% vim: tw=50 % 21/11/2022 10AM \subsubsection*{Discrete Fourier Transform} Suppose we have a finite number $N$ of samples \[ h_m = h(t_m), \quad t_m = m\Delta, \quad m = 0, 1, \dots, N - 1 \tag{8.45} \] We want to approximate the Fourier Transform for $N$ frequencies using equally spaced frequencies $\Delta_f = \frac{1}{N\Delta}$ in the range $-f_c \le f \le f_c$. We \emph{could} take $f_n = n\Delta_f = \frac{n}{n\Delta}$ with $n = -\frac{N}{2}, -\frac{N}{2} + 1, \dots, -1, 0, 1, \dots, \frac{N}{2}$. \emph{But} this has $N + 1$ frequencies, with $f_c$ and $-f_c$ aliased (8.39). Instead, note that $\left(\frac{N}{2} + m \right)\Delta_f = f_c + \delta f$ is aliased back to $\left( \frac{N}{2} - m \right) \Delta_f = -(f_c - \delta f)$ from (8.40) so we choose \[ f_n = \frac{n}{N\Delta} \text{ with } n = 0, 1, 2, \dots, \frac{N}{2} - 1, \frac{N}{2}, \frac{N}{2} + 1, \dots, N - 1 \] The \emph{discrete Fourier Transform} at frequency $f_n$ becomes (8.46) \begin{align*} \tilde{h}(f_n) &= \int_{-\infty}^\infty e^{-2\pi i f_n t} \dd t \\ &\simeq \Delta \sum_{m = 0}^{N - 1} h_m e^{-2\pi i f_n t_m} \\ &= \Delta \sum_{m = 0}^{N - 1} h_m e^{-2\pi i mn/N} \\ &= \Delta \tilde{h}_d(f_n) \tag{8.47} \end{align*} \begin{hiddenflashcard}[discrete-FT] \prompt{Discrete FT?} \cloze{ \begin{align*} \tilde{h}_n = \tilde{h}_d(f_n) &= \sum_{m = 0}^{N - 1} h_m e^{-2\pi i mn / N} \\ h_m &= h(t_m) \\ t_m &= m\Delta \\ f_n &= \frac{n}{N\Delta} \end{align*} } \end{hiddenflashcard} Recalling section 8.2 Fourier series $\to$ Fourier transform Riemann integral. Here $\tilde{h}_d(f_n) \equiv \tilde{h}_n$ is the discrete Fourier Transform. So the matrix $[DFT]_{mn} = e^{-2\pi i mn/n}$ defines the discrete Fourier Transform for $\bf{h} = \{h_m\}$ (data vector) as $\tilde{\bf{h}}_d = [DFT] \bf{h}$. \\ The \emph{inverse} is its adjoint $[DFT]^{-1} = \frac{1}{N} [DFT]^\dag$ and it's built from roots of unity $\omega = e^{-2\pi i/N}$. For example $N = 4$, $\omega = -i$, \[ DFT = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix} \] The \emph{inverse DFT} is \begin{align*} h_m &= h(t_m) \\ &= \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{h}(\omega) e^{i\omega t_m} \dd \omega \\ &= \int_{-\infty}^\infty \tilde{h}(f) e^{2\pi i f t_m} \dd f \\ &\simeq \frac{1}{N\Delta} \sum_{m = 0}^{N - 1} \Delta \tilde{h}_d(f_n) e^{2\pi imn/N} \\ &= \frac{1}{N} \sum_{n = 0}^{N - 1} \tilde{h}_n e^{2\pi imn/N} \tag{8.48} \end{align*} \begin{hiddenflashcard}[inverse-dft] \prompt{Inverse DFT?} \[ h_m = \cloze{\frac{1}{N} \sum_{n = 0}^{N - 1} \tilde{h}_n e^{2\pi imn/N}} \] \end{hiddenflashcard} or interpolating Fourier series is $h(t) = \frac{1}{N} \sum_{n = 0}^{N - 1} \tilde{h}_n e^{2\pi i nt/N}$. \myskip Exercise: Establish Parseval's theorem \[ \sum_{m = 1}^{N - 1} |h_m|^2 = \frac{1}{N} \sum_{m = 0}^{N - 1} |\tilde{h}_m|^2 \tag{8.49} \] The convolution theorem for $g_m, h_m$ is \[ c_k = \sum_{m = 0}^{N - 1} g_m h_{k - m} \iff \tilde{c}_k = \tilde{g}_k \tilde{h}_k \tag{8.50} \] \newpage \mychapter{PDEs on Unbounded Domains} \newpage \section{Characteristics} \subsection{Well-posed Cauchy Problems} Solving PDEs depends on the nature of the equations in combination with the boundary and / or initial data. A \emph{Cauchy problem} is the PDE for $\phi$ together with this auxillary data (i.e. $\phi$ and its derivatives) specified on a surface (or curve in 2D), which is called \emph{Cauchy data}. \\ A Cauchy problem is \emph{well-posed} if: \begin{enumerate}[(i)] \item a solution exists \item the solution is unique item the solution depends continuously on auxillary data. \end{enumerate} \subsection{Method of Characteristics} Consider a parametrised curve $C$ given by $(x(S), y(s))$ with tangent vector $\bf{v} = \left( \dfrac{x}{s}(s), \dfrac{y}{s}(s) \right)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/9acfbde6698911ed.png} \end{center} For a function $\phi(x, y)$ we can define a directional derivative along $C$ \[ \left. \dfrac{\phi}{s} \right|_C = \dfrac{x(s)}{s} \pfrac{\phi}{x} + \dfrac{y(s)}{s} \pfrac{\phi}{y} = \bf{v} \cdot \nabla \phi |_C \tag{9.1} \] If $\bf{v} \cdot \nabla \phi = 0$, then $\dfrac{\phi}{s} = 0$ and $\phi = \text{constant}$ along $C$. \\ Now suppose we have a vector field \[ \bf{u} = (\alpha(x, y), \beta(x, y)) \tag{9.2} \] with its family of integral curves $C$ non-intersecting and filling $\RR^2$ (i.e. at a point $(x, y)$ the integral curve has tangent $\bf{u}$). \begin{center} \includegraphics[width=0.6\linewidth] {images/2330daee698a11ed.png} \end{center} Define a curve $B$ by $((x(t), y(t))$ transverse to $\bf{u}$, such that its tangent $\bf{\omega} = \left( \dfrac{x(t)}{t}, \dfrac{y(t)}{t} \right)$ is nowhere parallel to $\bf{u}$. Label each integral curve $C$ of $\bf{u}$ using $t$ at the intersection point with $\bf{B}$, then use $s$ to parametrise along the curve (i.e. take $s = 0$ at $B$). \\ Our integral curves $(x(s, t), y(s, t))$ satisfy: \[ \dfrac{x}{s} = \alpha(x, y), \qquad \dfrac{y}{s} = \beta(x, y) \tag{9.3} \] Solve these to find a family of characteristic curves along which $t$ remains constant (i.e. new coordinates $(s, t)$). \subsection{Characteristics of a 1st order PDE} Consider 1st order linear PDE \[ \alpha(x, y) \pfrac{\phi}{x} + \beta(x, y) \pfrac{\phi}{y} = 0 \tag{9.4} \] with specified Cauchy data on an initial curve $B$ $(x(t), y(t))$: \[ \phi(x(t), y(t)) = f(t) \tag{9.5} \]