% vim: tw=50 % 17/10/2022 10AM \subsubsection*{Real eigenvalues} Given \[ \mathcal{L} y_n = \lambda_n \omega y_n \tag{2.12} \] take complex conjugate (note both $\mathcal{L}$ and $\omega$ are real): \[ \mathcal{L} y_n^* = \lambda_n^* \omega y_n^* \] Consider \begin{align*} \int_a^b (y_n^* \mathcal{L} y_n - (\mathcal{L} y_n^*) y_n \dd x &= (\lambda_n - \lambda_n^*) \int_a^b \omega y_n y_n^* \dd x \\ &= 0 \end{align*} (the equals zero comes from the fact that we know that the original expression was zero, because $\mathcal{L}$ is self-adjoint) \\ But the right hand side is \[ \int \omega |y_n|^2 \dd x > 0 \] so $\lambda_n = \lambda_n^*$ so $\lambda_n$ is real. We will \emph{assume} that $y_n$ are real. \subsubsection*{Orthogonal eigenfunctions} Consider (2.12) with a second eigenvalue $\lambda_m \neq \lambda_n$. \[ \mathcal{L} y_m = \lambda_m \omega y_m \] then from (2.10) \begin{align*} 0 &= \int_a^b (y_m \mathcal{L} y_n - y_n \mathcal{L} y_m) \dd x \\ &= (\lambda_n - \lambda_m) \int_a^b \omega y_n y_m \dd x \end{align*} But since $\lambda_m \neq \lambda_n$, \[ \boxed{\int_a^b \omega y_n y_m \dd x = 0 \quad \forall n \neq m} \tag{2.13} \] so $y_n, y_m$ are orthogonal with respect to $\omega(x)$ on the interval $a \le x < b$. \\ Define the inner product with respect to weight function $w(x)$ on $a \le x \le b$ as \begin{flashcard}[SL-inner-product] \prompt{Inner product for Sturm-Liouville form?} \[ \cloze{\langle f, g \rangle_\omega = \int_a^b \omega(x) f^*(x)g(x) \dd x = \langle \omega f, g \rangle = \langle f, \omega g \rangle \tag{2.14}} \] \end{flashcard} so orthogonal relation (2.13) becomes \[ \langle y_n, y_m \rangle_\omega = 0 \quad \forall n \neq m \tag{2.15} \] \subsubsection*{Eigenfunction expansions} Completeness (not proven here) implies we can approximate any ``well-behaved'' function $f(x)$ on $a \le x \le b$ by the series \[ \boxed{f(x) = \sum_{n = 1}^\infty a_n y_n(x)} \tag{2.16} \] To find \emph{expansion coefficients} consider \begin{align*} \int_a^b \dd x \omega(x) y_m(x) f(x) &= \sum_{n = 1}^\infty a_n \int_a^b \omega y_n y_m \dd x \\ &= a_m \int_a^b \omega y_m^2 \dd x \end{align*} by orthogonality. Hence \begin{flashcard}[SL-expansion-coefficients] \prompt{Expansion coefficients for Sturm-Liouville eigenfunction expansion $f = \sum_n a_n y_n$?} \[ \boxed{a_n = \cloze{\frac{\int_a^b \omega(x) y_n(x) f(x) \dd x}{\int_a^b \omega(x) y_n^2(x) \dd x}}} \tag{2.17} \] \end{flashcard} Eigenfunctions normalized for convenience. \emph{Unit norm} has \[ Y_n(x) \equiv \frac{y_n(x)}{\left( \int_a^b \omega y_n^2 \dd x \right)^\half} \] so $\langle Y_n, Y_m \rangle = \delta_{nm}$ (2.18) are orthogonal with $f(x) = \sum_{n = 1}^\infty A_nY_n(x)$ and $A_n = \int_a^b \omega Y_n f \dd x$. \myskip Exemplar 1: Recall Fourier series (1.4) in Sturm Liouville form \[ \mathcal{L} y_n \equiv -\dfrac[2]{y_n}{x} = \lambda_n y_n \tag{1.21} \] with $\lambda_n = \left( \frac{n\pi}{L} \right)^2$ and orthogonality relations (1.1-3). \subsection{Completeness and Parseval's identity} Consider \begin{align*} \int_a^b \left[ f(x) - \sum_{n = 1}^\infty a_n y_n \right]^2 \omega\dd x &= \int_a^b \left[ f^2 - 2f \sum_n a_n y_n + \sum_n a_n^2 y_n^2 \right] \omega \dd x &&\text{(by orthogonality)} \\ &= \int_a^b \omega f^2 \dd x - \sum_{n = 1}^\infty a_n^2 \int_a^b \omega y_n^2 \dd x \end{align*} because by (2.17) $\int_a^b f y_n \omega \dd x = a_n \int_a^b \omega y_n^2 \dd x$. If the eigenfunctions are \emph{complete} then series converges \begin{align*} \int_a^b \omega f^2 \dd x &= \sum_{n = 1}^\infty a_n^2 \int \omega y_n^2 \dd x \tag{2.19} \\ &= \sum_{n = 1}^\infty A_n^2 \end{align*} for unit norm $Y_n$. \begin{theorem*}[Bessel's inequality] If some eigenfunctions are missing, then \[ \int_a^b \omega f^2 \dd x \ge \sum_{n = 1}^\infty A_n^2 \] \end{theorem*} \begin{flashcard}[SL-mean-square-error] \begin{definition*}[Mean square error] \[ \cloze{\eps_N = \int_a^b \omega [f(x) - S_N(x)]^2 \dd x \to 0} \] \end{definition*} \end{flashcard} \noindent Define \emph{partial sum} \[ S_N(x) = \sum_{n = 1}^N a_n y_n \tag{2.20} \] with $f(x) = \lim_{N \to \infty} S_N(x)$. The \emph{error} in the partial sum (2.20) is minimised by $a_n$ defined in (2.19) for the $N = \infty$ expansion: \begin{align*} \pfrac{\eps_N}{a_n} &= \pfrac{}{a_n} \left[ \int_a^b \omega [f(x) - \sum a_n y_n]^2 \dd x \right] \\ &= -2 \int_a^b y_n \omega [f - \sum_{n = 1}^N a_n y_n \dd x \\ &= -2\int_a^b (\omega f y_n - a_n \omega y_n^2) \dd x \\ &= 0 \end{align*} if $a_n$ given by (2.17). So $a_n$ is the ``best possible choice'' (assuming you care about the mean square error). \subsection{Exemplar 2: Legendre polynomials} Consider Legendre's equation arising from spherical polars $x = \cos \theta$ \begin{flashcard}[Legendre-SL] \prompt{What is Legendre's equation?} \[ \cloze{(1 - x^2) y'' - 2xy' + \lambda y = 0 \tag{2.21}} \] so \cloze{$p = 1 - x^2$, $q = 0$, $\omega = 1$}. \end{flashcard} on the interval $-1 \le x \le 1$ with $y$ finite at $x = \pm 1$ (regular singular point of ODE). Equation (2.21) is in Sturm Liouville form (2.7) with \[ p = 1 - x^2, ~ q = 0, ~ \omega = 1 \] How to solve? Seek a power series about $x = 0$: \[ y = \sum_n c_n x^n \] Substitute \[ (1 - x^2) \sum n(n - 1) c_n x^{n - 2} - 2x \sum_n c_n x^{n - 1} + \lambda \sum c_n x^n = 0 \] Equate powers of $x^n$: \[ (n + 2)(n + 1) c_{n + 2} - n(n - 1) c_n - 2nc_n + \lambda c_n = 0 \] \[ \implies c_{n + 2} = \frac{n(n + 1) - \lambda}{(n + 1)(n + 2)} c_n \tag{2.22} \] so specifying $c_0, c_1$ gives 2 independent solutions (near $x = 0$). \[ y_{\text{even}} = c_0 \left[ 1 + \frac{(-\lambda)}{2!} x^2 + \frac{(6 - \lambda)(-\lambda)}{4!} x^4 + \cdots \right] \] \[ y_{\text{odd}} = c_1 \left[ x + \frac{(2-\lambda)}{3!} x^3 + \cdots \right] \] But as $n \to \infty$, $\frac{c_{n + 1}{c_n}} \to 1$ so there is a radius of convergence $|x| < 1$ (geometric series), i.e. divergent at $x = \pm 1$. What can be done? \emph{Finiteness}\dots