% vim: tw=50 % 28/10/2022 10AM \section{The Diffusion Equation} \subsection{Physical origin of heat equation} Applies to processes that ``diffuse'' due to spatial gradients. An early example was Fick's law with flux $\bf{J} = -D \nabla c$ with concentration $c$ and diffusion coefficient $D$. For \emph{heat flow} we have Fourier's law \[ \bf{q} = -k \nabla \theta \tag{4.1} \] ($\bf{q}$ is heat flux, $k$ is thermal conductivity, $\theta$ is temperature) In a volume $V$, the overall heat energy $Q$ is \[ Q = \int c_V \rho \theta \dd V \tag{4.2} \] so rate of change due to heat flow \[ \dfrac{Q}{t} = \int c_v \rho \pfrac{\theta}{t} \dd V \tag{$*$} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/2fdb61f656a211ed.png} \end{center} Now integrate (4.1) over surface $S$ enclosing $V$ \begin{align*} -\dfrac{Q}{t} &= \int_S \bf{q} \cdot \hat{\bf{n}} \dd S \\ &= \int_S (-k \nabla \theta) \cdot \hat{\bf{n}} \dd S \\ &= \int (-k \nabla^2 \theta) \dd V \tag{\dag} \end{align*} Equating ($*$) and (\dag) we find \[ \int \left( c_v \rho \pfrac{\theta}{t} - k \nabla^2 \theta \right) \dd V = 0 \] True for all $V$, so integrand must vanish, so \[ \pfrac{\theta}{t} - \frac{k}{c_v \rho} \nabla^2 \theta = 0 \] so if we set $D = \frac{k}{c_v \rho}$ we have \begin{flashcard}[diffusion-equation] \prompt{Diffusion equation?} \[ \boxed{\cloze{\pfrac{\theta}{t}} = \cloze{D \nabla^2 \theta \tag{4.3}}} \] \prompt{where $D = \cloze{\sqrt{\frac{k}{c_v \rho}}}$.} \end{flashcard} \subsubsection*{Brownian motion (random walk)} Gas particles are diffusing by scattering every $\Delta t$ with probability PDF $p(\xi)$ of moving distance $\xi$ with \[ \langle \xi \rangle = \int p(\xi) \xi \dd \xi = 0 \] Suppose the PDF after $N\Delta t$ steps is $P_{N\Delta t}(x)$, then for the $(N + 1)\Delta t$ step: \begin{align*} P_{(N + 1)\Delta t}(x) &= \int_{-\infty}^\infty p(\xi) P_{N\Delta t}(x - \xi) \dd \xi \\ &\approx \int_{-\infty}^\infty p(\xi) \left[P_{N\Delta t}(x) + P_{N\Delta t}'(x)(-\xi) + P_{N\Delta t}''(x) \frac{\xi^2}{2} + \cdots \right] \dd \xi \\ &= P_{N\Delta t}(x) - P_{N\Delta t}'(x) \langle \xi \rangle + P_{N\Delta t}''(x) \frac{\langle \xi^2 \rangle}{2} + \cdots \end{align*} Note that $\langle \xi \rangle$ is the mean of $\xi$ which is 0. Denote $P_{N\Delta t}(x) = P(x, N\Delta t)$, then we have \[ P(x, (N + 1)\Delta t) - P(x, N\Delta t) = \pfrac[2]{}{x} P(x, N\Delta t) \frac{\langle \xi \rangle^2}{2} \] Assuming $\frac{\langle \xi \rangle^2}{2} = D\Delta t$ then $\Delta t \to 0$. We find \[ \pfrac{P}{t} = D \pfrac[2]{P}{x} \tag{4.4} \] \subsection{Similarity solution} The characteristic relation between variance and time, suggest seeking solutions with dimensionless parameter \begin{flashcard}[similarity-parameter] \prompt{Dimensionless parameter of similarity solution for heat equation?} \[ \eta \equiv \cloze{\frac{x}{2\sqrt{Dt}} \tag{4.5}} \] \end{flashcard} Can we find solutions $\theta(x, t) = \theta(\eta)$? Change variables in (4.3): \[ LHS: \pfrac{\theta}{t} = \pfrac{\eta}{t} \pfrac{\theta}{\eta} = -\half \frac{x}{\sqrt{D} t^{3/2}}\theta' = -\half \frac{\eta}{t} \theta' \] \[ RHS: D \pfrac[2]{\theta}{x} = D \pfrac{}{x} \left( \pfrac{\eta}{x} \pfrac{\theta}{\eta} \right) = D \pfrac{}{x} \left( \frac{1}{2\sqrt{D}t }\theta' \right) = \frac{D}{4D t}\theta'' = \frac{1}{4t} \theta'' \] Equating \[ \theta'' = -2\eta \theta' \tag{4.6} \] Take $\psi = \theta'$, $\frac{\psi'}{\psi} = -2\eta \implies \ln \psi = -\eta^2 + \text{const}$ \[ \implies \psi = \theta' = (\text{const}) e^{-\eta^2} \] Integrate to find \[ \theta = c \frac{2}{\sqrt{\pi}} \int_0^\eta e^{-u^2} \dd u = c \erf \left( \frac{x}{2\sqrt{D t}} \right) \tag{4.7} \] where the error function is \[ \erf (Z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-u^2} \dd u \] This describes discontinuous initial conditions that spread over time ($D = 1$): \begin{center} \includegraphics[width=0.6\linewidth] {images/82bab2ac56a511ed.png} \end{center} \subsection{Heat conduction in a finite bar} Suppose we have a bar of length $wL$ with $-L \le x \le L$ and initial temperature: \[ \theta(x, 0) = H(x) = \begin{cases} 1 & 0 \le x \le L \\ 0 & -L \le x < 0 \end{cases} \tag{4.8} \] with boundary conditions \[ \theta(h, t) = 1, \quad \theta(-h, t) = 0 \tag{4.9} \] Transforming boundary conditions: The boundary conditions (4.9) are not homogeneous. Can we identify steady state solution (time independent) that reflects late-time behaviour? Try \[ \theta_s(x) = Ax + B \] satisfies $\pfrac[2]{\theta}{x} = 0$. To satisfy (4.9), $A = \frac{1}{2L}$, $B = \half$. \[ \theta_S = \frac{x + L}{2L} \tag{4.10} \] Transform and solve for \[ \hat{\theta}(x, t) = \theta(x, t) - \theta_S(x) \] with homogeneous boundary conditions \[ \hat{\theta}(-L, t) = \hat{\theta}(L, t) = 0 \] and initial conditions \[ \hat{\theta}(x, 0) = H(x) - \frac{x + L}{2L} \] Separation of variables: try \[ \hat{\theta}(x, t) = X(x) T(t) \] \[ \implies X'' = -\lambda X, \dot{T} = -D \lambda T \tag{4.12} \] Boundary conditions imply $\lambda > 0$ with \[ X(x) = A \cos \sqrt{\lambda} x + B \sin \sqrt{\lambda} x \] For $\cos(\sqrt{\lambda} L) = 0$ \[ \implies \sqrt{\lambda_m} = \frac{m\pi}{2L} \qquad m = 1, 3, 5, \dots \] $\sin(\sqrt{\lambda} L) = 0$ \[ \implies \sqrt{\lambda_n} = \frac{n\pi}{L} \qquad n = 1, 2, 3, \dots \] but initial conditions are \emph{odd} ($A_m = 0$) so take \[ X_n = B_n \sin \frac{n\pi x}{L} \quad \lambda_n = \frac{n^2 \pi^2}{L^2} \] Put $\lambda_n$ into (4.12) $\dot{T} = -D \lambda T$ to find \[ T_n(t) = C_n \exp \left( -\frac{Dn^2 \pi^2}{L^2}t \right) \]