% vim: tw=50 % 07/10/2022 10AM \mychapter{Self-Adjoint ODEs} \newpage \section{Fourier Series} \subsection{Periodic Functions} A function $f(x)$ is periodic if \[ f(x + T) = f(x) \qquad \forall x \] where $T$ is the period. \begin{center} \includegraphics[width=0.6\linewidth] {images/1f3b74c6462111ed.png} \end{center} \begin{example*} Simple harmonic motion \[ y = A \sin \omega t \] where $A$ is amplitude and period $T = \frac{2\pi}{\omega}$ with angular frequency $\omega$ (frequency $= \frac{1}{T}$). \end{example*} \subsubsection*{Properties of sin and cosine functions} Consider the set of functions \[ g_n(x) = \cos \frac{n \pi x}{L}, \qquad h_n(x) = \sin \frac{n \pi x}{L} \] which are periodic on the interval $0 \le n > \infty$, $0 \le x < 2L$). (Note: Period $T = 2L$). \\ Recall the identities: \begin{align*} \cos A \cos B &= \half (\cos(A - B) + \cos(A + B)) \\ \sin A \sin B &= \half (\cos(A - B) - \cos(A + B)) \\ \sin A \cos B &= \half (\sin(A - B) + \sin(A + B)) \end{align*} \hiddenfc{\[ \cos A \cos B = \cloze{ \half (\cos(A - B) + \cos(A + B)) } \]} \hiddenfc{\[ \sin A \sin B = \cloze{ \half (\cos(A - B) - \cos(A + B)) } \]} \hiddenfc{\[ \sin A \cos B = \cloze{ \half (\sin(A - B) + \sin(A + B)) } \]} \noindent Define an \emph{inner product} for two periodic functions $f, g$ on the interval $0 \le x < 2L$ by: \[ \langle f, g \rangle = \int_0^{2L} f(x)g(x) \dd x \tag{$*$} \] \myskip STUFF --- \myskip For $n \neq m$, \begin{align*} \langle h_n, h_m \rangle &= \int_0^{2L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} \dd x \\ &= \int_0^{2L} \half \left( \cos \left( \frac{(n - m) \pi x}{L} \right) - \cos \left( \frac{(n + m) \pi x}{L} \right) \right) \dd x \\ &= 0 \end{align*}<++> \myskip STUFF --- \myskip For $n = m$, \begin{align*} \langle h_n, h_n \rangle &= \int_0^{2L} \sin^2 \frac{n \pi x}{L} \dd x \\ &= \half \int_0^{2L} \left(1 - \cos \frac{2 \pi n x}{L} \right) \dd x \\ &= L \qquad (n \neq 0) \end{align*} Hence, \[ \langle h_n, h_m \rangle = \begin{cases} L \delta_{nm} & \forall \,\, n, m \neq 0 \\ 0 & m = 0 \end{cases} \tag{1.1} \] Similarly (exercise) \[ \langle g_n, g_m \rangle = \int_0^{2L} \cos \frac{n\pi x}{L} \cos \frac{m\pi x}{L} \dd x = \begin{cases} L \delta{nm} & \forall\,\, n, m \neq 0 \\ 2L \delta_{0n} & m = 0 \end{cases} \tag{1.2} \] \[ \langle h_n, g_m \rangle = \int_0^{2L} \sin \frac{n\pi x}{L} \cos \frac{m\pi x}{L} \dd x = 0 \quad \forall \,\, n, m \tag{1.3} \] \subsection{Definition of Fourier Series} We can express any `well-behaved' periodic function $f(x)$ with period $2L$ as \[ f(x) = \half a_0 + \sum_{n = 1}^\infty a_n \cos \frac{n \pi x}{L} + \sum_{n = 1}^\infty b_n \sin \frac{n\pi x}{L} \tag{1.4} \] where $a_n, b_n$ are constants such that the right hand side is convergent for all $x$ where $f$ is continuous. At a discontinuity $x$, the Fourier Series approaches the midpoint (replace left hand side) \[ \half (f(x_+) + f(x_-)) \] \subsubsection*{Fourier coefficients} Consider \begin{align*} \langle h_m(x), f(x) \rangle &= \int_0^{2L} \sin \frac{m \pi x}{L} f(x) \dd x \\ &= L b_m \end{align*} by orthogonal relation (1.1-1.3). Hence we find \begin{flashcard} \prompt{What are the coefficients $a_n$, $b_n$ of Fourier series?} \begin{equation*} \boxed{ \begin{aligned} b_n &= \cloze{ \frac{1}{L} \int_0^{2L} f(x) \sin \frac{n\pi x}{L} \dd x} \\ a_n &= \cloze{ \frac{1}{L} \int_0^{2L} f(x) \cos \frac{n\pi x}{L} \dd x} \end{aligned} } \tag{1.5} \end{equation*} \end{flashcard} \begin{note*} \begin{enumerate}[(i)] \item $a_n$ includes $n = 0$, since $\half a_0$ is the \emph{average} $\langle f(x) \rangle = \frac{1}{2L} \int_0^{2L} f(x) \dd x$ \item Range of integration is one period, so \[ \int_0^{2L} \dd x \cdots = \int_{-L}^L \dd x \cdots \] \item Think of Fourier series (1.4) as a decomposition into harmonics. Simplest Fourier series are sine and cosine functions: for example pure mode $\sin \frac{3\pi x}{L}$, has $b_3 = 1$, $b_n = 0$ for all $n \neq 3$. \end{enumerate} \end{note*} \begin{example*}[Sawtooth] Consider $f(x) = x$ for $-L \le x < L$ and periodic elsewhere: \begin{center} \includegraphics[width=0.6\linewidth] {images/7a3442c8462511ed.png} \end{center} Here, we have \[ a_n = \half \int_{-L}^L x \cos \frac{n \pi x}{L} \dd x = 0 \] for all $n$, since the resulting function is odd. However: \begin{align*} b_n &= \frac{2}{L} \int_0^L x \sin \frac{n\pi x}{L} \dd x \\ &= -\frac{2}{n \pi} \left[ x \cos \frac{n \pi x}{2} \right]_0^L + \frac{2}{n\pi} \int_0^L \cos \frac{n\pi x}{L} \dd x \\ &= -\frac{2L}{n\pi} \cos n\pi + \frac{2L}{(n\pi)^2} \sin n\pi \\ &= \frac{2L}{n \pi} (-1)^{n + 1} \end{align*} So the sawtooth Fourier series is \begin{align*} f(x) &= \frac{2L}{\pi} \sum_{n = 1}^\infty \frac{(-1)^{n + 1}}{n} \sin \frac{n\pi x}{L} \\ &= \frac{2L}{\pi} \left( \sin \frac{\pi x}{L} - \half \sin \frac{2\pi x}{L} + \frac{1}{3} \sin \frac{3 \pi x}{L} - \cdots \right) \end{align*} which is slowly convergent. \begin{center} \includegraphics[width=0.6\linewidth] {images/69787cf0462611ed.png} \end{center} \end{example*}