% vim: tw=50 % 07/11/2022 10AM \subsection{Eigenfunction expansions of $\delta(x)$} \subsubsection*{Fourier series (complex)} For $-1 \le x < L$, represent \[ \delta(x) = \sum_{n = -\infty}^\infty c_n e^{-n\pi x/L} \] Fourier series coefficient (1.15): \[ c_n = \frac{1}{2L} \int_{-L}^L \delta(x) e^{-n\pi x/L} \dd x = \frac{1}{2L} \] so \[ \delta(x) = \frac{1}{2L} \sum_{n = -\infty}^\infty e^{in\pi x/L} \tag{6.14} \] Take $f(x) = \sum_{n = -\infty}^\infty d_n e^{in\pi x/L}$, then (using section 2.2) \begin{align*} \int_{-L}^L f^*(x) \delta(x) \dd x &= \frac{1}{2L} \sum_n d_n \int_{-L}^L e^{-in\pi x/L} e^{in\pi x/L} \dd x \\ &= \sum_n d_n \\ &= f(0) \end{align*} The \emph{Diract count} comes from extending periodically to all $\RR$: \[ \sum_{m = 0\infty}^\infty \delta(x - 2mL) = \frac{1}{2L} \sum_{n = -\infty}^\infty e^{in\pi x/L} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/cc083d845e8511ed.png} \end{center} \subsubsection*{General eigenfunctions} Suppose $\delta(x - \xi) = \sum_{n = 1}^\infty a_n y_n(x)$, $a \le x \le b$ with coefficients (2.17): \begin{align*} a_n &= \frac{\int_a^b \omega(x) y_n(x) \delta(x - \xi) \dd x}{\int_a^b \omega y_n^2 \dd x} \\ &= \frac{\omega(\xi)y_n(\xi)}{\int_a^b \omega y_n^2 \dd x} \\ &= \omega(\xi) Y_n(\xi) \end{align*} for unit norm $Y_n$ (2.18). Then \begin{align*} \delta(x - \xi) &= \omega(\xi) \sum_{n = 1}^\infty Y_n(\xi) Y_n(x) \\ &= \omega(x) \sum_{n = 1}^\infty Y_n(\xi) Y_n(x) \end{align*} since \[ \frac{\omega(x)}{\omega(\xi)} \delta(x - \xi) = \delta(x - \xi) \] by (6.13). Hence \begin{flashcard}[eigenfunction-expansion-of-delta] \prompt{What is the eigenfunction expansion of $\delta$ (SL form)?} \[ \boxed{\delta(x - \xi) = \cloze{\omega(x) \sum_{n = 1}^\infty \frac{y_n(\xi) y_n(x)}{\mathcal{N}_n}}} \tag{6.15} \] \end{flashcard} where $\mathcal{N}_n = \int_a^b \omega y_n^a \dd x$. \begin{example*} Consider Fourier series $y(0) = y(1) = 0$ with $y_n(x) = \sin n\pi x$. Here, from (1.11) we have \[ \delta(x - \xi) = 2\sum_{n = 1}^\infty \sin n\pi \xi \sin n\pi x \tag{$*$} \] Exercise: \begin{enumerate}[(i)] \item Integrate both sides to show \[ \sum_{m = 1}^\infty \frac{(-1)^{m + }}{2m - 1} = \frac{1}{4} \] when $\xi = \half$. \item Integrate twice and compare with $G(x, \xi)$ (1.25) or (2.31). \end{enumerate} \end{example*} \newpage \section{Green's Function} \subsection{Physical motivation: Static forces on a string} Consider a \emph{massive} static string (tension $T$, density $\mu$) with fixed ends \[ y(0) = y(1) = 0 \tag{7.1} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/20322c845e8711ed.png} \end{center} By resolving forces, we have (3.3) \[ T \pfrac[2]{y}{x} - \mu g = 0 \] (time independent). So solve inhomogeneous ODE subject to (7.1) with $f(x) = -\frac{\mu g}{T}$. \[ -\dfrac[2]{y}{x} = f(x) \tag{7.2} \] Solution 1: Direct integration for uniform mass density ODE (7.2) implies: \[ -y = -\frac{\mu g}{2T} x^2 + k_1 x + k_2 \] Boundary conditions (7.1) implies \[ y(x) = \left( -\frac{\mu g}{T} \right) \half x (1 - x) \tag{7.3} \] Solution 2: Superposition of point masses on light string $\tilde{\mu} \to 0$. Consider point mass $\delta m$ ($= \mu \delta x$) suspended at $x = \xi$: \begin{center} \includegraphics[width=0.6\linewidth] {images/1bfe06f05e8811ed.png} \end{center} Resolve in $y$ dimension to find $y_i(\xi_i)$: \begin{align*} 0 &= T(\sin \theta_1 + \sin\theta_2) - \delta mg \\ &= T \left( \left( -\frac{y_i}{\xi_i} \right) + \left( \frac{-y_i}{1 - \xi_i} \right) \right) - \delta mg \\ \implies -T(y_i(1 - \xi_i) + y_i \xi_i) &= \delta mg \xi_i (1 - \xi_i) \end{align*} so \[ y_i(\xi_i) = \left( -\frac{\delta mg}{T} \right) \xi_i(1 - \xi_i) \] Hence solution \[ y_i(x) = \left( -\frac{\delta mg}{T} \right) \begin{cases} x(1 - \xi_i) & x < \xi_i \\ \xi_i (1 - x) & x < \xi_i \end{cases} = f_i G(x, \xi) \] where $f_i$ is the source (here, $(-\frac{\delta mg}{T}$) and $G(x, \xi)$ is the solution for unit point mass (Green's function). Now sum $N$ point masses $\delta m$ at $x = \{\xi_i\}$ by linearity \[ y(x) = \sum_{i = 1}^N f_i G(x, \xi_i) \] or in \emph{continuum limit} with \[ f_i = -\frac{\delta mg}{T} = -\frac{\mu \delta xg}{T} \equiv f(x) \dd x \] $f(x) = -\frac{\mu g}{T}$. We have ($x \to \xi$): \begin{align*} y(x) &= \int_0^1 f(\xi) G(x, \xi) \dd \xi \tag{7.5} \\ &= \left( -\frac{\mu g}{T} \right) \left[ \int_0^x \xi(1 - x) \dd \xi + \int_x^1 x(1 - \xi) \dd \xi \right] \\ &= \left( -\frac{\mu g}{T} \right) \left( \left[ \frac{\xi^2}{2} (1 - x) \right]_0^x + \left[ x \left( \xi - \frac{\xi^2}{2} \right) \right]_x^1 \right) \\ &= \left( -\frac{\mu g}{T} \right) \left( \frac{x^2}{2}(1 - x) - 0 + \frac{x}{2} - x \left(x - \frac{x^2}{2} \right) \right) \\ &= \left( \frac{-\mu g}{T} \right) \half x (1 - x) \end{align*} so it matches (7.3). \subsection{Definition of Green's function} We wish to solve inhomogeneous ODE (section 2.1) on $a \le x \le b$. \[ \mathcal{L} y \equiv \alpha(x) y'' + \beta(x) y' + \gamma(x) y = f(x) \tag{7.6} \] $f(x)$ is a source. With $\alpha \neq 0$, $\beta, \gamma$ continuous and bounded. Homogeneous boundary conditions $y(a) = y(b) = 0$. The Green's function for the operator $\mathcal{L}$ is the solution for a unit point source (or impulse) at $x = \xi$. \[ \mathcal{L} G(x, \xi) = \delta(x - \xi) \tag{7.7} \] which satisfies $G(a, \xi) = G(b, \xi) = 0$ (or similar). By linearity, we construct solutions by integrating over source $f(x)$ with $G$: \[ y(x) = \int_a^b G(x, \xi) f(\xi) \dd \xi \tag{7.8} \] Formally verify this: \[ \mathcal{L} y = \int \mathcal{L}_(x) G(x, \xi) f(\xi) \dd \xi = \int \delta(x - \xi) f(\xi) \dd \xi = f(x) \] so the solution (7.8) is given by the inverse operator $\mathcal{L}^{-1} = \int \dd x G(x, \xi)$. \subsubsection*{Defining properties (summary)} The Green's function splits into two parts: \[ G(x, \xi) = \begin{cases} G_1(x, \xi) & a \le x < \xi \\ G_2(x, \xi) & \xi < x \le b \end{cases} \tag{7.9} \] such that: \begin{enumerate}[(1)] \item Homogeneous solutions: $G$ solves homogeneous equation for all $x \neq \xi$. So \[ \mathcal{L} G_1 = 0, \quad \mathcal{L} G_2 = 0 \tag{7.10} \] \item Homogeneous boundary conditions: $G$ satisfies homogeneous boundary conditions so \[ G_1(a, \xi) = 0, \quad G_2(b, \xi) = 0 \tag{2.11} \] \item Continuity condition: $G$ is continuous at $x = \xi$ so \[ G_1(\xi, \xi) = G_2(\xi, \xi) \] \item Jump condition: Derivative discontinuous at $x = \xi$ with \[ [G']_{\xi_-}^{\xi_+} = \left. \dfrac{G_2}{x} \right|_{x = \xi_+} - \left. \dfrac{G_1}{x} \right|_{x = \xi_-} = \frac{1}{\alpha(\xi)} \tag{7.13} \] where $\alpha(x)$ is defined in (7.6). \end{enumerate}