% vim: tw=50 % 12/10/2022 10AM \subsection{Alternative Fourier Series} \subsubsection*{Half-range series} Consider $f(x)$ defined only on $0 \le x < L$. Then we can extend its range over $-L \le x < L$ in two simple ways: \begin{enumerate}[(i)] \item Require it to be odd ($f(-x) = -f(x)$), with period $2L$, Then $a_n = 0$ because $\cos$ is even, and \begin{flashcard}[sine-half-range-series-coeffs] \prompt{Coefficients for the sine half-range series (odd function)?} \[ b_n = \cloze{\frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} \dd x \tag{1.11}} \] \end{flashcard} This is a Fourier sine series, for example the saw tooth (1.6). \item Require it to be even $f(-x) = f(x)$. Then $b_n = 0$ and \begin{flashcard}[cosine-half-range-series-coeffs] \prompt{Coefficients for the cosine half-range series (even function)?} \[ a_n = \cloze{\frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} \dd x \tag{1.12}} \] \end{flashcard} for example $f(x) = (1-x^2)^2$ (Example sheet 1 question 1). \end{enumerate} \subsubsection*{Complex Representation} Recall: \[ \cos \frac{n\pi x}{L} = \half (e^{in\pi x/L} + e^{-in\pi x/L}) \] \[ \sin \frac{n\pi x}{L} = \frac{1}{2i} (e^{in\pi x/L} - e^{-in\pi x/L}) \] So Fourier series (1.4) becomes: \begin{align*} f(x) &= \half a_0 + \sum_{n = 1}^\infty a_n \cos \frac{n\pi x}{L} + \sum_{n = 1}^\infty b_n \sin \frac{n\pi x}{L} \\ &= \half a_0 + \half \sum_{n = 1}^\infty (a_n - ib_n) e^{in\pi x/L} + \half \sum{n = 1}^\infty (a_n + b_n) e^{-in\pi x/L} \\ &= \sum_{m = -\infty}^\infty c_m e^{im\pi x/L} \tag{1.13} \end{align*} \begin{hiddenflashcard} \prompt{Complex Fourier Series?} \[ \boxed{ f(x) = \cloze{\sum_{m = -\infty}^\infty c_m e^{im\pi x/L} } } \] \end{hiddenflashcard} For $m > 0$, $m = n$, $c_m = \half (a_n - ib_n)$. For $m = 0$, $c_0 = \half a_0$. For $m < 0$, $m = -n$, $c_m = \half (a_{-m} + ib_{-m})$. Equivalently \begin{flashcard} \prompt{Complex Fourier Series coefficients?} \[ c_m = \cloze{ \frac{1}{2L} \int_{-L}^L f(x) e^{-im\pi x/L} \dd x } \tag{1.14} \] \end{flashcard} Our inner product is upgraded to \[ \langle f, g \rangle = \int f^* g \] using complex conjugate $f^*$. Orthogonal: \[ \int_{-L}^L e^{-im\pi x/L} e^{in\pi x/L} = 2L \delta_{mn} \tag{1.15} \] Parseval's: \begin{flashcard} \prompt{Complex Parseval's?} \[ \int_{-L}^L |f(x)|^2 \dd x = \cloze{ 2L \sum_{m = -\infty}^\infty |c_m|^2 } \] \end{flashcard} \subsection{Some Fourier Series Motivations} \subsubsection*{Self-adjoint matrices} Suppose $\bf{u}, \bf{v}$ are complex $N$-vectors, with inner product \[ \langle \bf{u}, \bf{v} \rangle = \bf{u}^\dag \bf{v} \tag{1.16} \] ($\bf{u}^\dag$ means complex conjugate and transpose, i.e. $\bf{u}^\dag = (\bf{u}^*)^\top$). Let $A$ be an $N \times N$ matrix which is self adjoint (or Hermitian). Note that by simple algebra, this property means that $\langle A \bf{u}, \bf{v} \rangle = \langle \bf{u}, A \bf{v} \rangle$ for all $\bf{u}, \bf{v}$. \myskip The eigenvalues of $A$ are $\lambda_n$ and satisfy \[ A \bf{v}_n = \lambda_n \bf{v}_n \tag{1.17} \] (where $\bf{v}_n$ are eigenvectors). The eigenvalues have the following properties: \begin{enumerate}[(i)] \item The eigenvalues are real ($\lambda_n^* = \lambda_n$). \item If $\lambda_n \neq \lambda_m$ then the eigenvectors are orthogonal \[ \langle \bf{v}_n, \bf{v}_m \rangle = 0 \] \item If we rescale our eigenvectors to be unit length then $\{\bf{v}_1, \bf{v}_2, \dots, \bf{v}_N\}$ are an orthonormal basis. \end{enumerate} Given $\bf{b}$ we can solve for $\bf{x}$ given \[ A \bf{x} = \bf{b} \tag{1.18} \] Express \[ \bf{b} = \sum_{n = 1}^N b_n \bf{v}_n \] where $b_n$ are knowns. Seek a solution \[ \bf{x} = \sum_{n = 1}^N c_n \bf{v}_n \] where $c_n$ are unknowns. Substitute into (1.18): \[ A \bf{x} = \sum_{n = 1}^N A c_n \bf{v}_n = \sum_{n = 1}^N c_n \lambda_n \bf{v}_n \] \[ \bf{b} = \sum_{n = 1}^N b_n \bf{v}_n \] equate and use orthogonality \[ c_n \lambda_n = b_n \implies c_n = \frac{b_n }{\lambda_n} \] So the solution is \[ \bf{x} = \sum_{n = 1}^N \frac{b_n}{\lambda_n} \bf{v}_n \tag{1.19} \] \subsubsection*{Solving inhomogeneous ODE with Fourier series} We wish to find $y(x)$ given $f(x)$ for \[ \mathcal{L} y \equiv -\dfrac[2]{y}{x} = f(x) \tag{1.20} \] (the minus sign is by convention, and $f(x)$ is the driving force / source). Boundary conditions: \[ y(0) = y(L) = 0 \] The related eigenvalue problem is \[ \mathcal{L} y_n = \lambda_n y_n \] with the same boundary conditions. Has eigenfunctions and eigenvalues \[ y_n(x) = \sin \left( \frac{n\pi x}{L} \right) \qquad \lambda_n = \left( \frac{n\pi}{L} \right)^2 \tag{1.21} \] (verify this, also self adjoins ODE with orthogonal eigenfunctions). \myskip Seek solution as half range sine series. Try \[ y(x) = \sum_{n = 1}^\infty c_n \sin \frac{n\pi x}{L} \] where $c_n$ are unknowns. Expand \[ f(x) = \sum_{n = 1}^\infty b_n \sin \frac{n\pi x}{L} \] where $b_n$ are knowns. Using (1.11) \[ b_n \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} \dd x \] Substitute into (1.20): \[ \mathcal{L} y = -\dfrac[2]{}{x} \left( \sum_n c_n \sin \frac{n\pi x}{L} \right) = \sum_{n = 1}^\infty c_n \left( \frac{n\pi}{L} \right)^2 \sin \frac{n\pi x}{L} \stackrel{\text{want}}{=} \sum_n b_n \sin \frac{n\pi x}{L} \] By orthogonality (1.1) we have \[ c_n \left( \frac{n\pi}{L} \right)^2 = b_n \implies c_n = \frac{b_n}{\left( \frac{n\pi}{L} \right)^2} \] and solution is \[ y(x) = \sum_n \frac{b_n}{\left( \frac{n\pi}{L} \right)^2} \sin \frac{n\pi x}{L} = \sum_n \frac{b_n}{\lambda_n} y_n \tag{1.22} \] \begin{example*}[``square wave'' source] $L = 1$. Define $f(x) = 1$, $0 \le x < 1$, odd function. This has Fourier series (1.7) \[ f(x) = 4 \sum_m \frac{\sin (2m - 1) \pi x}{(2m - 1) \pi} \] So the solution (1.22) should be \[ y(x) = \sum_n \frac{b_n}{\lambda_n} y_n = 4\sum_m \frac{\sin (2m - 1) \pi x}{((2m - 1) \pi)^3} \] ($n = 2m - 1$). But this is the Fourier series (1.9) for \[ y(x) = \half x(1 - x) \tag{1.23} \] \end{example*}