% vim: tw=50 % 14/10/2022 10AM \newpage \section{Sturm-Liouville Theory} \subsection{Review of second-order linear ODEs} We wish to solve general inhomogeneous ODE \[ \mathcal{L} y \equiv \alpha(x) y'' + \beta(x) y' + \gamma(y) y = f(x) \tag{2.1} \] \begin{itemize} \item The \emph{homogeneous equation} \[ \boxed{\mathcal{L} y \equiv 0 } \tag{2.2} \] has two independent solutions $y_1(x)$, $y_2(x)$ (besides trivial $y \equiv 0$), with the \emph{complementary function} $y_c(x)$ the general solution of (2.2): \[ y_c(x) = A y_1(x) + B y_2(x) \tag{2.3} \] where $A, B$ are arbitrary constants. \item The inhomogeneous equation \[ \mathcal{L} y = f(x) \tag{2.4} \] (i.e. the driving force or source term $f(x)$) has a special solution called the particular integral $y_p$. The general solution of (2.4) is then \[ y(x) = y_p(x) + A y_1(x) + B y_2(x) \tag{2.5} \] \item Two \emph{boundary} or initial data are required to determine $A$, $B$. \begin{enumerate}[(a)] \item \emph{Boundary conditions} (BC) Solve (2.4) on $a < x < b$ given $y$ at $x = a, b$ (Dirichlet) \emph{or} specify $y'$ at $x = a, b$ (Neumann) \emph{or} mixed $y + ky'$ etc. Homogeneous boundary conditions are often assumed, $y(a) = y(b) = 0$ to admit the trivial solution $y \equiv 0$. Can be achieved by adding complementary function (2.3). \[ \tilde{y} = y + A y_1 + B y_2 \] such that $\tilde{y}(a) = \tilde{y}(b) = 0$. \item Alternatively we may be given \emph{initial conditions} Solve (2.4) for $x \ge a$, given $y, y'$ at $x = a$. \end{enumerate} \end{itemize} \subsubsection*{General eigenvalue problem} To solve (2.1) employing eigenfunction expansions (like Fourier series (1.22)) we must solve the \emph{related} eigenvalue problem \[ \alpha(x) y'' + \beta(x)y' + \gamma(x)y = -\lambda \rho(x) y \tag{2.6} \] with specified boundary conditions. This form often occurs in higher dimensions after seperation of variables. \subsection{Self-adjoint operators} \begin{definition*}[Inner product] For two (complex-valued) functions $f, g$ on $a \le x \le b$ define \[ \langle f, g \rangle = \int_a^b f^*(x) g(x) \dd x \] (later $f, g$ assumed to be real so we will drop the complex conjugate part). The norm of $f$ is $\|f\| = \sqrt{\langle f, f \rangle}$. \end{definition*} \subsubsection*{The Sturm-Liouville equation} The eigenvalue problem (2.6) greatly simplifies if $\mathcal{L}$ is self-adjoint, i.e. it can be expressed in \emph{Sturm-Liouville form} \begin{flashcard}[sturm-liouville-form] \prompt{Sturm Liouville form?} \[ \boxed{\mathcal{L} y \equiv \cloze{-(py')' + qy = \lambda \omega y} \tag{2.7}} \] \cloze{where $\omega(x)$ is \fcemph{non-negative}.} \end{flashcard} where the \emph{weight function} $\omega(x)$ is non-negative $\omega(x) \ge 0$ for all $x$. \myskip Converting to Sturm-Liouville form: Multiply (2.6) by an integrating factor $F(x)$ to find \[ F\alpha y'' + F\beta y' + F\gamma y = -\lambda F \rho y \] \[ \dfrac{}{x} (F\alpha y') - F'\alpha y' - F\alpha'y' + F\beta y' + F\gamma y = -\lambda F\rho y \] We want to eliminate the $y'$ term, so we want \[ F'\alpha = F(\beta - \alpha') \implies \frac{F'}{F} = \frac{\beta - \alpha'}{\alpha} \] so \begin{hiddenflashcard}[coefficients-for-converting-to-SL] \prompt{What are $\alpha, \beta, \gamma, \lambda, \rho$ for converting to SL form?} \[ \cloze{\alpha y'' + \beta y' + \gamma y = -\lambda \rho y} \] \end{hiddenflashcard} \begin{hiddenflashcard}[p-converted-to-SL] \prompt{What is $p$ after converting to SL form?} \[ p = \cloze{F\alpha} \] \end{hiddenflashcard} \begin{hiddenflashcard}[q-converted-to-SL] \prompt{What is $q$ after converting to SL form?} \[ q = \cloze{-F\gamma} \] \end{hiddenflashcard} \begin{hiddenflashcard}[omega-converted-to-SL] \prompt{What is $\omega$ after converting to SL form?} \[ \omega = \cloze{F\rho} \] \end{hiddenflashcard} \begin{flashcard}[integrating-factor-to-SL] \prompt{Integrating factor to SL form?} \[ \boxed{ F(x) = \cloze{\exp \left( \int^x \frac{ \beta - \alpha'}{\alpha} \dd x \right) } \tag{2.8}} \] \end{flashcard} and $(F\alpha y')' + F\gamma y = -\lambda F\rho y$, so $p(x) = F(x) \alpha(x)$, $q(x) = -F(x) \gamma(x)$ and $\omega(x) = F(x) \rho (x)$ (note $F(x) > 0$). \begin{example*} The Hermite equation for simple harmonic motion: \[ y'' - 2xy' + 2ny = 0 \] We want to put into Sturm-Liouville form (2.7). Comparing to (2.6) we have $\alpha = 1$, $\beta = -2x$, $\gamma = 0$, $\lambda \rho = 2n$. By (2.8), \[ F = \exp \left( \int^x \frac{-2x - 0}{1} \dd x \right) = e^{-x^2} \] Hence \[ \mathcal{L} y \equiv -(e^{-x^2} y')' = 2ne^{-x^2} y \tag{2.9} \] \end{example*} \begin{flashcard} \begin{definition*}[Self-adjoint differential operator] $\mathcal{L}$ is self-adjoint on $a \le x \le b$ for all pairs of functions $y_1, y_2$ satisfying \cloze{appropriate boundary conditions} if \[ \cloze{\langle y_1, \mathcal{L} y_2 \rangle = \langle \mathcal{L} y_1, y_2 \rangle} \] \fcscrap{or \[ \boxed{\int_a^b y_1^*(x) \mathcal{L} y_2(x) \dd x = \int_a^b (\mathcal{L} y_1(x))^* y_2(x) \dd x} \tag{2.10} \]} \end{definition*} \end{flashcard} \noindent Boundary conditions: substitute Sturm-Liouville form (2.7) in (2.10) to find \begin{align*} \langle y_1, \mathcal{L} y_2 \rangle - \langle \mathcal{L} y_1, y_2 \rangle &= \int_a^b [-y_1 (py_2')' + y_1 qy_2 + y_2(py_1')' - y_2 qy_1] \dd x \\ &= \int_a^b [-(py_1y_2')' + (py_1'y_2)'] \dd x \\ &= [-py_1y_2' + py_1'y_2]_a^b \end{align*} and we want this to be 0 for given boundary conditions at $x = a = b$. \myskip Self-adjoint compatible boundary conditions include: \begin{itemize} \item Homogeneous $y(a) = y(b) = 0$ or $y'(a) = y'(b) = 0$ or mixed $y + ky' = 0$ (note regular Sturm-Liouville $\equiv$ homogeneous boundary conditions) \item Periodic $y(a) = y(b)$ \item Singular points of ODE $\rho(a) = \rho(b) = 0$ \item Combinations of the above. \end{itemize} \subsection{Properties of self-adjoint operators} \begin{enumerate}[(1)] \item Eigenvalues $\lambda_n$ are \emph{real}. \item Eigenfunctions $y_n$ are \emph{orthogonal}. \item Eigenfunctions $y_n$ form a \emph{complete set}. \end{enumerate}