% vim: tw=50 % 09/11/2022 10AM \subsection{Constructing $G(x, \xi)$: Boundary Value Problems} Solve \[ \mathcal{L} G(x, \xi) = \delta(x - \xi) \] on $a \le x \le b$ with $G(a, \xi) = G(b, \xi) = 0$. \subsubsection*{1 \& 2 Solves homogeneous equation with homogeneous boundary conditions} Assume 2 independent homogeneous solutions $y_1(x)$, $y_2(x)$ known. \\ For $a \le x < \xi$: $G_1(x, \xi) = Ay_1(x) + By_2(x)$ such that $Ay_1(a) + By_2(a) = 0$ (i.e. choose suitable $A$, $B$). This defines a complementary function (2.3) $y_-(x)$ such that $y_-(a) = 0$ \[ \boxed{G_1 = C y_-(x) \text{ with $y_-(a) = 0$}} \tag{7.14} \] For $\xi < x \le b$: Similarly find \[ \boxed{G_2 = Dy_+(x) \text{ with $y_+(b) = 0$}} \tag{7.15} \] where $y_+(x)$ is a complementary function (2.3). \subsubsection*{3. Why is $G$ continuous at $x = \xi$?} Suppose $G$ were discontinuous locally, so $G \propto H(x, \xi) + \cdots$ (6.7) \begin{center} \includegraphics[width=0.6\linewidth] {images/3e3d06d0601811ed.png} \end{center} Then we would have $G' \propto \delta(x, \xi)$ and $G'' \propto \delta'(x - \xi)$. So LHS \[ \mathcal{L} G \propto \alpha(x) \delta'(x - \xi) + \beta(x) \delta(x - \xi) + \gamma(x) H(x, \xi) \] there is no term $\propto \delta'(x - \xi)$. So $G$ isn't discontinuous. Hence we have $[G]_{\xi_-}^{\xi^+} = 0$, so \[ \boxed{Cy_-(\xi) = Dy_+(\xi)} \tag{7.16} \] \subsubsection*{4. Why the jump condition for $G'$ at $x = \xi$?} Integrate $\mathcal{L} G = \delta(x, \xi)$ across $x = \xi$: \begin{align*} LHS &+ \int_{\xi_-}^{\xi^+} \mathcal{L} G \dd x &= \int_{\xi_-}^{\xi^+} (\alpha G'' + \beta G' + \gamma G) \dd x \\ &= \alpha(\xi) [G']_{\xi_-}^{\xi^+} + \ub{(\beta - \alpha')[G]_{\xi_-}^{\xi^+}}_{=0 \text{by continuity (7.16)}} + \ub{\int_{\xi_-}^{\xi^+} (\gamma - \beta' + \alpha'') G \dd x}_{=0 \text{by continuity}} \\ RHS &= \int_{\xi_-}^{\xi^+} \delta(x - \xi) \dd x \\ &= 1 \end{align*} So $[G']_{\xi_-}^{\xi^+} = \frac{1}{\alpha(\xi)}$ so \[ \boxed{Dy_+'(\xi) - Cy_-'(\xi) = \frac{1}{\alpha(\xi)}} \tag{7.17} \] \subsubsection*{Wronskian $W(\xi)$} Solving (7.16) and (7.17) we find \[ C(\xi) = \frac{y_+(\xi)}{\alpha(\xi) W(\xi)}, \quad D(\xi) = \frac{y_-(\xi)}{\alpha(\xi) W(\xi)} \] where $W(\xi) = y_-(\xi) y_+'(\xi) - y_+(\xi) y_-'(\xi) \neq 0$ if $y_+, y_-$ are linearly independent. Hence \[ \boxed{G(x, \xi) = \begin{cases} \frac{y_-(x)y_+(\xi)}{\alpha(\xi) W(\xi)} & a \le x < \xi \\ \frac{y_+(x) y_-(\xi)}{\alpha(\xi) W(\xi)} & \xi < x \le b \end{cases}} \tag{7.20} \] So the solution to (7.6) with $y(a) = y(b) = 0$ \begin{center} \includegraphics[width=0.6\linewidth] {images/28123392601a11ed.png} \end{center} \begin{align*} y(x) &= \int_a^b G(x, \xi) f(\xi) \dd \xi \\ &= \int_a^x G_2(x, \xi) f(\xi) \dd \xi + \int_x^b G_1(x, \xi) f(\xi) \dd \xi \\ y(x) &= y_+(x) \int_a^x \frac{y_-(\xi) f(\xi)}{\alpha(\xi) W(\xi)} \dd \xi + y_-(x) \int_a^b \frac{y_+(\xi) f(\xi)}{\alpha(\xi) W(\xi)} \dd \xi \tag{7.21} \end{align*} Notes: \begin{enumerate}[(1)] \item If $\mathcal{L}$ is in Sturm Liouville form (2.7) i.e. $\beta = \alpha'$ then denominator $\alpha(\xi) W(\xi)$ is a constant and $G$ is \emph{symmetric}, $G(x, \xi) = G(\xi, x)$. Exercise: show $\dfrac{}{x} (\alpha(x) W(x)) = 0$ if $\alpha' = \beta$ and using (2.10) (self-adjoint form). \item Often take $\alpha = 1$ (but Sturm Liouville form $\alpha < 0$). \item Indefinite integrals $\int_x$ in (7.21) are particular integral in general solution (2.5). \end{enumerate} Exercise: For $-y'' = f(x)$, $y(0) = y(1) = 0$ directly construct the Green's function (7.4) (i.e. with $y_1 = x$, $y_2 = \text{constant}$). \\ \begin{example*} Solve $y'' - y = f(x)$ with $y(0) = y(1) = 0$. Construct $G(x, \xi)$: \begin{enumerate} \item[1\&2] Homogeneous solutions $y_1 = e^x$ and $y_2 = e^{-x}$ so with homogeneous boundary conditions (by inspection): \[ G = \begin{cases} C \sinh x & 0 \le x < \xi \\ D \sinh (1 - x) & \xi < x \le 1 \end{cases} \] \item[3] Continuity at $\xi$ implies $C \sinh \xi = D \sinh(1 - \xi)$ \[ C = \frac{D \sinh(1 - \xi)}{\sinh \xi} \] \item[4] $[G'] = 1$ implies \[ -D \cosh(1 - \xi) - C \cosh \xi = 1 \] ($\alpha = 1$) so \[ -D [\cosh(1 - \xi) \sinh \xi + \sinh(1 - \xi) \cosh \xi] = \sinh \xi \tag{$*$} \] \[ -D[\sinh 1] = \sinh \xi \] \[ D = -\frac{\sinh \xi}{\sinh 1}, \quad C = -\frac{\sinh(1 - \xi)}{\sinh 1} \] so the solution is \[ y = -\frac{\sinh(1 - x)}{\sinh 1} \int_0^x \sinh \xi f(\xi) \dd \xi - \frac{\sinh x}{\sinh 1} \int_x^1 \sinh(1 - \xi) f(\xi) \dd \xi \tag{7.22} \] \end{enumerate} \end{example*} \subsubsection*{Inhomogeneous Boundary conditions} Find $y_p$ solution to $\mathcal{L} y = 0$ satisfying boundary conditions ($y(a) \neq 0$, $y(b) \neq 0$). Find Green's function for $\mathcal{L} y_g = f$ with $y_a(a) = y_g(b) = 0$ where $y_g = y - y_p$. For example \[ y'' - y = f(x) \] with $y(0) = 0$ and $y(1) = 1$. \[ y_p = A \sinh x + B \cosh x \] $y_p(0) = 0$ implies $B = 0$, $y_p(1) = 1$ implies $A = \frac{1}{\sinh 1}$. Solve for $y_g = y - y_p$ with homogeneous boundary conditions. Solution is \[ y(x) = \frac{\sinh x}{\sinh 1} + y_g(x) \] (i.e. equation (7.22)) \subsubsection*{Higher-order ODEs (BVP)} If $\mathcal{L} y = f(x)$ to $n$-th order (coefficient $\alpha(x) \dfrac[n]{y}{x}$) with homogeneous boundary conditions then we generalize Green's function $\mathcal{L}(x, \xi) = \delta(x - \xi)$ with properties: \begin{enumerate} \item[1\&2] $G_1, G_2$ homogeneous solutions satisfying homogeneous boundary conditions. \item[3] Continuity: $G_1 = G_2$, $G_1' = G_2'$, \dots, $G_1^{(n - 2)} = G_2^{(n - 2)}$ at $x = \xi$. \item[4] Jump in $(n - 1)$ derivative: \[ [G^{(n - 1)}]_{\xi_-}^{\xi^+} = G_2^{(n - 1)} |_{\xi^+} - G_1^{(n - 1} |_{\xi_-} = \frac{1}{\alpha(\xi)} \] \end{enumerate}