ &= \int_a^b \ub{\sum_{n = 1}^\infty \frac{y_n(x) y_n(\xi)}{\lambda_n \mathcal{N}_n}}_{G(x, \xi)} \ub{\omega(\xi) F(\xi)}_{f(\xi)} \dd \xi \\ &\equiv \int_a^b G(x, \xi) f(\xi) \dd \xi \tag{2.31} \end{align*} where \[ G(x, \xi) = \sum_{n = 1}^\infty \frac{y_n(x) y_n(\xi)}{\lambda_n \mathcal{N}_n} \] is eigenfunction expansion of the Green's function. \\ \begin{hiddenflashcard} Green's function? \[ \cloze{G(x, \xi) = \sum_{n = 1}^\infty \frac{y_n(x) y_n(\xi)}{\lambda_n \mathcal{N}_n}} \] \end{hiddenflashcard} $G(x, \xi)$ depends only on $\mathcal{L}$ and boundary conditions and \emph{not} forcing term $f(x)$ - it acts like an inverse operator \[ \mathcal{L}^{-1} \equiv \int \dd \xi G(x, \xi) \] (recall matrix $A \bf{x} = \bf{b} \implies \bf{x} = A^{-1} \bf{b}$) \newpage \mychapter{PDEs on Bounded Domains} \newpage \section{The Wave Equation} \subsection{Waves on an elastic string} Consider small displacements on a stretched string with fixed ends at $x = 0$ and $x = L$, with boundary conditions \[ \boxed{y(0, t) = y(L, t) = 0} \tag{3.1} \] and initial conditions \[ \boxed{y(x, 0) = p(x) \text{ and } \pfrac{y}{t}(x, 0) = q(x)} \tag{3.2} \] Derive equation of motion: Balance forces on segment $(x, x + \delta x)$ and take $\delta x \to 0$. \begin{center} \includegraphics[width=0.6\linewidth] {images/d75cd7284f9211ed.png} \end{center} Assume $\left| \pfrac{y}{x} \right| \ll 1$ for all $x$, so $\theta_1, \theta_2$ are small. \begin{itemize} \item Resolve in $x$ direction: \[ T_1 \cos\theta_1 = T_2 \cos\theta_2 \] but $\cos\theta = 1 - \half \theta^2 + \cdots$ so $T_1 \approx T_2 = T$. Hence, tension $T$ is constant independent of $x$ up to $\theta\left( \left| \pfrac{y}{x} \right|^2 \right)$ \item Resolve in $y$ direction \begin{align*} F_T &= T_2 \sin \theta_2 - T_2 \sin\theta_1 \\ &\approx T \left( \left. \pfrac{y}{x} \right|_{x + \delta x} - \left. \pfrac{y}{x} \right|_x \right) \\ &= T \pfrac[2]{y}{x} \delta x \end{align*} Thus \begin{align*} F &= ma \\ &= (\mu \delta x) \pfrac[2]{y}{t} \\ &= F_T + F_g \\ &= T \pfrac[2]{y}{x} \delta x - g\mu \delta x \end{align*} where $\mu$ is the mass per unit length (linear mass density). Define the wave speed $c = \sqrt{\frac{T}{\mu}}$ (constant) and we find \[ \pfrac[2]{y}{t} = \frac{T}{\mu} \pfrac[2]{y}{x} - g = c^2 \pfrac[2]{y}{x} - g \tag{3.3} \] Assume gravity is negligible then we have the 1 dimensional wave equation ($\ddot{y} = c^2 y''$): \begin{flashcard}[1-dimensional-wave-eq] \prompt{1 dimensional wave equation?} \[ \cloze{\boxed{\frac{1}{c^2} \pfrac[2]{y}{t} = \pfrac[2]{y}{x}} \tag{3.4}} \] \prompt{where $c = \cloze{\sqrt{\frac{T}{\mu}}}$.} \end{flashcard} \end{itemize} \subsection{Separation of variables} We wish to solve wave equation (3.4) subject to boundary conditions (3.1) and initial conditions (3.2). \\ Consider possible solution of \emph{separable form} (ansatz): \[ y(x, t) = X(x) T(t) \tag{3.5} \] Substitute in (3.4) $\frac{1}{c^2} \ddot{y} = y''$. \[ \frac{1}{c^2} X \ddot{T} = X'' T \] \[ \implies \frac{1}{c^2} \frac{\ddot{T}}{T} = \frac{X''}{X} .\]