% vim: tw=50 % 30/11/2022 10AM \begin{align*} LHS &= \int_B \nabla^2 G \dd \bf{x} \\ &= \int_S \nabla G \cdot \bf{n} \dd S \\ &= 4\pi r^2 \dfrac{G}{r} \\ RHS &= \int_B \delta(\bf{x}) \dd \bf{x} \\ &= 1 &&\text{by (10.14)} \end{align*} So \[ \dfrac{G}{r} = \frac{1}{4\pi r^2} \implies G = -\frac{1}{4\pi r} + c \] But $G \to 0$ as $r \to \infty$, so $c = 0$. Free-space Green's function: \begin{flashcard}[Green-function-for-3D-Poisson] \prompt{Green's function for 3D Poisson equation?} \[ \boxed{G(\bf{x}; \bf{x}') = \cloze{-\frac{1}{4\pi|\bf{x} - \bf{x}'|}}} \tag{10.16} \] \prompt{\cloze{This is constructed to satisfy $\nabla^2 G = \delta^3$, and $G \to 0$ as $\bf{x} \to \infty$.}} \end{flashcard} General solution in $\RR^3$ \[ \phi(\bf{x}) = \frac{1}{4\pi} \int_{-\infty}^\infty \frac{\rho(\bf{x}')}{|\bf{x} - \bf{x}'|} \dd \bf{x}' \] Exercise: Similarly in $\RR^2$ derive \begin{flashcard}[Green-function-for-2D-Poisson] \prompt{Green's function for 2D Poisson equation?} \[ G_{\text{2D}} (\bf{x}; \bf{x}') = \cloze{\frac{1}{2\pi} \log(|\bf{x} - \bf{x}'|) + c_2} \] \prompt{\cloze{This is constructed to satisfy $\nabla^2 G = \delta^2$, but \fcemph{doesn't} satisfy a nice boundary condition (can use method of images in some circumstances though).}} \end{flashcard} \subsubsection*{Green's Identities} Consider two scalar functions $\phi, \varphi$ twice differentiable on $\mathcal{D}$. \begin{align*} \int_{\mathcal{D}} \nabla \cdot (\varphi \nabla \psi) \dd \bf{x} &= \int_{\mathcal{D}} (\phi \nabla^2 \phi + \nabla \phi \cdot \nabla \psi) \dd \bf{x} \\ &= \int_{\partial \mathcal{D}} \phi \nabla \psi \cdot \hat{\bf{n}} \dd S \tag{10.17} \end{align*} \begin{hiddenflashcard}[Greens-first-identity] \prompt{Green's first identity?} \[ \cloze{\int_{\mathcal{D}} \nabla \cdot (\phi \nabla \psi) \dd \bf{x} = \int_{\partial \mathcal{D}} \phi \nabla \psi \cdot \hat{\bf{n}} \dd S} \] \end{hiddenflashcard} This is \emph{Green's first identity} $\phi \leftrightarrow \psi$ and subtract from (10.17), then \emph{Green's second identity} \begin{flashcard}[Greens-second-identity] \prompt{Green's second identity?} \[ \cloze{\int_{\partial \mathcal{D}} \left( \phi \pfrac{\psi}{n} - \psi \pfrac{\phi}{n} \right) \dd S = \int_{\mathcal{D}} (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \dd \bf{x}} \tag{10.18} \] \end{flashcard} Now consider a small spherical ball $B_\eps$ (radius $\eps$) about $\bf{x}$ (WLOG $\bf{x}' = 0$) Take $\phi$ in (10.18) such that $\nabla^2 \phi = -\rho(\bf{x})$ and $\psi = G(\bf{x}; \bf{x}')$ ($\nabla^2 G = \delta(\bf{x} - \bf{x}')$) \begin{center} \includegraphics[width=0.6\linewidth] {images/21e40fe2709911ed.png} \end{center} \begin{align*} RHS &= \int_{\mathcal{D} - B_\eps} (\phi \ub{\nabla^2 G}_{=0} - G \ub{\nabla^2 \phi}_{=\rho}) \dd \bf{x} \\ &= \int_{\mathcal{D} - B_\eps} G\rho \dd \bf{x} \\ LHS &= \int_{\partial \mathcal{D}} \left( \phi \pfrac{G}{n} - G \pfrac{\phi}{n} \right) \dd S + \int_{S_\eps} \ub{\left( \phi \pfrac{G}{n} - G \pfrac{\phi}{n} \right)}_{(*)} \dd S \end{align*} Second integral on small sphere $S_\eps$, $\eps \to 0$ (outward normal on $S_\eps$ points in $-$ direction) \[ \int_{S_\eps} (*) \dd S = \left( \ol{\phi} \left( -\frac{1}{4\pi \eps^2} \right) - \frac{1}{4\pi \eps^2} \pfrac{\ol{\phi}}{r} \right) 4\pi \eps^2 = -\phi(0) \] ($\ol{\phi}$ denotes the average value, because we are on $S_\eps$) Combining (with arbitrary $\bf{x}'$ now) we get \emph{Green's third identity} \begin{flashcard}[Greens-third-identity] \prompt{Green's third identity?} \cloze{ \begin{align*} \phi(\bf{x}') &= \int_{\mathcal{D}} G(\bf{x}; \bf{x}') (-\rho(\bf{x})) \dd \bf{x} + \int_{\partial \mathcal{D}} \left( \phi(\bf{x}) \pfrac{G}{n}(\bf{x}; \bf{x}') - G(\bf{x}; \bf{x}') \pfrac{\phi}{n}(\bf{x}) \right) \dd S \tag{10.19} \end{align*} } \end{flashcard} \emph{Dirichlet Green's function}: \\ Solve $\nabla^2 \phi = -\rho$ on $\mathcal{D}$ with inhomogeneous boundary conditions $\phi(\bf{x}) = h(\bf{x})$ on $\partial \mathcal{D}$. \begin{flashcard}[Dirichlet-Green-function] Dirichlet Green's function satisfies \begin{enumerate}[(i)] \item \cloze{$\nabla^2 G(\bf{x}; \bf{x}') = 0$, $\forall \bf{x} \neq \bf{x}'$} \item \cloze{$G(\bf{x}; \bf{x}') = 0$ on $\partial \mathcal{D}$.} \item \cloze{$G(\bf{x}; \bf{x}') = G_{\text{FS}}(\bf{x}; \bf{x}') + H(\bf{x}; \bf{x}')$ with $\nabla^2 H(\bf{x}; \bf{x}') = 0$ $\forall \bf{x} \in \mathcal{D}$.} \end{enumerate} \end{flashcard} Green's second identity (10.18) with $\nabla^2 \phi = -\rho$, $\nabla^2 H = 0$ \[ \int_{\partial \mathcal{D}} \left( \phi \pfrac{H}{n} - H \pfrac{\phi}{n} \right) \dd S = \int_{\mathcal{D}} H\rho \dd \bf{x} \tag{\dag} \] Now we use $G_{\text{FS}} = G - H$ in Green's third identity (10.19) \[ \phi(\bf{x}') = \int_{\mathcal{D}}(G - H) (-\rho) \dd \bf{x} + \int_{\partial \mathcal{D}} \left( \phi \pfrac{(G - H)}{n} - (G - H) \pfrac{\phi}{n} \right) \dd S \] Subtract $H$ terms above in ($\dag$) ($G = 0$, $\phi = h$ on $\partial \mathcal{D}$) \begin{flashcard}[Poisson-Dirichlet-Green-function] \prompt{Solution to Poisson's equation \cloze{$\nabla^2 \phi = -\rho$} with Dirichlet boundary conditions \cloze{$\phi = h$ on $\partial D$} is given by} \[ \boxed{\phi(\bf{x}') = \cloze{ \int_{\mathcal{D}} G(\bf{x}; \bf{x}') (-\rho(\bf{x})) \dd \bf{x} + \int_{\partial \mathcal{D}} h(\bf{x}) \pfrac{G}{n} (\bf{x}; \bf{x}') \dd S}} \tag{10.20} \] \prompt{\cloze{where $G$ is the \fcemph{Dirichlet Green's function}.}} \end{flashcard} Exercise: Use (10.18) to show that GF is symmetric (third identity), $G(\bf{x}; \bf{x}') = G(\bf{x}'; xbf)$, $\forall \bf{x} \neq \bf{x}'$. \myskip For Neumann BCs specifying \[ \pfrac{\phi}{n} = K(\bf{x}) \] on $\partial \mathcal{D}$ we have \begin{flashcard}[Poisson-Neumann-BCs] \prompt{Solution to Poisson's equation \cloze{$\nabla^2 \phi = -\rho$} with Neumann boundary conditions \cloze{$\pfrac{\phi}{n} = K$} on $\partial \mathcal{D}$ is given by} \[ \phi(\bf{x}') = \cloze{\int_{\partial \mathcal{D}} G(\bf{x}; \bf{x}') (-\rho(\bf{x})) \dd \bf{x} + \int_{\partial \mathcal{D}} G(\bf{x}; \bf{x}') (-K(\bf{x})) \dd S} \] \prompt{\cloze{where $G$ is the \fcemph{Dirichlet Green's function}.}} \end{flashcard} (see RJ lecture notes) \subsection{Method of images} For symmetric domains $\mathcal{D}$ we can construct Green's functions with $G = 0$ on $\partial \mathcal{D}$ by cancelling the Boundary non-zero values by placing ``an image'' of Green's function outside $\mathcal{D}$. \subsubsection*{Laplace's equation on half-space} Solve $\nabla^2 \phi = 0$ on $\mathcal{D} = \{(x, y, z) : z > 0\}$ with $\phi(x, y, z = 0) = h(x, y)$ and $\phi \to 0$ as $\bf{x} \to \infty$. Now fundamental solution $G(\bf{x}; \bf{x}') \to 0$ as $|\bf{x} \to \infty$, but $G \neq 0$ at $z = 0$. So for $G$ at $\bf{x}' = (x', y', z')$ subtract ``image'' $G$ at $\bf{x}'' = (x', y', -z')$. $G(\bf{x}; \bf{x}') = -\frac{1}{4\pi |\bf - \bf{x}'|} - \left( \frac{1}{4\pi|\bf{x} - \bf{x}''|} \right)$ \begin{center} \includegraphics[width=0.6\linewidth] {images/4469d69e709b11ed.png} \end{center} \[ G(\bf{x}; \bf{x};) = -\frac{1}{4\pi \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}} + \frac{1}{4\pi \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}} \] $= 0$ if $z = 0$, i.e. satisfies the Dirichlet BCs on all $\partial \mathcal{D}$. Contribution from the Boundary \begin{align*} \left. \pfrac{G}{n} \right|_{z = 0} &= \left. -\pfrac{G}{z} \right|_{z = 0} \\ &= \left. -\frac{1}{4\pi} \left( \frac{z - z'}{|\bf{x} - \bf{x}'|^3} - \frac{z + z'}{|\bf{x} - \bf{x}''|^3} \right) \right|_{z = 0} \\ &= \frac{z'}{2\pi} ((x - x')^2 + (y - y')^2 + z'^2)^{-3/2} \tag{10.22} \end{align*} Solution is then from (10.20) (no sources) \[ \phi(x', y', z') = \frac{z'}{2\pi} \int_{-\infty}^\infty \int_{-\infty}^\infty ((x - x')^2 + (y - y')^2 + z'^2)^{-3/2} h(x, y) \dd x \dd y \tag{10.23} \] \subsubsection*{Wave equation for $x > 0$} \[ \pfrac[2]{\phi}{t} - c^2 \pfrac[2]{\phi}{n} = f(x, t) \] BCs $\phi(0, t) = 0$ Dirichlet BCs. Create matching Green's function from (10.11) with opposite sign centred at $x = -\xi$ \[ G(x, t; \xi, \tau) = \frac{1}{2c} H(c(t - \tau) - |x - \xi|) - \frac{1}{2c} H(c(t - \tau) - |x + \xi|) \] Similarly, for a homogeneous Neumann BC at $x = 0$ $\left. \pfrac{G}{n} \right||_{x = 0} = 0$ for all $t$ the appropriate Green's function is \[ G(x, t; \xi, \tau) = \frac{H(c(t - \tau) - |x - \xi|)}{2c} + \frac{H(c(t - \tau) - |x + \xi|)}{2c} \] \begin{note*} Image has the \emph{same} sign. \end{note*} \noindent For small $x > 0$, $| - \xi| = \xi - x$, $|x + \xi| = x + \xi$. For all $t$ \[ \left. \pfrac{G}{n} \right|_{x = 0} = \frac{1}{2c} (\delta(c(t - \tau) - |x - \xi|) + \delta(c(t - \tau) - |x + \xi|)(-1))_{x = 0} = 0 \]