% vim: tw=50 % 25/11/2022 10AM \begin{itemize} \item Hyperbolic if $b^2 - ac > 0$, then \emph{2 solutions} \item Parabolic if $b^2 - ac = 0$, then \emph{1 solution} \item Elliptic if $b^2 - ac < 0$, \emph{no real solutions} \end{itemize} Transforming to characteristic coordinates $(u, v)$ would set $a = c = 0$ in (9.11) so the PDE takes \emph{canonical form} \[ \frac{\partial^2 \phi}{\partial u \partial v} + \cdots = 0 \tag{9.15} \] where the dots would be lower-order terms $\phi_u, \phi_v, \phi$ (Refer to section 9.4 in R Josza lecture notes). \begin{example*} Consider \[ -y \phi_{xx} + \phi_{yy} = 0 \tag{$*$} \] With $a = -y$, $b = 0$, $c = 1$, $b^2 - ac = y$. So hyperbolic for $y > 0$ (elliptic for $y < 0$, parabolic for $y = 0$). Find characteristics for $y > 0$ satisfying (9.14) \[ \dfrac{y}{x} = \frac{b \pm \sqrt{b^2 - ac}}{a} \pm \frac{1}{\sqrt{y}} \implies \sqrt{y} \dd y = \pm \dd x \] \[ \implies \frac{2}{3} y^{3/2} \pm x = c_\pm \] so characteristic curves are \[ u = \frac{2}{3} y^{3/2} + x, \qquad v = \frac{2}{3} y^{3/2} - x \] Derivatives are $u_x = 1$, $u_y = y^{1/2}$, $v_x = -1$, $v_y = y^{1/2}$. Hence \[ \phi_x = \phi_u u_x + \phi_v v_x = \phi_u - \phi_v \] \[ \phi_y = y^{1/2} (\phi_u + \phi_v) \] \[ \phi_{xx} = \phi_{uu} - 2\phi_{uv} + \phi_{vv} \] \[ \phi_{yy} = y(\phi_{uu} + 2\phi_{uv} + \phi_{vv}) + \frac{1}{2y^{1/2}}(\phi_u + \phi_v) \] From ($*$) \[ -y\phi_{xx} + \phi_{yy} = y(4\phi_{uv} + \frac{1}{2y^{3/2}}(\phi_u + \phi_v) = 0 \] Now using $u + v = \frac{4}{3} y^{3/2}$ and $y > 0$, the canonical form is \[ \phi_{uv} + \frac{1}{6(u + v)}(\phi_y + \phi_v) = 0 \] \end{example*} \subsection{General solution for Wave Equation (D'Alembert)} Solve (3.4) \[ \frac{1}{c^2} \pfrac[2]{\phi}{t} - \pfrac[2]{\phi}{x} = 0 \] with initial conditions \[ \phi(x, 0) = f(x), \qquad \phi_t(x, 0) = g(x) \tag{9.16} \] With $a = \frac{1}{c^2}$, $b = 0$, $c = -1$ the characteristic equation \[ \dfrac{x}{t} = \frac{-0 \pm \sqrt{0 + \frac{1}{c^2}}}{\frac{1}{c^2}} = \pm c \] so choose $u = x - ct$ and $v = x + Ct$, which yields simple canonical form: \[ \frac{\partial^2 \phi}{\partial u\partial v} = 0 \tag{9.17} \] Integrate with respect to $u$, $\pfrac{\phi}{v} = F(v)$ and then with respect to $u$ \[ \phi = G(u) + \int^v F(y) \dd y = G(u) + H(v) \] Impose our initial conditions at $t = 0$ when $u = v = x$, \[ \phi(x, 0) = G(x) + H(x) = f(x) \tag{$*$} \] \[ \phi_t(x, 0) = -cG'(x) + cH'(x) = g(x) \tag{$\dag$} \] Differentiating ($*$): \[ G'(x) + H'(x) = f'(x) \tag{$\ddag$} \] So ($\dag$) and ($\ddag$) \[ \implies H'(x) = \half (f'(x) + \frac{1}{c}g(x)) \] Integrate \[ H(x) = \half(f(x) - f(0)) + \frac{1}{2c} \int_0^x g(y) \dd y \] and from ($*$) \[ G(x) = \half (f(x) - f(0)) - \frac{1}{2c} \int_0^x g(y) \dd y \] Putting together: \begin{align*} \phi(x, t) &= G(x - ct) + H(x + ct) \\ &= \half (f(x - ct) + f(x + ct)) + \frac{1}{2c} \int_{x - ct}^{x + ct} g(y) \dd y \end{align*} \newpage \section{Solving PDEs with Green's Functions} \subsection{Diffusion equation and Fourier transform} Recall heat equation (4.3) for a conducting wire \[ \pfrac{\theta}{t}(x, t) - D \pfrac[2]{\theta}{t} (x, t) = 0 \tag{10.1} \] with initial conditions $\theta(x, 0) = h(x)$ with $\theta \to 0$ as $x \to \pm \infty$. Take the Fourier Transform with respect to $x$ using (8.13) \[ \pfrac{}{t} \tilde{\theta}(k, t) = -D k^2 \tilde{\theta}(k, t) \] Integrate $\tilde{\theta}(k, t) = C e^{-Dk^2t}$ with initial conditions $\tilde{\theta}(k, 0) = \tilde{h}(k)$, we have \[ \tilde{\theta}(k, t) = \tilde{h}(k) e^{-Dk^2t} \] Now invert \begin{align*} \theta(x, t) &= \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{h}(k) \ub{e^{-Dk^2t}}_{\text{Gaussian (8.5)}} e^{ikx} \dd k \\ &= \frac{1}{\sqrt{4\pi Dt}} \int_{-\infty}^\infty h(u) \exp \left( \frac{-(x - u)^2}{4Dt} \right) \dd u &&\text{by convolution theorem (8.17)} \\ &\equiv \int_{-\infty}^\infty h(u) S_d(x - u, t) \dd u \tag{10.2} \end{align*} where the \emph{fundamental solution} is \[ S_d(x, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-x^2/4Dt} \tag{10.3} \] (Fourier transform is $\tilde{S}_d(k, t) =e^{-Dk^2t}$). Also known as diffusion kernel or source. \begin{note*} With localised initial conditions $\theta(x, 0) = \theta_0 \delta(x)$ then \[ \theta(x, t) = \theta_0 S_d(x, t) = \frac{\theta_0}{\sqrt{4\pi Dt}} e^{-\eta^2} \tag{10.4} \] where $\eta = \frac{x}{2\sqrt{Dt}}$ is the similarity parameter. Initial condition $t \ge 0$ spreads smoothly as a Gaussian. \end{note*} \begin{hiddenflashcard}[Green-function-for-heat-eq] \prompt{Green's function for homogeneous heat equation} \[ \cloze{S_d(x, t) = \frac{1}{\sqrt{4\pi Dt}} e^{-\eta^2}} \] \prompt{\cloze{where $\eta$ is the similarity parameter. Note that this function is constructed to satisfy the homogeneous heat equation with initial conditions $\theta(x, 0) = \delta(x)$.}} \end{hiddenflashcard} \begin{example*}[Gaussian pulse] Suppose initially \[ f(x) = \sqrt{\frac{a}{\pi}} \theta_0 e^{-ax^2} \] \begin{align*} \theta(x, t) &= \frac{\theta_0\sqrt{a}}{\sqrt{4\pi^2 Dt}} \int \exp \left[ -au^2 - \frac{(x - u)^2}{4Dt} \right] \dd u \\ &= \frac{\theta_0 \sqrt{a}}{\sqrt{4\pi^2 Dt}} \int_{-\infty}^\infty \exp \left[ \frac{(1 + 4aDt) u^2 - 2xu + x^2}{4Dt} \right] \dd u \\ &= \frac{\theta_0\sqrt{a}}{\sqrt{4\pi^2 Dt}} \int_{-\infty}^\infty \exp \left[ -\frac{(1 + 4aDt)}{4Dt} \left( u - \frac{x}{1 + 4Dt} \right)^2 \right] \dd u \times \exp \left[ \frac{-ax^2}{1 + 4aDt} \right] \\ &= \theta_0 \sqrt{\frac{a}{\pi(1 + 4Dt)}} \exp \left[ \frac{-ax^2}{1 + 4aDt} \right] \tag{10.5} \end{align*} Here, width spreads as standard deviation $\propto \sqrt{t}$ with area constant (i.e. heat energy conserved). \end{example*}