% vim: tw=50 % 14/11/2022 10AM \noindent Then the Fourier series ($*$) becomes \[ f(x) = \sum_{n = -\infty}^\infty \frac{\Delta k}{2\pi} e^{i k_n x} \int_{-L}^L f(x') e^{-i k_n x'} \dd x' \] But $\sum_{n = -\infty}^\infty \Delta kg(k_n) \to \int_{-\infty}^\infty g(k) \dd k$ with $g(k_n) = \frac{e^{i k_n x}}{2\pi} \int_{-L}^L f(x') e^{-ikx'} \dd x'$. So take limit as $L \to \infty$ and we have \[ f(x) = \frac{1}{2\pi} \int_{-\infty}^\infty \dd k e^{ikx} \left[ \int_{-\infty}^\infty f(x') e^{-ikx'} \dd x' \right] = \mathcal{F}^{-1}(\mathcal{F}(f))(x) \] (i.e. equation (8.3)) \[ \text{resolution $\mathcal{F}$ (decomposition)} \to \text{synthesis (reconstruction)} \] Note when $f(x)$ is discontinuous at $x$ (like Fourier series) the Fourier Transform gives \[ \mathcal{F}^{-1}(\mathcal{F}(f))(x) = \half (f(x_-) + f(x_+)) \tag{8.7} \] \subsection{Fourier Transform Properties} \[ \tilde{f}(t) = \int_{-\infty}^\infty f(x) e^{-ikx} \dd x \] \begin{enumerate}[(1)] \item Linearity: \[ h(x) = \lambda f(x) + \mu g(x) \iff \tilde{h}(k) = \lambda \tilde{f}(k) + \mu \tilde{g}(k) \tag{8.8} \] \item Translation: \[ h(x) = f(x - \lambda) \iff \tilde{h}(k) = e^{-i\lambda k} \tilde{f}(k) \tag{8.9} \] \[ \tilde{h}(k) = \int f(x - \lambda) e^{-ikx} \dd x = \int f(y) e^{-ik(y + \lambda)} \dd y = e^{-i\lambda k} \tilde{f}(k) \] \item Frequency: \[ h(x) = e^{i\lambda x} f(x) \iff \tilde{h}(k) = \tilde{f}(k - \lambda) \tag{8.10} \] \item Scaling: \begin{flashcard}[scaling-property-of-FT] \prompt{What is the scaling property of the Fourier Transform?} \[ h(x) = \cloze{f(\lambda x)} \iff \tilde{h}(k) = \cloze{\frac{1}{|\lambda|} \tilde{f} \left( \frac{k}{\lambda} \right)} \tag{8.11} \] \end{flashcard} ($|\lambda|$ because $x \to -x$ changes limits) \item Multiplication by $x$: \begin{flashcard}[FT-multiplied-by-x] \prompt{What is the Fourier Transform of $xf(x)$?} \[ h(x) = xf(x) \iff \tilde{h}(k) = \cloze{i\tilde{f}'(k)} \tag{8.12} \] \end{flashcard} because \begin{align*} \int_{-\infty}^\infty xf(x) e^{-ikx} \dd x &= -\frac{1}{i} \dfrac{}{k} \left(\int_{-\infty}^\infty f(x) e^{-ikx} \dd x \right) \end{align*} \item Derivative: \begin{flashcard}[FT-of-derivative] \prompt{What is the Fourier Transform of $f'(x)$?} \[ \boxed{h(x) = f'(x) \iff \tilde{h}(k) = \cloze{ik \tilde{f}(k)}} \tag{8.13} \] \end{flashcard} because \begin{align*} \tilde{h}(k) &= \int_{-\infty}^\infty f'(x) e^{-ikx} \dd x \\ &= [f(x) e^{-ikx}]_{-\infty}^\infty + ik\int_{-\infty}^\infty f(x) e^{-ikx} \dd x \\ &= ik \tilde{f}(k) \end{align*} \item General duality: Consider (8.2) with $x \to -x$ \[ f(-x) = \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{f}(k) e^{-ikx} \dd k \] so $k \leftrightarrow x$ \[ \implies f(-k) = \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{f}(x) e^{ikx} \dd x \] Thus \begin{flashcard}[FT-duality] \[ \boxed{g(x) = \tilde{f}(x) \iff \tilde{g}(x) = \cloze{2\pi f(-k)}} \tag{8.14} \] \end{flashcard} We have $f(-x) = \frac{1}{2\pi} \mathcal{F}(\tilde{f})(x) = \frac{1}{2\pi} \mathcal{F}^2(f)(x)$, so repeating, $\mathcal{F}^4(f)(x) = 4\pi^2 f(x)$. \end{enumerate} Exercise: Verify 1-7. \myskip ``Top hat'' example: \begin{center} \includegraphics[width=0.6\linewidth] {images/b23ab0b6640811ed.png} \end{center} Find Fourier Transform for \[ f(x) = \begin{cases} 1 & |x| \le a \\ 0 & |x| > a \end{cases} \] ($a > 0$) \begin{align*} \tilde{f}(k) &= \int_{-\infty}^\infty f(x) e^{-ikx} \dd x \\ &= \int_{-a}^a \cos kx \dd x \\ &= 2 \frac{\sin ka}{a} \tag{8.15} \end{align*} \begin{hiddenflashcard}[FT-of-top-hat] \prompt{What is the Fourier Transform of a top hat function?} \[ f(x) = \cloze{ \begin{cases} 1 & |x| \le a \\ 0 & |x| > a \end{cases} } \] \[ \tilde{f}(k) = \cloze{ 2 \frac{\sin ka}{a} } \] \end{hiddenflashcard} Fourier inversion, then (8.3) implies \[ \frac{1}{\pi} \int_{-\infty}^\infty e^{ikx} \frac{\sin ka}{k} \dd k = \begin{cases} 1 & |x| \le a \\ 0 & |x| > a \end{cases} \] Now set $x = 0$, then take $k \to x$ to obtain Dirchlet discontinuous formula: \begin{flashcard}[Dirchlet-discontinuous-formula] \prompt{What is the Dirchlet discontinuous formula?} \[ \cloze{\int_0^\infty \frac{\sin ax}{x} \dd x} \fcscrap{= \begin{cases} \frac{\pi}{2} & a > 0 \\ 0 & a = 0 \\ -\frac{\pi}{2} & a < 0 \end{cases}} = \cloze{\frac{\pi}{2} \sgn(a)} \tag{8.16} \] \end{flashcard} Here, we allow $a < 0$, so $\sin(-ax) = -\sin ax$. (See RJ notes for direct inverse Fourier transform of (8.15)) \subsection{Convolution and Parseval's Theorem} We want to multiply Fourier Transforms in frequency domain $\tilde{h}(k) = \tilde{f}(k) \tilde{g}(k)$ so consider the inverse: \begin{align*} h(x) &= \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{f}(k) \tilde{g}(k) e^{ikx} \dd k \\ &= \frac{1}{2\pi} \int_{-\infty}^\infty \left( \int_{-\infty}^\infty f(y) e^{-iky} \dd y\right) \tilde{g}(k) e^{ikx} \dd k \\ &= \int_{-\infty}^\infty f(y) \left( \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{g}(k) e^{ik(x - y)} \dd k \right) \dd y &&\text{see (8.9)} \\ &= \int_{-\infty}^\infty f(y) g(x - y) \dd y \\ &\equiv f * g(x) \tag{8.17} \end{align*} (convlution definition). By duality (8.14) we also have \begin{flashcard}[FT-of-product] \prompt{Fourier transform of product?} \[ h(x) = f(x)g(x) \iff \tilde{h}(k) = \cloze{\frac{1}{2\pi} \int_{-\infty}^\infty \tilde{f}(p) \tilde{g}(k - p) \dd p} \tag{8.18} \] \prompt{\cloze{(the LHS is $\frac{1}{2\pi} \tilde{f} * \tilde{g} (k)$).}} \end{flashcard} \subsubsection*{Parseval's Theorem} Consider $h(x) = g^*(-x)$, then \begin{align*} \tilde{h}(k) &= \int_{-\infty}^\infty g^*(-x) e^{-ikx} \dd x \\ &= \left[ \int_{-\infty}^\infty g(-x) e^{ikx} \dd x \right]^* \\ &= \left[ \int_{-\infty}^\infty g(y) e^{-iky} \dd y \right]^* \\ &= \tilde{g}^*(k) \end{align*} Substitute into (8.17) $g(x) \to g^*(-x)$, \[ \int_{-\infty}^\infty f(y) g^*(y - x) \dd y = \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{f}(k) \tilde{g}^*(k) e^{ikx} \dd k \] Take $x = 0$, then dummy variable $y \to x$ on LHS: \[ \int_{-\infty}^\infty f(x) g^*(x) \dd x = \frac{1}{2\pi} \int_{-\infty}^\infty \tilde{f}(k) \tilde{g}^*(k) \dd k \tag{8.19} \] Or equivalently, \[ \langle g, f \rangle = \frac{1}{2\pi} \langle \tilde{g}, \tilde{f} \rangle_k \] see section (2.1). Now $g = f^*$: \begin{flashcard}[FT-Parseval-theorem] \prompt{Parseval's theorem for FT?} \[ \boxed{\cloze{\int_{-\infty}^\infty |f(x)|^2 \dd x} = \cloze{ \frac{1}{2\pi} \int_{-\infty}^\infty |\tilde{f}(k)|^2 \dd k}} \tag{8.20} \] \end{flashcard} which is \emph{Parseval's theorem}.