% vim: tw=50 % 16/11/2022 10AM \subsection*{8.4a Fourier Transform of Generalised Functions} (See discussion in section 8.3 of R Jorsa notes (or D Skinner)) \subsubsection*{Dirac delta function $\delta(x)$} Consider the inversion then (8.3): \begin{align*} f(x) &= \mathcal{F}^{-1}(\mathcal{F}(f))(x) &= \frac{1}{2\pi} \int_{-\infty}^\infty \left[ \int_{-\infty}^\infty f(u) e^{-iku} \dd u \right] e^{ikx} \dd k \\ &= \int_{-\infty}^\infty f(u) \left[ \frac{1}{2\pi} \int_{-\infty}^\infty e^{ik(x-u)} \dd k \right] \dd u \end{align*} so identify \[ \delta(x - u) = \frac{1}{2\pi} \int_{-\infty}^\infty e^{ik}(x - u) \dd k = \frac{1}{2\pi} \int_{-\infty}^\infty e^{-iku} e^{ikx} \dd k \] \begin{itemize} \item If $f(x) = \delta(x - a)$, then $\tilde{f}(k) = e^{-ika}$ (8.21). \begin{hiddenflashcard}[FT-of-delta-function] \prompt{What is the Fourier transform of $\delta(x - a)$?} \[ f(x) = \delta(x - a) \iff \tilde{f}(k) = \cloze{e^{-ika}} \] \end{hiddenflashcard} \item If $f(x) = \delta(x)$ then \[ \tilde{f}(k) = \int_{-\infty}^\infty \delta(x) e^{ikx} \dd x = 1 \tag{8.22} \] \item If $f(x) = 1$, then \[ \tilde{f}(k) = \int_{-\infty}^\infty e^{-ikx} \dd x = 2\pi \delta(k) \tag{8.23} \] by duality (8.14). \end{itemize} \subsubsection*{Trig Functions} \begin{flashcard}[FT-of-cos] \prompt{What is the Fourier transform of $\cos \omega x$?} \[ f(x) = \cos \omega x \iff \tilde{f}(k) = \cloze{\pi(\delta(k + w) + \delta(k - w))} \] \end{flashcard} \begin{flashcard}[FT-of-sin] \prompt{What is the Fourier transform of $\sin \omega x$?}% \[ f(x) = \sin \omega x \iff \tilde{f}(k) = \cloze{i\pi(\delta(k + w) - \delta(k - w))} \tag{8.24} \] \end{flashcard} Exercise: Find $\mathcal{F}^{-1}$ for $\sin\omega k$, $\cos\omega k$ using (8.14). \subsubsection*{Heaviside function} Subtle derivation requiring central value $H(0) = \half$; then $H(x) + H(-x) = 1$ for all $x$ and continuous at $x = 0$. By (8.8) and (8.23) \[ \tilde{H}(k) + \tilde{H}(-k) = 2\pi \delta(k) \tag{$*$} \] Recall (6.7) $H'(x) = \delta(x)$ which implies \[ ik\tilde{H}(k) = 1 \tag{\dag} \] by (8.13) and (8.22). But $k\delta(k) = 0$, so ($*$) and ($\dag$) are consistent if \begin{flashcard}[FT-of-Heaviside] \prompt{What is the Fourier transform of the Heaviside function?} \[ \tilde{H}(k) = \cloze{\pi\delta(k) + \frac{1}{ik}} \tag{8.25} \] \end{flashcard} Dirichlet discontinuous formula (8.16): Rewrite as \[ \half \sgn(x) = \frac{1}{2\pi} \int_{-\infty}^\infty \frac{e^{ikx}}{ik} \dd x \] so \begin{flashcard}[FT-of-sgn] \prompt{What is the Fourier transform of the sign function?} \[ f(x) = \half \sgn(x) \iff \tilde{f}(k) = \cloze{\frac{1}{ik}} \tag{8.26} \] \end{flashcard} \begin{hiddenflashcard}[FT-of-1] \prompt{What is the Fourier transform of $1$?} \[ f(x) = 1 \iff \tilde{f}(k) = \cloze{2\pi \delta(k)} \] \end{hiddenflashcard} \subsection{Applications of Fourier Transforms} \subsubsection*{Motivation I: ODE for BVP} Consider $y'' - y = f(x)$ with homogeneous boundary conditions $y \to 0$ as $x \to \pm \infty$. Take the Fourier Transform: \[ (ik)^2 \tilde{y} - \tilde{y} = (-k^2 - 1) \tilde{y} = \tilde{f} \] by (8.13). SO the solution is \[ \tilde{y}(k) = -\frac{\tilde{f}(k)}{1 + k^2} \equiv \tilde{f}(k) \tilde{g}(k) \] where $\tilde{g}(k) = -\frac{1}{1 + k^2}$ but this is the Fourier Transform of $g(x) = -\half e^{-|x|}$ (see (8.6)). Thus convolution theorem (8.17) implies \begin{align*} y(x) &= \int_{-\infty}^\infty f(x)g(x - u) \dd u \\ &= -\half \int_{-\infty}^\infty f(u) e^{-|x - u|} \dd u \\ &= -\half \int_{-\infty}^x f(u) e^{u - x} \dd u - \half \int_x^\infty f(u) e^{x - u} \dd u \end{align*} which is in the form of a BVP Green's function. \\ Exercise: Verify by constructing Green's function. \subsubsection*{Motivation II: Signal processing (IVP)} Suppose (given) input $\mathcal{J}(t)$ acting on by linear operator $\mathcal{L}_{\text{in}}$ to yield output $\theta(t)$. \[ \theta(t) = \mathcal{L}_{\text{in}} \mathcal{J}(t) \] The Fourier Transform $\tilde{\mathcal{J}}(\omega)$ is denoted \emph{the resolution} \[ \tilde{\mathcal{J}}(\omega) = \int_{-\infty}^\infty \mathcal{J}(t) e^{-i\omega t} \dd t \tag{8.27} \] In frequency domain $\mathcal{L}_{\text{in}} \mathcal{J}(t)$ means $\tilde{\mathcal{J}}(\omega)$ is multiplied by a \emph{transfer function} $\tilde{R}(\omega)$ to yield output \[ \theta(t) = \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{R}(\omega) \tilde{\mathcal{J}}(\omega) e^{i\omega t} \dd \omega \tag{8.28} \] with \emph{response function} given by \[ R(t) = \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{R}(\omega) e^{i\omega t} \dd \omega \tag{8.29} \] By the convolution theorem (8.17), output is \[ \theta(t) = \int_{-\infty}^\infty \mathcal{J}(u) R(t - u) \dd u \] We assume no input $\mathcal{J}(t) = 0$ for $t < 0$ and by \emph{causality}, zero output for $R(t) = 0$ for $t < 0$ (i.e. $R(t - u)$ has source $\delta(t - u)$), so we require $0 < u < t$: \[ \theta(t) = \int_0^r \mathcal{J}(u) R(t - u) \dd u\tag{8.30} \] i.e. the same form as IVP Green's function. \subsubsection*{General transfer functions for ODEs} Suppose input / output relation given by linear ODE ($n$-th order) \[ \mathcal{L} \theta(t) \equiv \left( \sum_{i = 0}^n a_i \dfrac[i]{}{t} \right) \theta(t) = \mathcal{J}(t) \tag{8.31} \] where $a_i$ are constant and here set $\mathcal{L}_{\text{in}} = 1$. Take the Fourier Transform: \[ (a_0 + a_1(i\omega) + a_2(i\omega)^2 + \cdots + a_n(i\omega)^n) \theta(\omega) = \tilde{\mathcal{J}} (\omega) \] so the transfer function (8.28) is \[ \tilde{R}(\omega) = \frac{1}{a_0 + a_1(i\omega) + \cdots + a_n (i\omega)^n} \tag{8.32} \] Factorise $n$-th degree polynomial into product of $n$ roots $(i\omega - c_j)^{k_j}$ with $j = 1, 2, \dots, J$ (with repeated roots $k_j > 1$) i.e. $\sum_{j = 1}^J k_j = n$. Then \begin{align*} \tilde{R}(\omega) &= \frac{1}{(i\omega - c_1)^{k_1} + \cdots + (i\omega - c_J)^{k_J}} \\ &= \sum_{j = 1}^J \sum_{m = 1}^{k_j} \frac{\Gamma_{jm}}{(i\omega - c_j)^m} \tag{8.33} \end{align*} since it can be expanded in partial fractions (constant $\Gamma_{jm}$). For repeated roots ($1 \le m \le k_j$): \[ \frac{1}{(i\omega - c_j)^{k_j}} \to \frac{\Gamma_{j1}}{(i\omega - c_j)} + \frac{\Gamma_{j2}}{(i\omega - c_j)^2} + \cdots + \frac{\Gamma_{jk}}{(i\omega - c_j)^{k_j}} \] To solve we must invert $\frac{1}{(i\omega - a)^m}$, $m \ge 1$. We know (8.6a) \[ \mathcal{F}^{-1} \left( \frac{1}{i\omega - a} \right) = \begin{cases} e^{at} & t > 0 \\ 0 & t < 0 \end{cases} \] for $\Re(a) < 0$, so we assume $\Re(c_j) < 0$, $\forall j$ (eliminate exponential growing modes).