% vim: tw=50 % 28/11/2022 10AM \subsection{Forced heat (diffusion) equation} Consider \[ \pfrac{}{t} \theta(x, t) - D \pfrac[2]{}{x} \theta(x, t) = f(x, t) \tag{10.6} \] with homogeneous boundary conditions $\theta(x, 0) = 0$. Construct a 2D Green's function $G(x, t; \xi, \tau)$ such that \[ \pfrac{G}{t} - D \pfrac[2]{G}{x} = \delta(x, \xi) \delta(t - \tau) \tag{10.7} \] with $G(x, 0; \xi, \tau) = 0$. Take Fourier Transform with respect to $x$ using (8.23) \[ \pfrac{\tilde{G}}{t} + Dk^2 \tilde{G} = e^{-ik\xi} \delta(t - \tau) \] Using multiplicative factor $e^{Dk^2 t}$ \[ \pfrac{}{t} [e^{Dk^2t} \tilde{G}] = e^{ik\xi + Dk^2 t} \delta(t - \tau) \] Integrate with respect to $t$ using $G = 0$, at $t = 0$ \begin{align*} e^{Dk^2 t} \tilde{G} &= e^{-ik\xi} \int_0^t e^{Dk^2 t'} \delta(t' - \tau) \dd t' &&\text{by (6.7)} \\ &= e^{-ik\xi} e^{Dk^2 \tau} H(t - \tau) \end{align*} \[ G(x, t; \xi, \tau) = H(t - \tau) e^{-ik\xi} e^{-Dk^2(t - \tau)} \] So inverting we get Green's function \begin{align*} G(x, t; \xi, \tau) &= \frac{H(t - \tau)}{2\pi} \int_{-\infty}^\infty e^{-k(x - \xi)} e^{-Dk^2 (t - \tau)} \dd k \\ &= \frac{H(t')}{2\pi} \int_{-\infty}^\infty e^{ikx'} e^{-D k^2 t'} \dd k &&t' = t - \tau, x' = x - \xi \\ &= \frac{H(t')}{\sqrt{4\pi Dt'}} e^{-x^2/4Dt'} &&\text{see section 8.1} \\ &= H(t - \tau) S_d(x - \xi), t - \tau) \tag{10.8} \end{align*} where $S_d$ is the fundamental solution (10.3). General solution is \begin{align*} \theta(x, t) &= \int_0^\infty \int_{-\infty}^\infty G(x, t; \xi, \tau) f(\xi, \tau) \dd \xi \dd \tau \\ &= \int_0^t \int_{-\infty}^\infty f(u, \tau) S_d(x - u, t - \tau) \dd u \dd \tau \tag{10.9} \end{align*} This is an example of Duhamel's principle relating (i) solution of forced PDE with homogeneous boundary conditions (10.6) to (ii) solutions of homogeneous PDE with inhomogeneous boundary conditions (10.1). \\ Recall solutions of (10.1) with initial conditions at $t = \tau$ \[ \theta(x, t) = \int_{-\infty}^\infty f(u) S_d(x - u, t - \tau) \dd u \qquad (t > \tau) \] So forcing term $f(x, t)$ at $t = \tau$ acts as an initial condition for subsequential evolution. The integral (10.9) is a superposition of all these initial condition effects for $0 < \tau < t$. \begin{hiddenflashcard}[Green-function-for-forced-heat-equation] \prompt{Green's function for the forced heat equation?} \[ G(x, t; \xi, \tau) = \cloze{ H(t - \tau) S_d(x - \xi, t - \tau)} \] \prompt{\cloze{this is constructed to satisfy $(\partial_t - D\partial_x^2) G = \delta(x - \xi)\delta(t - \tau)$, with $G = 0$ for $t = 0$.}} \end{hiddenflashcard} \begin{flashcard}[Duhamels-principle] \subsubsection*{Duhamel's principle} Let $\mathcal{L}$ be a linear differential operator \fcemph{involving no time derivatives}, and $D$ a spatial domain $D$ in $\RR^n$. Let $P^s f$ denote the solution to the \cloze{homogeneous problem}: \[ \begin{cases} \cloze{u_t - \mathcal{L}u = 0} & \cloze{(x, t) \in D \times (s, \infty)} \\ \cloze{u = 0} & \cloze{\text{on $\partial D$}} \\ \cloze{u(x, s) = f(x, s)} & \cloze{x \in D} \end{cases} \] Then the solution to the \cloze{forced problem}: \[ \begin{cases} \cloze{u_t - \mathcal{L} u = 0} & \cloze{(x, t) \in D \times (0, \infty)} \\ \cloze{u = 0} & \cloze{\text{on $\partial D$}} \\ \cloze{u(x, 0) = 0} & \cloze{x \in D} \end{cases} \] is given by \[ u(x, t) = \cloze{\int_0^t (P^s f)(x, t) \dd s} \] \end{flashcard} \subsection{Forced wave equation} Consider \[ \pfrac[2]{\phi}{t} - c^2 \pfrac[2]{\phi}{x} = f(x, t) \tag{10.10} \] with $\phi(x, 0) = 0$, $\phi_t(x, 0) = 0$. Construct Green's function \[ \pfrac[2]{G}{t} - c^2 \pfrac[2]{G}{x} = \delta(x - \xi) \delta(t - \tau) \] with $G = 0$, $G_t = 0$ at $t = 0$. Take Fourier transform with respect to $x$ \[ \pfrac[2]{\tilde{G}}{t} + c^2 k^2 \tilde{G} = e^{-ik\xi} \delta(t - \tau) \] Recall section 7.4 for IVP Green's function (7.26) \[ \tilde{G} = \begin{cases} 0 & t < \tau \\ e^{-ik\xi} \frac{\sin kc(t - \tau)}{kc} & t > \tau \end{cases} = e^{-ik\xi} \frac{\sin kc(t - \tau)}{kc} H(t - \tau) \] Invert Fourier Transform \begin{align*} G(x, t; \xi, \tau) &= \int_{-\infty}^\infty \frac{e^{ik\ob{(x - \xi)}^A} \sin k\ob{c(t - \tau)}^B}{k} \dd k \\ &= \frac{H(t - \tau)}{2\pi c} \cdot 2 \int_0^\infty \frac{\cos kA \sin kB}{k} \dd k \\ &= \frac{H(t - \tau)}{2\pi c} \int_0^\infty \frac{\sin k(A + B) - \sin (A - B)}{k} \dd k \\ &= \frac{H(t - \tau)}{4c} [\sgn(A + B) - \sgn(A - B)] \\ &= \frac{H(t - \tau)}{4c} [2H(B - |A|)] \end{align*} Now with $H(t - \tau) \implies B = c(t - \tau) > 0$ so only non-zero if $|A| < B$, i.e. $|x - \xi| < c(t - \tau)$. So Green's function or \emph{causal fundamental solution} is \begin{flashcard}[Green-function-for-forced-wave-equation] \prompt{Green's function for the forced wave equation?} \[ G(x, t; \xi, \tau) = \cloze{\frac{1}{2c} H(c(t - \tau) - |x - \xi|)} \tag{10.11} \] \prompt{\cloze{this is constructed to satisfy $(\partial_t^2 - c^2 \partial_x^2)G = \delta(x - \xi) \delta(t - \tau)$ with $G = 0$, $G_t = 0$ at $t = 0$.}} \end{flashcard} \begin{center} \includegraphics[width=0.6\linewidth] {images/a2a26f386f5011ed.png} \end{center} The solution is \begin{align*} \phi(x, t) &= \int_0^\infty \int_{-\infty}^\infty f(\xi, \tau) G(x, t; \xi, \tau) \dd \xi \dd \tau \\ &= \frac{1}{2c} \int_0^t \int_{x - c(t - \tau)}^{x + c(t - \tau)} f(\xi, \tau) \dd \xi \dd \tau \tag{10.12} \end{align*} Exercise: relation (10.12) to D'Alembert's solution with initial conditions (9.18) at $t = 0$, $\phi = 0$, $\phi_t = g(x)$ as an example of Duhamel's principle. \subsection{Poisson's Equation} \[ \nabla^2 \phi = -\rho(\bf{x}) \tag{10.13} \] on domain $\mathcal{D}$ with Dirichlet boundary conditions $\phi = 0$ on $\partial D$. \\ Fundamental solution: The $\delta(\bf{x})$ function in $\RR^3$ has the following properties: \[\delta(\bf{x} - \bf{x}') = 0, \quad \forall \bf{x} \neq \bf{x}' \] \[ \int_{\partial \mathcal{D}} \delta(x - \bf{x}') \dd \bf{x} = \begin{cases} 1 & \bf{x}' \in \mathcal{D} \\ 0 & \text{otherwise} \end{cases} \tag{10.14} \] Sampling property \[ \int_{\mathcal{D}} f(\bf{x}) \delta(\bf{x} - \bf{x}') \dd \bf{x} = f(\bf{x}') \] The \emph{free-sapce Green's function} is defined to be \[ \nabla^2 G(\bf{x}; \bf{x}') = \delta(\bf{x} - \bf{x}') \tag{10.15} \] with homogeneous boundary conditions on $\RR^3$, $G \to 0$ as $\bf{x} \to \infty$. \begin{center} \includegraphics[width=0.3\linewidth] {images/5346c3986f5111ed.png} \end{center} This is spherically symmetric about $\bf{x}'$, so the fundamental solution can only depend on the scalar distance $G(\bf{x}; \bf{x}') = G(|\bf{x} - \bf{x}'|) = G(r)$. WLOG $\bf{x}' = 0$. Integrate (10.15) over ball $B$ radius $r$ around $\bf{x}' = 0$.