% vim: tw=50 % 02/11/2022 10AM \subsection{3D Cylindrical Polar Coordinates} Here \[ \nabla^2 = \frac{1}{r} \pfrac{}{r} \left( r \pfrac{\phi}{r} \right) + \frac{1}{r^2} \pfrac[2]{\phi}{\theta} + \pfrac[2]{\phi}{z} = 0 \tag{5.9} \] Substitute $\phi(r, \theta, z) = R(r)H(\theta)Z(z)$ to find \[ H'' = -\mu H, \quad Z'' = \lambda Z \] \[ r(rR')' + (\lambda r^2 - \mu)R = 0 \] \begin{itemize} \item Polar (as before) $\mu_m = m^2$, \[ H_m = \cos m\theta \text{ and } \sin m\theta \] \item Radial (Bessel's equation (3.26)) \[ r(rR')' + (\lambda r^2 - m^2)R = 0 \] with solutions $R = J_m(kr)$ and $Y_m = (kr)$. Setting boundary conditions $R = 0$ at $r = 1$ means \[ J_m(ka) \implies k = \frac{j_{mn}}{a} \] where $j_{mn}$ is the $n$-th zero (see (3.32)). Radial eigenfunction \[ R_{mn} = J_m \left( \frac{j_{mn}}{a} r \right) \tag{3.10} \] (eliminate $Y_m$ since $Y_m \to -\infty$ as $r \to 0$) \item $Z$ equation: $Z'' = k^2 Z$ implies $Z = e^{-kz}$ and $z = e^{kz}$ (usually eliminate $e^{kz}$ with $z \to 0$ as $z \to \infty$.) \end{itemize} So general solution is \[ \phi(r, \theta, z) = \sum_{m = 0}^\infty \sum_{n = 1}^\infty (a_{mn} \cos m\theta + b_{mn} \sin m\theta) \times J_m(\frac{j_{mn}}{a}r) e^{-j_{mn} z/a} \tag{5.11} \] Exercise: Describe steady-state heat flow in a semi-infinite circular wire with boundary conditions $\phi = 0$ at $r = a$, $\phi = T_0$ at $z = 0$ and $\phi \to 0$ as $z \to \infty$ (see section 3.9 and 5.9). Show that the solution is \[ \phi(r, \theta, z) = \sum_{k = 1}^\infty \frac{2T_c}{j_{0n} J_1(j_{0n})} J_0 \left( \frac{j_{0n}}{a} r \right) e^{-j_{0n} z/a} \] \subsection{3D Spherical Polar Coordinates} Recall that \[ x = r\sin\theta \cos\theta \] \[ y = r\sin\theta \sin\theta \] \[ z = r\cos\theta \] and $\dd V = r^2 \sin \theta \dd r \dd \theta \dd \phi$, $0 \le r < \infty$, $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$. \begin{center} \includegraphics[width=0.6\linewidth] {images/b750d3965a9911ed.png} \end{center} Laplace's equation (5.1) becomes \[ \frac{1}{r^2} \pfrac{}{r} \left( r^2 \pfrac{\Phi}{r} \right) + \frac{1}{r^2\sin\theta} \pfrac{}{\theta} \left( \sin\theta \pfrac{\Phi}{\theta} \right) + \frac{1}{r^2\sin\theta} \pfrac[2]{\Phi}{\phi} = 0 \tag{5.12} \] \subsubsection*{Axisymmetric case (no $\phi$ dependence)} Seek separable $\Phi(r, \theta) = R(r)H(\theta)$. \[ (\sin\theta H')' + \lambda \sin\theta H = 0 \] \[ (r^2 R')' = \lambda R = 0 \tag{5.13} \] Polar (Legendre's) equation: Substitute $x = \cos\theta$ with \[ \dfrac{x}{\theta} = -\sin\theta \implies \dfrac{H}{\theta} = -\sin\theta \dfrac{H}{x} \] \[ -\cancel{\sin\theta} \dfrac{}{x} \left[ -\sin^2 \theta \dfrac{H}{x} \right] + \lambda\cancel{\sin\theta} H = 0 \] \[ \dfrac{}{x} \left( (1 - x^2) \dfrac{H}{x} \right) + \lambda H = 0 \] which is Legendre's equation (2.21) with eigenvalues $\lambda_l = l(l + 1)$ and eigenfunctions (2.23) \[ H_l(\theta) = P_l(x) = P_l(\cos\theta) \tag{5.14} \] (see section 2.5) \begin{itemize} \item Radial equation: \[ (r^2 R')' - l(l + 1)R = 0 \] Seek solutions $R = \alpha r^\beta$. \[ \beta(\beta + 1) - l(l + 1) = 0 \implies \left( \beta + \half \right)^2 = \left( l + \half \right)^2 \] with two solutions $\beta = l$ and $\beta = -l - 1$. \[ R_l = r^l \text{ and } r^{-l - 1} \] \end{itemize} \begin{flashcard}[general-axisymmetric-laplacian-solution] General axisymmetric solution\prompt{ of Laplacian in spherical polar coordinates}: \[ \cloze{\Phi(r, \theta)} = \cloze{\sum_{l = 0}^\infty (a_l r^l + b_l r^{-l - 1}) P_l(\cos\theta) \tag{5.15}} \] \end{flashcard} where $a_l$, $b_l$ determined by boundary conditions, usually at fixed $r = r_0$. Use orthogonality conditions for $P_l$'s, see (2.24). \myskip Unit sphere solution: Solve $\nabla^2 \Phi = 0$ for $r < 1$ given axisymmetric boundary conditions at $r = 1$, $\Phi(1, \theta) = f(\theta)$. Regularity implies that $b_l = 0$, so we have \[ f(\theta) = \sum_{l = 0}^\infty a_l P_l(\cos\theta) \] or with $f(\theta) = F(\cos\theta) = F(x)$, \[ F(x) = \sum_{l = 0}^\infty a_l P_l(x) \] so by (2.25) so \[ a_l = \frac{2l + 1}{2} \int_{-1}^1 F(x) P_l(x) \dd x \] Exercise: Show $f(\theta) = \sin^2\theta$ yields solution \[ \Phi(r, \theta) = \frac{2}{3} (1 - P_2(\cos\theta) r^2) \] \subsubsection*{Generating function for $P_l(x)$ (2.23a)} Consider a charge on $z$-axis at $z = 1$, $\bf{r}_0 = (0, 0, 1)$ then the potential $P$ becomes \begin{align*} \Phi(\bf{r}) &= \frac{1}{|\bf{r} - \bf{r}_0|} \\ &= \frac{1}{(x^2 + y^2 + (z - 1)^2)^\half} \\ &= \frac{1}{(r^2 \sin^2\theta + r^2 \cos^2 \theta - 2r\cos\theta + 1)^\half} \\ &= \frac{1}{\sqrt{r^2 - 2r\cos\theta + 1}} \\ &= \frac{1}{\sqrt{r^2 - 2r \ol{x} + 1}} \end{align*} ($\ol{x} = \cos\theta$) \\ Exercise: verify $\Phi = \frac{1}{|\bf{r} - \bf{r}_0|}$ satisfies $\nabla^2 \Phi = 0$ whenever $\bf{r} \neq \bf{r}_0$. \\ We can represent any axisymmetric solution (5.12) as a sum (5.15) (with $b_n = 0$) for $r < 1$: \[ \frac{1}{\sqrt{r^2 - 2rx + 1}} = \sum_{l = 0}^\infty a_l P_l(x) r^l \] with norm at $x = 1$, $P_l(1) = 1$, we get \[ \frac{1}{1 - r} = \sum_{l = 0}^\infty a_l r^l \] so $a_l = 1$ (for a geometric series). Thus generating function for $P_l(x)$ is \[ \frac{1}{\sqrt{1 - 2xr + r^2}} = \sum_{l = 0}^\infty P_l(x) r^l \tag{5.16} \] Expand LHS with binomial theorem to find $P_l(x)$ (coefficient of the $r^l$ term) Use to obtain norm condition (2.24). (Example sheet 2, Q5) \begin{example*}[Electric multipole] \phantom{} \begin{center} \includegraphics[width=0.6\linewidth] {images/4cffc1885a9d11ed.png} \end{center} \end{example*}