% vim: tw=50 % 10/10/2022 10AM \subsection{The Dirichlet Conditions (Fourier's theorem)} Sufficiency conditions for a ``well-behaved'' function to have a unique Fourier Series (1.4): \medskip \begin{flashcard} \prompt{Dirichlet Conditions? \\} \noindent \cloze{If $f(x)$ is a \fcemph{bounded periodic} function \fcscrap{(period $2L$) }with a \fcemph{finite number} of \fcemph{minima}, \fcemph{maxima} and \fcemph{discontinuities} in $0 \le x < 2L$, then the Fourier Series \fcscrap{(1.4-5) }converges to $f(x)$ at all points where $f$ is continuous; at discontinuities the series converges to the midpoint $\half (f(x_+) + f(x_-))$.} \end{flashcard} \begin{note*} \begin{itemize} \item Weak conditions (in contrast to Taylor series) but pathological functions are excluded, such as $\frac{1}{x}$, $\sin \frac{1}{x}$, \[ f(x) = \begin{cases} 0 & \text{rational} \\ 1 & \text{irrational} \end{cases} \] \item Converse is not true (consider $\sin \frac{1}{x}$ which has a Fourier series) \item Proof is difficult (see Jeffrey's \& Jeffrey's) \end{itemize} \end{note*} \begin{theorem*}[Convergence of Fourier series] \fc{If $f(x)$ has continuous derivatives up to \cloze{the $p$-th derivative which is \fcemph{discontinuous}}, then \cloze{the Fourier series coefficients converge as $\theta(n^{-(p + 1)})$, as $n \to \infty$.}} \end{theorem*} \begin{example*}[$p = 0$] ``Square wave'' (Example sheet 1, Q5) \[ f(x) = \begin{cases} 1 & 0 \le x < 1 \\ -1 & -1 \le x < 0 \end{cases} \] then Fourier series \[ f(x) = 4 \sum_{m = 1}^\infty \frac{\sin(2m - 1) \pi x}{(2m - 1) \pi} \tag{1.7} \] \end{example*} \begin{example*}[$p = 1$] General ``see-saw'' wave. If \[ f(x) = \begin{cases} x(1 - \xi) & 0 \le x < \xi \\ \xi(1 - x) & \xi \le x < 1 \\ x(1 - \xi) & -\xi \le x < 0 \\ \xi(-1 - x) & -1 \le x < \xi \end{cases} \] Show that the Fourier series is \[ f(x) = 2\sum_{n = 1}^\infty \frac{\sin n \pi \xi \sin n \pi x}{(n \pi)^2} \tag{1.8} \] For $\xi = \half$, show \[ f(x) = 2\sum_{m = 1}^\infty (-1)^{m + 1} \frac{\sin (2m - 1) \pi x}{((2m - 1) \pi)^2} \] \end{example*} \begin{example*}[$p = 2$] Take \[ f(x) = \begin{cases} \half x(1 - x) & 0 \le x < 1 \\ \half x(1 + x) & -1 \le x < 0 \end{cases} \] Show Fourier series is \[ f(x) = 4 \sum_{m = 1}^\infty \frac{\sin(2m - 1) \pi x}{((2m - 1) \pi)^3} \tag{1.9} \] \end{example*} \begin{example*}[$p = 3$] $f(x) = (1 - x^2)^2$ with Fourier series $a_n = \theta \left( \frac{1}{n^4} \right)$. \end{example*} \subsubsection*{Integration of Fourier Series} \begin{hiddenflashcard}[conditions-for-FS-integral] \prompt{Conditions for term by term integration of Fourier series to work?} \cloze{\fcemph{Always} valid.} \end{hiddenflashcard} It is always valid to integrate the Fourier series (1.4) of $f(x)$ term-by-term to obtain \[ F(x) = \int_{-L}^x f(x) \dd x \] because $F(x)$ satisfies Dirichlet conditions if $f(x)$ does. (for example discontinuities in $f$ become continuous in $F(x)$). \subsubsection*{Differentiation of Fourier Series} Take care with term-by-term differentiation. \begin{example*}[Counter example] Take ``square wave'' Fourier series (1.7) and find \[ f'(x) \stackrel{?}{=} 4 \sum_{m = 1}^\infty \cos(2m - 1) \pi x \] which is unbounded! \end{example*} \begin{flashcard} \begin{theorem*} \prompt{Conditions for ``Fourier series derivative'' to work? \\} \cloze{If $f(x)$ is continuous and satisfies Dirichlet conditions and $f'(x)$ satisfies Dirichlet conditions, then $f'(x)$ can be found by term-by-term differentiation of Fourier series\fcscrap{ (1.4)} of $f(x)$.} \end{theorem*} \end{flashcard} \noindent Exercise: Differentiate ``see-saw'' (1.8) with $\xi = \half$, to get offset ``square-wave'' (1.7) (i.e. $x \to x + \half$). \subsection{Parseval's Theorem} Relation between integral of the square of a function and the sum of the squares of the Fourier coefficients: \begin{align*} \int_0^{2L} [f(x)]^2 \dd x &= \int_0^{2L} \dd x \left[ \half a_0 + \sum_n a_n \cos \frac{n \pi x}{L} + \sum_n b_n \sin \frac{n \pi x}{L} \right]^2 \\ &= \int_0^{2L} \dd x \left[ \frac{1}{4} a_0^2 + \sum_n a_n^2 \cos^2 \frac{n \pi x}{L} + \sum_n b_n^2 \sin^2 \frac{n \pi x}{L} \right] \end{align*} by orthogonal relations (1.1-3). \fc{\prompt{Parseval's theorem?} \[ \boxed{\int_0^{2L} [f(x)]^2 \dd x = \cloze{L \left[ \half a_0^2 + \sum_{n = 1}^\infty (a_n^2 + b_n^2) \right]}} \tag{1.10} \]} Also called the \emph{completeness relation} because $LHS \ge RHS$ if any basis coefficients are missing. \begin{example*} ``Sawtooth'' wave $f(x) = x$ on $-L \le x < L$ with Fourier series (1.6) \[ LHS = \int_{-L}^L x^2 \dd x = \frac{2}{3} L^3 \] \[ RHS = L \sum_{n = 1}^\infty \frac{4L^2}{n^2 \pi^2} = \frac{4L^3}{\pi^2} \sum_{n = 1}^\infty \frac{1}{n^2} \] (note that we can combine these to notice that $\sum_{n = 1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}$!). See Example sheet 1, Q3 \end{example*} \begin{remark*} Parseval's theorem for functions $\langle f, f \rangle \equiv \|f\|^2$ is the same as Pythagoras for vectors $\langle v, v \rangle = |v|^2 = x^2 + y^2 + z^2$ (the norm). \end{remark*}