% Vim: two=50 % 31/10/2022 10AM \noindent General solution: \[ \hat{\theta}(x, t) = \sum_{n = 1}^\infty b_n \sin \frac{n\pi x}{L} e^{-\frac{Dn^2\pi^2}{L^2}t} \tag{4.13} \] Now impose initial conditions (4.11) at $t = 0$ \begin{align*} b_n &= \frac{1}{L} \int_{-L}^L \ub{\hat{\phi}(x, 0)}_{H(x) - \frac{x + L}{2L}} \sin \frac{n\pi x}{L} \dd x \\ &= \frac{2}{L} \int_0^L (H(x) - \half) \sin \frac{n\pi x}{L} \dd x - \frac{2}{L} \int_0^L \frac{x}{2L} \sin \frac{n\pi x}{L} \dd x \\ &= \frac{2}{n\pi}(\text{n odd}) - \frac{(-1)^{n + 1}}{n\pi} \\ &= \frac{1}{n\pi} \end{align*} Solution \[ \hat{\theta}(x, t) = \sum_{n = 1}^\infty \frac{1}{n\pi} \sin \frac{n\pi x}{L} e^{-D \frac{n^2\pi^2}{L^2}t} \] or with original boundary conditions (4.9) \[ \theta(x, t) = \frac{x + L}{2L} + \hat{\theta}(x, t) \tag{4.14} \] Plot with $L = 1$ and $D = 1$. \begin{center} \includegraphics[width=0.6\linewidth] {images/d15ab0da590511ed.png} \end{center} (the dotted lines are the fundamental solutions). Approximate solution (4.7) ($\half \erf \left( \frac{x}{2\sqrt{Dt}} \right) $) are excellent for $t \le 0.1$. \newpage \section{The Laplace Equation} Laplace's equation \[ \boxed{ \nabla^2 \phi = 0} \tag{5.1} \] has wide application in math physics \& applications: \begin{itemize} \item Steady state heat flow \item Potential theory $\bf{F}= -\nabla \phi$ (also $\nabla^2 \phi = \rho(\bf{x})$) \item Incompressible fluid flow $\bf{v} = \nabla \phi$ etc. \end{itemize} We solve (5.1) in a domain $D$ subject to boundary conditions either: \begin{itemize} \item Dirichlet: $\phi$ given on boundary surface $\partial D$ \item Neumann: $\bf{n} \cdot \nabla \phi$ given on boundary surface $\partial D$. \end{itemize} \subsection{3D Cartesian coordinates} Equation (5.1) becomes \[ \pfrac[2]{\phi}{x} + \pfrac[2]{\phi}{y} + \pfrac[2]{\phi}{z} = 0 \tag{5.2} \] Seek separable solution $\phi(x, y, z) = X(x)Y(y)Z(z)$ \[ X''YZ + XY''Z + XYZ'' = 0 \] \[ \frac{X''}{X} = -\frac{Y''}{Y} - \frac{Z''}{Z} = -\lambda_l \text{(constant)} \] and \[ \frac{Y''}{Y} = -\lambda_m \text{(constant)} \] so \[ \frac{Z''}{Z} = -\lambda_n = \lambda_l + \lambda_m \] General solution from eigenmodes \[ \phi(x, y, z) = \sum_{l, m, n} a_{lmn} X_l(x) Y_m(y) Z_n(z) \tag{5.4} \] \begin{example*}[Steady heat conduction] ((4.3) with $\pfrac{\phi}{t} = 0 \implies$ (5.1)) Consider a semi-infinite rectangular bar \begin{center} \includegraphics[width=0.6\linewidth] {images/38f1f964590711ed.png} \end{center} with boundary conditions $\phi = 0$ at $x = 0, a$ and $y = 0, b$. $\phi = 1$ at $z = 0$, $\phi \to 0$ as $z \to \infty$. Solve for eigenmodes successively: \begin{itemize} \item $X'' = -\lambda_l X$ with $X(0) = X(a) = 0$ \[ \lambda_l = \frac{l^2\pi^2}{a^2}, \quad X_l = \sin \frac{l\pi x}{a} \quad l = 1, 2, \dots \] \item $Y'' = -\lambda_m Y$ \[ \lambda_m = \frac{m^2\pi^2}{b^2} \quad Y_m = \sin \frac{m\pi y}{b} \quad m > 0 \] \item $Z'' = -\lambda_n Z = (\lambda_l + \lambda_m) z = \pi^2 \left( \frac{l^2}{a^2} + \frac{m^2}{b^2} \right) Z$ with boundary conditions $Z \to 0$ as $z \to \infty$ \[ Z_{lm} = \exp \left[ -\left( \frac{l^2}{a^2} + \frac{m^2}{b^2} \right)^\half \pi z \right] \] So our \emph{general solution} (5.4) becomes \[ \phi(x, y, z) = \sum_{l, m} a_{lm} \sin \frac{l\pi x}{a} \sin \frac{m\pi y}{b} \exp \left[ -\left( \frac{l^2}{a^2} + \frac{m^2}{b^2}\right)^\half \pi z \right] \] Now fix $a_{km}$ using $\phi(x, y, z) = 1$ using Fourier sine $b_n$ (1.12) \begin{align*} a_{lm} &= \frac{2}{b} \int_0^b \dd y \frac{2}{a} \int_0^a \dd x \ub{1 \sin \frac{l\pi x}{a} \sin \frac{m\pi y}{b}}_{\text{square wave FS (1.7)}} \\ &= \frac{4a}{al\pi} \frac{4b}{bm\pi} \text{($l, m$, odd)} \\ &= \frac{16}{\pi^2 lm} \text{($l, m$ odd)} \end{align*} so the heat flow solution is \[ \phi(x, y, z) = \sum_{l, m \text{ odd}} \frac{16}{\pi^2 lm} \sin \frac{l\pi x}{a} \sin \frac{m\pi y}{b} \exp \left[ -\left( \frac{l^2}{a^2} + \frac{m^2}{b^2} \right)^\half \pi z \right] \] \end{itemize} \end{example*} \subsection{2D Plane Polar coordinates} Recall \[ \nabla^2 = \frac{1}{r} \pfrac{}{r} \left( r \pfrac{\phi}{r} \right) + \frac{1}{r^2} \pfrac[2]{\phi}{\theta} = 0 \tag{5.6} \] and try $\phi(r, \theta) = R(r) H(\theta)$ to find \[ H'' + \mu H = 0 \quad \text{ and } \quad r(rR')' - \mu R = 0 \] \begin{itemize} \item Polar equation periodic boundary conditions $\implies \mu = m^2$. (as before (3.25), $H_m(\theta) = \cos m\theta$ and $\sin m\theta$) \item Radial equation $r(rR')' - m^2 R = 0$ (5.7). Try $R = \alpha r^\beta \implies \beta^2 - m^2 = 0$, $\beta = \pm m$ \[ R_m = r^m \text{ and } r^{-m} \] If $m = 0$, $(rR')' = 0 \implies rR' = \text{const} \implies R = \log r$. \[ R_0 = \text{const} \text{ and }\log r .\] \end{itemize} \begin{flashcard}[2d-polar-solution-of-laplacian] General solution\prompt{ of the Laplacian in 2D polar coordinates}: \begin{align*} \theta(r, 0) &= \cloze{\frac{a_0}{2} + c_0 \log r + \sum_{m = 1}^\infty (a_m \cos m\theta + b_m \sin m\theta) r^m} \\ &~~~~~~\cloze{+ \sum_{m = 1}^\infty (c_m \cos m\theta + d_m \sin m\theta) r^{-m} \tag{5.8}} \end{align*} \end{flashcard} \begin{example*} Soap film on unit disk. Solve (5.6) with a distorted circular disk (wire) radius $r = 1$ with given boundary conditions: \[ \phi(1, \theta) = f(\theta) \] to find $\phi(r, \theta)$ on $r < 1$. Regularity at $r = 0$ implies $c_m = d_m = 0$ for all $n$, so (5.8) becomes \[ \theta (r, \theta) = \half a_0 + \sum_{m = 1}^\infty (a_M \cos m\theta + b_m \sin m\theta) r^m \] At $r = 1$, $\phi(1, 0) = f(\theta) = \half a_0 + \sum_m (a_m \cos m\theta + b_m \sin m\theta)$ so the Fourier series coefficients (1.5) are \[ a_m = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \cos m\theta \dd \theta, \quad b_m = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \sin m\theta \dd \theta \] Note high harmonics are confined near $r = 0$ edge becomes $r^m$ term \begin{center} \includegraphics[width=0.6\linewidth] {images/b85a8984590a11ed.png} \end{center} \end{example*}