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1. Fourier Series

1.1. Periodic Functions

A function f(x) is periodic if

f(x+ T ) = f(x) ∀x

where T is the period.

Example. Simple harmonic motion

y = A sinωt

where A is amplitude and period T = 2π
ω with angular frequency ω (frequency = 1

T ).

Properties of sin and cosine functions

Consider the set of functions

gn(x) = cos
nπx

L
, hn(x) = sin

nπx

L

which are periodic on the interval 0 ≤ n >∞, 0 ≤ x < 2L). (Note: Period T = 2L).
Recall the identities:

cosA cosB =
1

2
(cos(A−B) + cos(A+B))

sinA sinB =
1

2
(cos(A−B)− cos(A+B))

sinA cosB =
1

2
(sin(A−B) + sin(A+B))

Define an inner product for two periodic functions f, g on the interval 0 ≤ x < 2L by:

⟨f, g⟩ =
∫ 2L

0
f(x)g(x)dx (∗)

6



STUFF —

For n ̸= m,

⟨hn, hm⟩ =
∫ 2L

0
sin

nπx

L
sin

mπx

L
dx

=

∫ 2L

0

1

2

(
cos

(
(n−m)πx

L

)
− cos

(
(n+m)πx

L

))
dx

= 0

¡++¿

STUFF —

For n = m,

⟨hn, hn⟩ =
∫ 2L

0
sin2

nπx

L
dx

=
1

2

∫ 2L

0

(
1− cos

2πnx

L

)
dx

= L (n ̸= 0)

Hence,

⟨hn, hm⟩ =

{
Lδnm ∀ n,m ̸= 0

0 m = 0
(1.1)

Similarly (exercise)

⟨gn, gm⟩ =
∫ 2L

0
cos

nπx

L
cos

mπx

L
dx =

{
Lδnm ∀ n,m ̸= 0

2Lδ0n m = 0
(1.2)

⟨hn, gm⟩ =
∫ 2L

0
sin

nπx

L
cos

mπx

L
dx = 0 ∀ n,m (1.3)

1.2. Definition of Fourier Series

We can express any ‘well-behaved’ periodic function f(x) with period 2L as

f(x) =
1

2
a0 +

∞∑
n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
(1.4)

where an, bn are constants such that the right hand side is convergent for all x where f
is continuous. At a discontinuity x, the Fourier Series approaches the midpoint (replace
left hand side)

1

2
(f(x+) + f(x−))
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Fourier coefficients

Consider

⟨hm(x), f(x)⟩ =
∫ 2L

0
sin

mπx

L
f(x)dx

= Lbm

by orthogonal relation (1.1-1.3). Hence we find

bn =
1

L

∫ 2L

0
f(x) sin

nπx

L
dx

an =
1

L

∫ 2L

0
f(x) cos

nπx

L
dx

(1.5)

Note. (i) an includes n = 0, since 1
2a0 is the average ⟨f(x)⟩ = 1

2L

∫ 2L
0 f(x)dx

(ii) Range of integration is one period, so∫ 2L

0
dx · · · =

∫ L

−L
dx · · ·

(iii) Think of Fourier series (1.4) as a decomposition into harmonics. Simplest
Fourier series are sine and cosine functions: for example pure mode sin 3πx

L ,
has b3 = 1, bn = 0 for all n ̸= 3.

8



Example (Sawtooth). Consider f(x) = x for −L ≤ x < L and periodic elsewhere:

Here, we have

an =
1

2

∫ L

−L
x cos

nπx

L
dx = 0

for all n, since the resulting function is odd. However:

bn =
2

L

∫ L

0
x sin

nπx

L
dx

= − 2

nπ

[
x cos

nπx

2

]L
0
+

2

nπ

∫ L

0
cos

nπx

L
dx

= −2L

nπ
cosnπ +

2L

(nπ)2
sinnπ

=
2L

nπ
(−1)n+1

So the sawtooth Fourier series is

f(x) =
2L

π

∞∑
n=1

(−1)n+1

n
sin

nπx

L

=
2L

π

(
sin

πx

L
− 1

2
sin

2πx

L
+

1

3
sin

3πx

L
− · · ·

)
which is slowly convergent.
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Start of
lecture 2 1.3. The Dirichlet Conditions (Fourier’s theorem)

Sufficiency conditions for a “well-behaved” function to have a unique Fourier Series (1.4):

If f(x) is a bounded periodic function (period 2L) with a finite number of minima,
maxima and discontinuities in 0 ≤ x < 2L, then the Fourier Series (1.4-5) converges to
f(x) at all points where f is continuous; at discontinuities the series converges to the
midpoint 1

2(f(x+) + f(x−)).

Note. � Weak conditions (in contrast to Taylor series) but pathological func-
tions are excluded, such as 1

x , sin
1
x ,

f(x) =

{
0 rational

1 irrational

� Converse is not true (consider sin 1
x which has a Fourier series)

� Proof is difficult (see Jeffrey’s & Jeffrey’s)

Theorem (Convergence of Fourier series). If f(x) has continuous derivatives up
to the p-th derivative which is discontinuous, then the Fourier series coefficients
converge as θ(n−(p+1)), as n→ ∞.

Example (p = 0). “Square wave” (Example sheet 1, Q5)

f(x) =

{
1 0 ≤ x < 1

−1 −1 ≤ x < 0

then Fourier series

f(x) = 4
∞∑
m=1

sin(2m− 1)πx

(2m− 1)π
(1.7)
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Example (p = 1). General “see-saw” wave. If

f(x) =


x(1− ξ) 0 ≤ x < ξ

ξ(1− x) ξ ≤ x < 1

x(1− ξ) −ξ ≤ x < 0

ξ(−1− x) −1 ≤ x < ξ

Show that the Fourier series is

f(x) = 2
∞∑
n=1

sinnπξ sinnπx

(nπ)2
(1.8)

For ξ = 1
2 , show

f(x) = 2

∞∑
m=1

(−1)m+1 sin(2m− 1)πx

((2m− 1)π)2

Example (p = 2). Take

f(x) =

{
1
2x(1− x) 0 ≤ x < 1
1
2x(1 + x) −1 ≤ x < 0

Show Fourier series is

f(x) = 4
∞∑
m=1

sin(2m− 1)πx

((2m− 1)π)3
(1.9)

Example (p = 3). f(x) = (1− x2)2 with Fourier series an = θ
(

1
n4

)
.

Integration of Fourier Series

It is always valid to integrate the Fourier series (1.4) of f(x) term-by-term to obtain

F (x) =

∫ x

−L
f(x)dx

because F (x) satisfies Dirichlet conditions if f(x) does. (for example discontinuities in
f become continuous in F (x)).

Differentiation of Fourier Series

Take care with term-by-term differentiation.
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Example (Counter example). Take “square wave” Fourier series (1.7) and find

f ′(x)
?
= 4

∞∑
m=1

cos(2m− 1)πx

which is unbounded!

Theorem. If f(x) is continuous and satisfies Dirichlet conditions and f ′(x) satisfies
Dirichlet conditions, then f ′(x) can be found by term-by-term differentiation of
Fourier series (1.4) of f(x).

Exercise: Differentiate “see-saw” (1.8) with ξ = 1
2 , to get offset “square-wave” (1.7) (i.e.

x→ x+ 1
2).

1.4. Parseval’s Theorem

Relation between integral of the square of a function and the sum of the squares of the
Fourier coefficients:∫ 2L

0
[f(x)]2dx =

∫ 2L

0
dx

[
1

2
a0 +

∑
n

an cos
nπx

L
+
∑
n

bn sin
nπx

L

]2

=

∫ 2L

0
dx

[
1

4
a20 +

∑
n

a2n cos
2 nπx

L
+
∑
n

b2n sin
2 nπx

L

]
by orthogonal relations (1.1-3).∫ 2L

0
[f(x)]2dx = L

[
1

2
a20 +

∞∑
n=1

(a2n + b2n)

]
(1.10)

Also called the completeness relation because LHS ≥ RHS if any basis coefficients are
missing.

Example. “Sawtooth” wave f(x) = x on −L ≤ x < L with Fourier series (1.6)

LHS =

∫ L

−L
x2dx =

2

3
L3

RHS = L
∞∑
n=1

4L2

n2π2
=

4L3

π2

∞∑
n=1

1

n2

(note that we can combine these to notice that
∑∞

n=1
1
n2 = π2

6 !). See Example sheet
1, Q3
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Remark. Parseval’s theorem for functions ⟨f, f⟩ ≡ ∥f∥2 is the same as Pythagoras
for vectors ⟨v, v⟩ = |v|2 = x2 + y2 + z2 (the norm).

Start of
lecture 3 1.5. Alternative Fourier Series

Half-range series

Consider f(x) defined only on 0 ≤ x < L. Then we can extend its range over−L ≤ x < L
in two simple ways:

(i) Require it to be odd (f(−x) = −f(x)), with period 2L, Then an = 0 because cos
is even, and

bn =
2

L

∫ L

0
f(x) sin

nπx

L
dx (1.11)

This is a Fourier sine series, for example the saw tooth (1.6).

(ii) Require it to be even f(−x) = f(x). Then bn = 0 and

an =
2

L

∫ L

0
f(x) cos

nπx

L
dx (1.12)

for example f(x) = (1− x2)2 (Example sheet 1 question 1).

Complex Representation

Recall:

cos
nπx

L
=

1

2
(einπx/L + e−inπx/L)

sin
nπx

L
=

1

2i
(einπx/L − e−inπx/L)

So Fourier series (1.4) becomes:

f(x) =
1

2
a0 +

∞∑
n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L

=
1

2
a0 +

1

2

∞∑
n=1

(an − ibn)e
inπx/L +

1

2

∑
n = 1∞(an + bn)e

−inπx/L

=
∞∑

m=−∞
cme

imπx/L (1.13)

For m > 0, m = n, cm = 1
2(an − ibn). For m = 0, c0 = 1

2a0. For m < 0, m = −n,
cm = 1

2(a−m + ib−m). Equivalently

cm =
1

2L

∫ L

−L
f(x)e−imπx/Ldx (1.14)

13
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Our inner product is upgraded to

⟨f, g⟩ =
∫
f∗g

using complex conjugate f∗. Orthogonal:∫ L

−L
e−imπx/Leinπx/L = 2Lδmn (1.15)

Parseval’s: ∫ L

−L
|f(x)|2dx = 2L

∞∑
m=−∞

|cm|2

1.6. Some Fourier Series Motivations

Self-adjoint matrices

Suppose u,v are complex N -vectors, with inner product

⟨u,v⟩ = u†v (1.16)

(u† means complex conjugate and transpose, i.e. u† = (u∗)⊤). Let A be an N × N
matrix which is self adjoint (or Hermitian). Note that by simple algebra, this property
means that ⟨Au,v⟩ = ⟨u, Av⟩ for all u,v.

The eigenvalues of A are λn and satisfy

Avn = λnvn (1.17)

(where vn are eigenvectors). The eigenvalues have the following properties:

(i) The eigenvalues are real (λ∗n = λn).

(ii) If λn ̸= λm then the eigenvectors are orthogonal

⟨vn,vm⟩ = 0

(iii) If we rescale our eigenvectors to be unit length then {v1,v2, . . . ,vN} are an or-
thonormal basis.

Given b we can solve for x given
Ax = b (1.18)

Express

b =
N∑
n=1

bnvn

14



where bn are knowns. Seek a solution

x =

N∑
n=1

cnvn

where cn are unknowns. Substitute into (1.18):

Ax =

N∑
n=1

Acnvn =

N∑
n=1

cnλnvn

b =

N∑
n=1

bnvn

equate and use orthogonality

cnλn = bn =⇒ cn =
bn
λn

So the solution is

x =
N∑
n=1

bn
λn

vn (1.19)

Solving inhomogeneous ODE with Fourier series

We wish to find y(x) given f(x) for

Ly ≡ −d2y

dx2
= f(x) (1.20)

(the minus sign is by convention, and f(x) is the driving force / source). Boundary
conditions:

y(0) = y(L) = 0

The related eigenvalue problem is

Lyn = λnyn

with the same boundary conditions. Has eigenfunctions and eigenvalues

yn(x) = sin
(nπx
L

)
λn =

(nπ
L

)2
(1.21)

(verify this, also self adjoins ODE with orthogonal eigenfunctions).

Seek solution as half range sine series. Try

y(x) =
∞∑
n=1

cn sin
nπx

L

15



where cn are unknowns. Expand

f(x) =
∞∑
n=1

bn sin
nπx

L

where bn are knowns. Using (1.11)

bn
2

L

∫ L

0
f(x) sin

nπx

L
dx

Substitute into (1.20):

Ly = − d2

dx2

(∑
n

cn sin
nπx

L

)
=

∞∑
n=1

cn

(nπ
L

)2
sin

nπx

L

want
=
∑
n

bn sin
nπx

L

By orthogonality (1.1) we have

cn

(nπ
L

)2
= bn =⇒ cn =

bn(
nπ
L

)2
and solution is

y(x) =
∑
n

bn(
nπ
L

)2 sin nπxL =
∑
n

bn
λn
yn (1.22)

Example (“square wave” source). L = 1. Define f(x) = 1, 0 ≤ x < 1, odd function.
This has Fourier series (1.7)

f(x) = 4
∑
m

sin(2m− 1)πx

(2m− 1)π

So the solution (1.22) should be

y(x) =
∑
n

bn
λn
yn = 4

∑
m

sin(2m− 1)πx

((2m− 1)π)3

(n = 2m− 1). But this is the Fourier series (1.9) for

y(x) =
1

2
x(1− x) (1.23)

Start of
lecture 4
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2. Sturm-Liouville Theory

2.1. Review of second-order linear ODEs

We wish to solve general inhomogeneous ODE

Ly ≡ α(x)y′′ + β(x)y′ + γ(y)y = f(x) (2.1)

� The homogeneous equation
Ly ≡ 0 (2.2)

has two independent solutions y1(x), y2(x) (besides trivial y ≡ 0), with the com-
plementary function yc(x) the general solution of (2.2):

yc(x) = Ay1(x) +By2(x) (2.3)

where A,B are arbitrary constants.

� The inhomogeneous equation
Ly = f(x) (2.4)

(i.e. the driving force or source term f(x)) has a special solution called the partic-
ular integral yp. The general solution of (2.4) is then

y(x) = yp(x) +Ay1(x) +By2(x) (2.5)

� Two boundary or initial data are required to determine A, B.

(a) Boundary conditions (BC) Solve (2.4) on a < x < b given y at x = a, b
(Dirichlet) or specify y′ at x = a, b (Neumann) or mixed y + ky′ etc. Homo-
geneous boundary conditions are often assumed, y(a) = y(b) = 0 to admit the
trivial solution y ≡ 0. Can be achieved by adding complementary function
(2.3).

ỹ = y +Ay1 +By2

such that ỹ(a) = ỹ(b) = 0.

(b) Alternatively we may be given initial conditions Solve (2.4) for x ≥ a, given
y, y′ at x = a.

General eigenvalue problem

To solve (2.1) employing eigenfunction expansions (like Fourier series (1.22)) we must
solve the related eigenvalue problem

α(x)y′′ + β(x)y′ + γ(x)y = −λρ(x)y (2.6)

with specified boundary conditions. This form often occurs in higher dimensions after
seperation of variables.
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2.2. Self-adjoint operators

Definition (Inner product). For two (complex-valued) functions f, g on a ≤ x ≤ b
define

⟨f, g⟩ =
∫ b

a
f∗(x)g(x)dx

(later f, g assumed to be real so we will drop the complex conjugate part). The
norm of f is ∥f∥ =

√
⟨f, f⟩.

The Sturm-Liouville equation

The eigenvalue problem (2.6) greatly simplifies if L is self-adjoint, i.e. it can be expressed
in Sturm-Liouville form

Ly ≡ −(py′)′ + qy = λωy (2.7)

where ω(x) is non-negative.where the weight function ω(x) is non-negative ω(x) ≥ 0 for
all x.

Converting to Sturm-Liouville form: Multiply (2.6) by an integrating factor F (x) to find

Fαy′′ + Fβy′ + Fγy = −λFρy
d

dx
(Fαy′)− F ′αy′ − Fα′y′ + Fβy′ + Fγy = −λFρy

We want to eliminate the y′ term, so we want

F ′α = F (β − α′) =⇒ F ′

F
=
β − α′

α
so

F (x) = exp

(∫ x β − α′

α
dx

)
(2.8)

and (Fαy′)′ + Fγy = −λFρy, so p(x) = F (x)α(x), q(x) = −F (x)γ(x) and ω(x) =
F (x)ρ(x) (note F (x) > 0).

Example. The Hermite equation for simple harmonic motion:

y′′ − 2xy′ + 2ny = 0

We want to put into Sturm-Liouville form (2.7). Comparing to (2.6) we have α = 1,
β = −2x, γ = 0, λρ = 2n. By (2.8),

F = exp

(∫ x −2x− 0

1
dx

)
= e−x

2

Hence
Ly ≡ −(e−x

2
y′)′ = 2ne−x

2
y (2.9)
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Definition (Self-adjoint differential operator). L is self-adjoint on a ≤ x ≤ b for all
pairs of functions y1, y2 satisfying appropriate boundary conditions if

⟨y1,Ly2⟩ = ⟨Ly1, y2⟩

or ∫ b

a
y∗1(x)Ly2(x)dx =

∫ b

a
(Ly1(x))∗y2(x)dx (2.10)

Boundary conditions: substitute Sturm-Liouville form (2.7) in (2.10) to find

⟨y1,Ly2⟩ − ⟨Ly1, y2⟩ =
∫ b

a
[−y1(py′2)′ + y1qy2 + y2(py

′
1)

′ − y2qy1]dx

=

∫ b

a
[−(py1y

′
2)

′ + (py′1y2)
′]dx

= [−py1y′2 + py′1y2]
b
a

and we want this to be 0 for given boundary conditions at x = a = b.

Self-adjoint compatible boundary conditions include:

� Homogeneous y(a) = y(b) = 0 or y′(a) = y′(b) = 0 or mixed y + ky′ = 0 (note
regular Sturm-Liouville ≡ homogeneous boundary conditions)

� Periodic y(a) = y(b)

� Singular points of ODE ρ(a) = ρ(b) = 0

� Combinations of the above.

2.3. Properties of self-adjoint operators

(1) Eigenvalues λn are real.

(2) Eigenfunctions yn are orthogonal.

(3) Eigenfunctions yn form a complete set.

Start of
lecture 5 Real eigenvalues

Given
Lyn = λnωyn (2.12)

take complex conjugate (note both L and ω are real):

Ly∗n = λ∗nωy
∗
n
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Consider ∫ b

a
(y∗nLyn − (Ly∗n)yndx = (λn − λ∗n)

∫ b

a
ωyny

∗
ndx

= 0

(the equals zero comes from the fact that we know that the original expression was zero,
because L is self-adjoint)
But the right hand side is ∫

ω|yn|2dx > 0

so λn = λ∗n so λn is real. We will assume that yn are real.

Orthogonal eigenfunctions

Consider (2.12) with a second eigenvalue λm ̸= λn.

Lym = λmωym

then from (2.10)

0 =

∫ b

a
(ymLyn − ynLym)dx

= (λn − λm)

∫ b

a
ωynymdx

But since λm ̸= λn, ∫ b

a
ωynymdx = 0 ∀n ̸= m (2.13)

so yn, ym are orthogonal with respect to ω(x) on the interval a ≤ x < b.
Define the inner product with respect to weight function w(x) on a ≤ x ≤ b as

⟨f, g⟩ω =

∫ b

a
ω(x)f∗(x)g(x)dx = ⟨ωf, g⟩ = ⟨f, ωg⟩ (2.14)

so orthogonal relation (2.13) becomes

⟨yn, ym⟩ω = 0 ∀n ̸= m (2.15)

Eigenfunction expansions

Completeness (not proven here) implies we can approximate any “well-behaved” function
f(x) on a ≤ x ≤ b by the series

f(x) =
∞∑
n=1

anyn(x) (2.16)
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To find expansion coefficients consider∫ b

a
dxω(x)ym(x)f(x) =

∞∑
n=1

an

∫ b

a
ωynymdx

= am

∫ b

a
ωy2mdx

by orthogonality. Hence

an =

∫ b
a ω(x)yn(x)f(x)dx∫ b
a ω(x)y

2
n(x)dx

(2.17)

Eigenfunctions normalized for convenience. Unit norm has

Yn(x) ≡
yn(x)(∫ b

a ωy
2
ndx

) 1
2

so ⟨Yn, Ym⟩ = δnm (2.18) are orthogonal with f(x) =
∑∞

n=1AnYn(x) andAn =
∫ b
a ωYnfdx.

Exemplar 1: Recall Fourier series (1.4) in Sturm Liouville form

Lyn ≡ −d2yn
dx2

= λnyn (1.21)

with λn =
(
nπ
L

)2
and orthogonality relations (1.1-3).

2.4. Completeness and Parseval’s identity

Consider∫ b

a

[
f(x)−

∞∑
n=1

anyn

]2
ωdx =

∫ b

a

[
f2 − 2f

∑
n

anyn +
∑
n

a2ny
2
n

]
ωdx (by orthogonality)

=

∫ b

a
ωf2dx−

∞∑
n=1

a2n

∫ b

a
ωy2ndx

because by (2.17)
∫ b
a fynωdx = an

∫ b
a ωy

2
ndx. If the eigenfunctions are complete then

series converges ∫ b

a
ωf2dx =

∞∑
n=1

a2n

∫
ωy2ndx (2.19)

=

∞∑
n=1

A2
n

for unit norm Yn.
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Theorem (Bessel’s inequality). If some eigenfunctions are missing, then∫ b

a
ωf2dx ≥

∞∑
n=1

A2
n

Definition (Mean square error).

εN =

∫ b

a
ω[f(x)− SN (x)]

2dx→ 0

Define partial sum

SN (x) =
N∑
n=1

anyn (2.20)

with f(x) = limN→∞ SN (x). The error in the partial sum (2.20) is minimised by an
defined in (2.19) for the N = ∞ expansion:

∂εN
∂an

=
∂

∂an

[∫ b

a
ω[f(x)−

∑
anyn]

2dx

]
= −2

∫ b

a
ynω[f −

N∑
n=1

anyndx

= −2

∫ b

a
(ωfyn − anωy

2
n)dx

= 0

if an given by (2.17). So an is the “best possible choice” (assuming you care about the
mean square error).

2.5. Exemplar 2: Legendre polynomials

Consider Legendre’s equation arising from spherical polars x = cos θ

(1− x2)y′′ − 2xy′ + λy = 0 (2.21)

so p = 1− x2, q = 0, ω = 1.on the interval −1 ≤ x ≤ 1 with y finite at x = ±1 (regular
singular point of ODE). Equation (2.21) is in Sturm Liouville form (2.7) with

p = 1− x2, q = 0, ω = 1

How to solve? Seek a power series about x = 0:

y =
∑
n

cnx
n
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Substitute

(1− x2)
∑

n(n− 1)cnx
n−2 − 2x

∑
n

cnx
n−1 + λ

∑
cnx

n = 0

Equate powers of xn:

(n+ 2)(n+ 1)cn+2 − n(n− 1)cn − 2ncn + λcn = 0

=⇒ cn+2 =
n(n+ 1)− λ

(n+ 1)(n+ 2)
cn (2.22)

so specifying c0, c1 gives 2 independent solutions (near x = 0).

yeven = c0

[
1 +

(−λ)
2!

x2 +
(6− λ)(−λ)

4!
x4 + · · ·

]
yodd = c1

[
x+

(2− λ)

3!
x3 + · · ·

]
But as n→ ∞, cn+1cn

→ 1 so there is a radius of convergence |x| < 1 (geometric series), i.e.
divergent at x = ±1. What can be done? Finiteness. . .

Start of
lecture 6 Take λ = l(l + 1) with l integer, then one or other series terminates, i.e. cn = 0 for all

n ≥ l + 2. These Legendre polynomials Pl(x) are coefficients of (2.21) on −1 ≤ x ≤ 1
with normalisation convention Pl(1) = 1.

Note. Pl(x) has l zeros and Pl(x) is odd if l is odd, and if l is even then Pl(x) is
even.

Orthogonality: ∫ 1

−1
PnPmdx = 0 ∀m ̸= n

Normalization: ∫ 1

−1
P 2
ndx =

2

2n+ 1
(2.24)

Prove with Rodriques formula:

Pn(x) =
1

2nx!

(
d

dx

)n
(x2 − 1)n

(Example sheet 2, Q5)
Generating function (see later):

∞∑
n=0

Pn(x)t
n =

1√
1− 2xt+ t2

(2.23a)

= 1 +
1

2
(2xt− t2) +

3

8
(2xt− t2)2 + · · ·

= 1︸︷︷︸
P0

+ x︸︷︷︸
P1

t+
1

2
(3x2 − 1)︸ ︷︷ ︸

P2

t2 + · · ·
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Exercise: Verify P3 and find P4. (binomial expansion).
Recursion relations:

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x)

(2l + 1)Pl(x) =
d

dx
(Pl+1(x)− Pl−1(x))

Eigenfunction expansions: Any function f(x) on −1 ≤ x ≤ 1 can be expressed as

f(x) =

∞∑
l=0

alPl(x) (2.25)

where

al =
2l + 1

2

∫ 1

−1
f(x)Pl(x)dx (2.26)

Exercise: verify f(x) = 15
2 x

2 − 3
2 = P0(x) + 5P2(x) using (2.26).

2.6. Sturm Liouville theory and inhomogeneous ODEs

Consider the inhomogeneous (with homogeneous boundary conditions) on a ≤ x ≤ b:

Ly = f(x) ≡ ω(x)F (x) (2.27)

Given eigenfunctions yn(x) satisfying

Lyn = λnωyn

y(x) =
∑
n

cnyn(x)

F (x) =
∑
n

anyn(x)

where an are known and cn are unknown. We use

an =

∫ b
a ωFyndx∫ b
a ωy

2
ndx

Substituting into (2.27):

Ly = L
∑
n

cnyn =
∑
n

cnλnωyn = ω
∑
n

anyn

By orthogonality (2.13), cnλn = an or cn = an
λn

so solution is

y(x) =

∞∑
n=1

an
λn
yn(x) (2.28)
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(assuming λn ̸= 0 for all n). Recall Fourier series (1.22)
Generalisation: driving forces often induce a linear response term λ̃ωy.

Lλ̃ωy = f(x) (2.29)

where λ̃ is fixed. The solution (2.28) becomes

y(x) =

∞∑
n=1

an

λn − λ̃
yn(x) (2.30)

(again λ̃ ̸= λn for all n).

Integral solution and Green’s function

Recall (2.28)

y(x) =
∞∑
n=1

an
λn
yn(x)

=
∑
n

yn(x)

λnN

∫ b

a
ω(ξ)F (ξ)yn(ξ)dξ

=

∫ b

a

∞∑
n=1

yn(x)yn(ξ)

λnNn︸ ︷︷ ︸
G(x,ξ)

ω(ξ)F (ξ)︸ ︷︷ ︸
f(ξ)

dξ

≡
∫ b

a
G(x, ξ)f(ξ)dξ (2.31)

where

G(x, ξ) =

∞∑
n=1

yn(x)yn(ξ)

λnNn

is eigenfunction expansion of the Green’s function.
G(x, ξ) depends only on L and boundary conditions and not forcing term f(x) - it acts
like an inverse operator

L−1 ≡
∫

dξG(x, ξ)

(recall matrix Ax = b =⇒ x = A−1b)

25



Chapter II
PDEs on Bounded Domains

Contents

3. The Wave Equation 27
3.1. Waves on an elastic string . . . . . . . . . . . . . . . . . . . . . . . 27
3.2. Separation of variables . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3. Boundary conditions and normal modes . . . . . . . . . . . . . . . 29
3.4. Initial conditions and temporal solution . . . . . . . . . . . . . . . . 30
3.5. Oscillation energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6. Wave reflection and transmission . . . . . . . . . . . . . . . . . . . 33
3.7. Wave equation in 2D plane polars . . . . . . . . . . . . . . . . . . . 34
3.8. 2D Wave equation (continued): Vibrating drum . . . . . . . . . . . 38

4. The Diffusion Equation 40
4.1. Physical origin of heat equation . . . . . . . . . . . . . . . . . . . . 40
4.2. Similarity solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3. Heat conduction in a finite bar . . . . . . . . . . . . . . . . . . . . 42

5. The Laplace Equation 45
5.1. 3D Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . 45
5.2. 2D Plane Polar coordinates . . . . . . . . . . . . . . . . . . . . . . 48
5.3. 3D Cylindrical Polar Coordinates . . . . . . . . . . . . . . . . . . . 49
5.4. 3D Spherical Polar Coordinates . . . . . . . . . . . . . . . . . . . . 50

26



3. The Wave Equation

3.1. Waves on an elastic string

Consider small displacements on a stretched string with fixed ends at x = 0 and x = L,
with boundary conditions

y(0, t) = y(L, t) = 0 (3.1)

and initial conditions

y(x, 0) = p(x) and
∂y

∂t
(x, 0) = q(x) (3.2)

Derive equation of motion: Balance forces on segment (x, x+ δx) and take δx→ 0.

Assume
∣∣∣ ∂y∂x ∣∣∣≪ 1 for all x, so θ1, θ2 are small.

� Resolve in x direction:
T1 cos θ1 = T2 cos θ2

but cos θ = 1− 1
2θ

2+· · · so T1 ≈ T2 = T . Hence, tension T is constant independent

of x up to θ

(∣∣∣ ∂y∂x ∣∣∣2)
� Resolve in y direction

FT = T2 sin θ2 − T2 sin θ1

≈ T

(
∂y

∂x

∣∣∣∣
x+δx

− ∂y

∂x

∣∣∣∣
x

)
= T

∂2y

∂x2
δx
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Thus

F = ma

= (µδx)
∂2y

∂t2

= FT + Fg

= T
∂2y

∂x2
δx− gµδx

where µ is the mass per unit length (linear mass density). Define the wave speed

c =
√

T
µ (constant) and we find

∂2y

∂t2
=
T

µ

∂2y

∂x2
− g = c2

∂2y

∂x2
− g (3.3)

Assume gravity is negligible then we have the 1 dimensional wave equation (ÿ =
c2y′′):

1

c2
∂2y

∂t2
=
∂2y

∂x2
(3.4)

3.2. Separation of variables

We wish to solve wave equation (3.4) subject to boundary conditions (3.1) and initial
conditions (3.2).
Consider possible solution of separable form (ansatz):

y(x, t) = X(x)T (t) (3.5)

Substitute in (3.4) 1
c2
ÿ = y′′.

1

c2
XT̈ = X ′′T

=⇒ 1

c2
T̈

T
=
X ′′

X
.

Start of
lecture 7

But T̈
T depends only on t, and X′′

X depends only on x!
So both sides must be equal to a constant, say −λ, so

X ′′ + λX = 0 (3.6)

T̈ + λc2T = 0 (3.7)
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3.3. Boundary conditions and normal modes

Three possibilities for λ (+, 0, -) in spatial ODE (3.6) but restricted by (3.1)

(i) λ < 0. Take χ2 = −λ then

X(x) = Aeχx +Be−χx = Ã coshχx+ B̃ sinhχx

but boundary conditions imply X(0) = X(L) = 0 =⇒ Ã = B̃ = 0 (only trivial
solution works).

(ii) λ = 0 then X(x) = Ax+B but then by boundary conditions A = B = 0.

(iii) λ > 0, then X(x) = A cos
√
λx + B sin

√
λx. Here, the boundary conditions (3.1)

imply A = 0 and B sin
√
λL = 0, so

√
λL = nπ. So

Xn(x) = Bn sin
nπx

L
, λn =

(nπ
L

)2
(3.8)

i.e. eigenfunctions and eigenvalues of the system.

These are normal modes because spatial shape in x does not change in time (amplitude
may vary).

� Fundamental mode (n = 1): λ1 = π2

L2 . Lowest frequency vibration or first har-
monic.

� Second mode (n = 2): λ2 =
4π2

L2 second harmonic or overtone.

� Third mode n = 3 etc
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3.4. Initial conditions and temporal solution

Substitute eigenvalues λn =
(
nπ
L

)2
into time ODE (3.7)

T̈ +
n2π2c2

L2
T = 0

which has solutions

Tn(t) = Cn cos
nπct

2
+Dn sin

nπct

L
(3.9)

Thus a specific solution to (3.4) satisfying boundary conditions (3.1) is

yn(x, t) = Tn(t)Xn(x)

=

(
Cn cos

nπct

L
+Dn sin

nπct

L

)
sin

nπx

L

(absorbing Bn into Cn and Dn). Exercise: verify that this is a solution.

Since the wave equation (3.4) is linear (and boundary conditions (3.1) are homogeneous)
we can add the solutions together to find general string solution

y(x, t) =

∞∑
n=1

(
Cn cos

nπct

L
+Dn sin

nπct

L

)
sin

nπx

L
(3.10)

By construction (3.10) satisfies boundary conditions (3.1), so now impose initial condi-
tions (3.2):
For t = 0 we have

y(x, 0) = p(x) =
∞∑
n=1

Cn sin
nπx

L

by (3.10) and also by (3.10):

∂y

∂t
(x, 0) = q(x) =

∞∑
n=1

nπc

L
Dn sin

nπx

L

So the coefficients are those for Fourier sine series given by (1.12):

Cn =
2

L

∫ L

0
p(x) sin

nπx

L
dx
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Dn =
2

2πc

∫ L

0
q(x) sin

nπx

L
dx (3.11)

Hence (3.10-11) is the solution to (3.4) satisfying (3.1-2).

Example. Pluck string at x = 3, drawing it back as

y(x, 0) = p(x) =

{
x(1− ξ) 0 ≤ x ≤ ξ

ξ(1− x) ξ < x ≤ 1

∂y

∂t
(x, 0) = q(x) = 0

Then with Fourier series (1.8)

Cn =
2 sinnπξ

(nπ)2
, Dn = 0

so we have solution

y(x, t) =
∞∑
n=1

2

(nπ)2
sinnπξ sinnπx cosnπct

Take ξ = 1
2 then C2m = 0, C2m−1 = 2(−1)m+1

((2m−1)π)2
. For a guitar, 1

4 ≤ ξ ≤ 1
3 , for a

violin, ξ ≈ 1
7 .

Separation of Variables Methodology

(1) Obtain linear PDE for system (with boundary conditions and initial conditions)

(2) Separate variables to tield decoupled ODEs

(3) Impose homogeneous boundary conditions to find eigenvalues and eigenfunctions

(4) Use these eigenvalues (constants of separation) to find eigenfunctions in the other
variables.

Aside: Solution in characteristic coordinates

Recall sine / cosine summation identities which means our general solution (3.10) be-
comes

y(x, t) =
1

2

∞∑
n=1

[
Cn sin

nπ

L
(x− ct) +Dn cos

nπ

L
(x− ct)

+ Cn sin
nπ

L
(x+ ct) +Dn cos

nπ

L
(x+ ct)

]
≡ f(x− ct) + g(x+ ct) (3.12)
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The standing wave solution (3.10) is made up of a right-moving wave (along the charac-
teristic x− ct = η, constant) and a left-moving wave (x+ ct = ξ, constant) i.e. a general
solution with arbitrary f , g (see later).

Special case: g(x) = 0 in (3.1), then f = g = 1
2p at t = 0.

Start of
lecture 8 3.5. Oscillation energy

A vibrating string has kinetic energy due to its motion (for example particle 1
2mv

2)

KE =
1

2
µ

∫ L

0

(
∂y

∂t

)2

dx

and potential energy due to stretching ∆x

PE = T∆x

= T

∫ L

0

√1 +

(
∂y

∂x

)2

− 1

 dx

≈ 1

2
T

∫ L

0

(
∂y

∂x

)2

dx for

∣∣∣∣∂y∂x
∣∣∣∣≪ 1

The total summed energy becomes (c2 = T
µ )

E =
1

2
µ

∫ L

0

[(
∂y

∂t

)2

+ c2
(
∂y

∂x

)2
]
dx (3.13)

Substitute (3.10) and use orthogonality (1.1)

E =
1

2
µ

∞∑
n=1

∫ L

0

[(
−nπc

L
Cn sin

nπct

L
+
nπc

2
Dn cos

nπct

L

)2

sin2
nπx

L

+c2
(
Cn cos

nπct

L
+Dn sin

nπct

L

)2 n2π2

L
cos2

nπx

L

]
dx

=
1

4
µ

∞∑
n=1

n2π2c2

L

(
C2
n +D2

n

)
(3.14)

=
∑

normal modes

[energy in n-th mode]

This is constant, so energy is conserved in time (no dissipation).
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3.6. Wave reflection and transmission

Recall travelling wave solution (3.12). A simple harmonic travelling wave is

y = Re[Ae−ω(t−x/c)] = |A| cos
(
ω
(
t− x

c

)
+ ϕ

)
where the phase is ϕ = argA and wavelength is 2πc

ω .

Consider a density discontinuity on a string at x = 0, with

µ =

µ− for x < 0 hence c− =
√

t
µ−

µ+ for x > 0 hence c+ =
√

T
µ+

assuming constant tension. Incident wave on junction

Boundary (or junction) conditions at x = c:

� String does not break, i.e. y is continuous for all t.

=⇒ A+B = D (∗)

� Forces balance T ∂y
∂x

∣∣∣
x=0−

= T ∂y
∂x

∣∣∣
x=0+

i.e. ∂y
∂x is continuous for all t

=⇒ − iωA
c−

+
iωB

c−
= − iωD

c+
(�)

(∗)− c−
iω

(†) =⇒ 2A = D +D
c−
c+

=
D

c+
(c+ + c−)

So given A, we have the solution:

D =
2c+

c− + c+
A B =

c+ − c−
c+ + c−

A (3.16)

where D is the transmitted amplitude and B is the reflected amplitude. In general,
different phase shift ϕ is possible.

Limiting cases:
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(1) Continuity c− = c+ =⇒ D = A,B = 0.

(2) Dirichlet boundary conditions µ+
µ−

→ ∞ (fixed end y = 0 at x = 0) then c+
c−

→ 0 =⇒
D = 0, B = −A i.e. total reflection with opposite phase (ϕ = π)

(3) Neumann boundary conditions µ+
µ−

→ 0 (free end of string - very light string x > 0)

then c+
c−

→ ∞ =⇒ D = 2A,B = A (boundary condition ∂y
∂x

∣∣∣
x=0

). Total reflection

with same phase (ϕ = 0).

3.7. Wave equation in 2D plane polars

The 2D wave equation for u(r, θ, t) becomes

1

c2
∂2u

∂t2
= ∇2u (3.17)

with boundary conditions at r = 1 on a unit disc (drum)

u(1, θ, t) = 0 ∀t (3.18)

(fixed rim) and initial conditions for t = 0

u(r, θ, 0) = ϕ(r, θ),
∂u

∂t
(r, θ, 0) = ψ(r, θ) (3.19)
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Temporal separation

Substitute
u(r, θ, t) = T (t)V (r, θ) (3.20)

into (3.17) to get
T̈ + λc2T = 0 (3.21)

∇2V + λV = 0 (3.22)

which in polars is
∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2
∂2V

∂θ2
+ λV = 0

Spatial separation

Now try
V (r, θ) = R(r)H(θ)

in (3.22):
H ′′ + µH = 0 (3.23)

r2R′′ + rR′ + (λr2 − µ)R = 0 (3.24)

where λ, µ are separation constants.

Polar solution: Configuration implies periodic boundary conditions

H(0) = H(2π)

with µ > 0, so the eigenvalue µ = m2 (m integer) with solution

Hm(θ) = Am cosmθ +Bm sinmθ (3.25)

Radial equation: divide (3.24) by r to bring it into Sturm Liouville form (2.7) with
µ = m2

d

dr
(rR′)− m2

r
R = −λrR (0 ≤ r ≤ 1) (3.26)

where p(r) = r, q(r) = m2

r and weight ω(r) = r, with self-adjoint boundary conditions
with R(1) = 0 and bounded at R(0), since p(0) = 0 a regular singular point.

Bessel’s equation

Substitute z ≡
√
λr in (3.26) to find

z2
d2R

dz2
+ z

dR

dz
+ (z2 −m2)R = 0 (3.27)

which is Bessel’s equation

(zR′)′ +

(
z − m2

z

)
R = 0
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Frobenius solution: substitute power series

R = zp
∞∑
n=0

anz
n

to obtain∑
n

an[(n+ p)(n+ p− 1)zn+p + (n+ p)zn+p + zn+p+2 −m2zn+p] = 0

Equate powers of z: considering coefficient of zp,

p2 −m2 = 0 =⇒ p = m,−m

Start of
lecture 9

Regular solution p = m, has recursion solution

(n+m)2an + an−2 −m2an = 0

=⇒ an =
−1

n(n+ 2m)
an−2

Put n→ 2n′

=⇒ a2n′ =
−1

4n′(n′ +m)
a2n′−2

so stepping up from a0 we have (dropping primes)

a2n =
(−1)n

22nn!(n+m)(n+m− 1) · · · (m+ 1)
a0

Take a0 =
1

2mm! (convention) to find the Bessel function of the first kind :

Jm(z) =
(z
2

)m ∞∑
n=0

(−1)n

n!(n+m)!

(z
2

)2n
(3.2)

Exercise: Use y =
√
zR in Bessel equation (3.27) to find

y′′ + y

(
1 +

1

4z
− m2

z”

)
= 0

So as z → ∞, y′′ = −y so we have solutions

R =
1√
z
(A cos z +B sin z).

Also works for m = γ (non-integer) if (n +m)! → Γ(n +m + 1). Second solution with
p = −m (integer) is the Neumann function (Bessel function of the second kind)

Ym(z) = lim
γ→m

Jγ(z) cos(γπ)− J−γ(z)

sin γπ
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Exercise∗: Use (3.28) to show that

d

dz
(zmJm(z)) = zmJm−1(z)

and hence
J ′
m(z) +

m

z
Jm(z) = Jm−1(z) (3.29)

Repeat with z−m to find recursion relations.

Jm−1(z) + Jm+1(z) =
2m

z
Jm(z) (3.30)

Jm−1(z)− Jm+1(z) = 2J ′
m(z)

Asymptotic behaviour Jm(z), Ym(z):

� Small z → 0, J0(z) → 1, Jm(z) → 1
m!

(
z
2

)m
, m > 0.

Y0(z) →
2

π
ln
(z
2

)
, Ym(z) → −(m− 1)!

π

(
2

z

)m
(3.31)

(Ym is divergent as z → 0)

� Large z → ∞: oscillatory solutions:

Jm(z) ≈
√

2

πz
cos
(
z − mπ

2
− π

4

)
(3.32)

Ym(z) ≈
√

2

πz
sin
(
z − mπ

2
− π

4

)
Zeros of Bessel function Jm(z)

Define jmn to be n-th zero,
Jm(jmn) = 0 (z > 0)

From (3.32) this occurs when (approximately)

cos
(
z − mπ

2
− π

4

)
= 0

i.e. z − mπ
2 − π

4 = nπ − π
2 (modal point). So zero at

z ≈ nπ +
mπ

2
− π

4
≡ j̃mn (3.33)

(Accuracy: jmn−j̃mn

jmn
< 0.1

n , for n > m2

2 (non-examinable))
For J0(z) actual values are

j01 = 2.405, j02 = 5.520, j03 = 8.653

j0n ≈ nπ − π

4

(precision ∼ 1%
n ).
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3.8. 2D Wave equation (continued): Vibrating drum

From section 3.8, radial solutions to (3.26) become

Rm(z) = Rm(
√
λr) = AJm(

√
λr) +BYm(

√
λr)

Impose boundary conditions:

� Regularity at r = 0 =⇒ B = 0 by (3.31)

� Unit disk r = 1 with R = 0 implies

Jm(
√
λ) = 0

But these zeros occur at

jmn(≈ j̃mn = nπ +
mπ

2
− π

4
)

so our eigenvalues must be
λmn = j2mn (3.34)

With the polar mode (3.26) the spatial solution is

Vmn(r, θ) = Hm(θ)Rmn(
√
λmnr) = (Amn cosmθ +Bmn sinmθ)Jm(jmnr) (3.35)

The temporal solution to (3.21) T̈ = −λc2T are Tmn(t) = cos(jmnct) and sin(jmnct).
For our linear homogeneous PDE (3.17)we can sum together to obtain general solution
(noting the special case for m = 0):

u(r, θ, t) =
∞∑
n=1

J0(jmnr)(A0n cos(j0nct) + C0n sin(j0nct))

+

∞∑
m=1

∞∑
n=1

Jm(jmnr)(Anm cosmθ +Bnm sinmθ) cos(jmnct)

+

∞∑
m=1

∞∑
n=1

Jm(jmnr)(Cmn cosmθ +Dmn sinmθ) sin(jnmct) (3.36)
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Now impose initial conditions (3.19) at t = 0

u(r, θ, 0) = ϕ(r, θ) =
∞∑
m=0

∞∑
n=1

Jm(jmnr)× (Ann cosmθ +Bnn sinmθ) (3.37)

∂u

∂t
(r, θ, 0) = ψ(r, θ) =

∞∑
m=0

∞∑
n=1

jmncJm(jmnr)× (Cmn cosmθ +Dmn sinmθ)

Orthogonality: Find coefficients by multiplying by Jm, cos, sin and exploit orthogonality
(1.1-3) and Example sheet 1, Q8.∫ 1

0
Jm(jmnr)Jm(jmkr)rdr =

1

2
[J ′
m(jmn)]

2δnk (3.28)

=
1

2
[Jm+1(jmn)]

2δnk by recursion (3.29)

Now integrate to obtain Amn∫ 2π

0
dθ cos pθ

∫ 1

0
rdrJpq(jpqr)ϕ(r, θ) =

π

2
[Jp+1(jpq)]

2Apq

Exercises: Find B, C, D.

Example. Initial radial profile.

u(r, θ, 0) = ϕ(r) = 1− r2

=⇒ m = 0, Bmn = 0, Amn = 0,m ̸= n

∂u

∂t
(r, θ, 0) = 0

=⇒ Cmn = Dmn = 0

We need to find:

A0n =
2

J1(j0n)2

∫ 1

0
J0(j0nr)(1− r2)rdr

=
2

J1(j0n)2
J2(j0n)

j20n

≈ J2(j0n)

n

as n→ ∞. (Exercise∗ using (3.29-30)).

Start of
lecture 10
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4. The Diffusion Equation

4.1. Physical origin of heat equation

Applies to processes that “diffuse” due to spatial gradients. An early example was Fick’s
law with flux J = −D∇c with concentration c and diffusion coefficient D. For heat flow
we have Fourier’s law

q = −k∇θ (4.1)

(q is heat flux, k is thermal conductivity, θ is temperature) In a volume V , the overall
heat energy Q is

Q =

∫
cV ρθdV (4.2)

so rate of change due to heat flow

dQ

dt
=

∫
cvρ

∂θ

∂t
dV (∗)

Now integrate (4.1) over surface S enclosing V

−dQ

dt
=

∫
S
q · n̂dS

=

∫
S
(−k∇θ) · n̂dS

=

∫
(−k∇2θ)dV (�)

Equating (∗) and (�) we find ∫ (
cvρ

∂θ

∂t
− k∇2θ

)
dV = 0
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True for all V , so integrand must vanish, so

∂θ

∂t
− k

cvρ
∇2θ = 0

so if we set D = k
cvρ

we have

∂θ

∂t
= D∇2θ (4.3)

Brownian motion (random walk)

Gas particles are diffusing by scattering every ∆t with probability PDF p(ξ) of moving
distance ξ with

⟨ξ⟩ =
∫
p(ξ)ξdξ = 0

Suppose the PDF after N∆t steps is PN∆t(x), then for the (N + 1)∆t step:

P(N+1)∆t(x) =

∫ ∞

−∞
p(ξ)PN∆t(x− ξ)dξ

≈
∫ ∞

−∞
p(ξ)

[
PN∆t(x) + P ′

N∆t(x)(−ξ) + P ′′
N∆t(x)

ξ2

2
+ · · ·

]
dξ

= PN∆t(x)− P ′
N∆t(x)⟨ξ⟩+ P ′′

N∆t(x)
⟨ξ2⟩
2

+ · · ·

Note that ⟨ξ⟩ is the mean of ξ which is 0. Denote PN∆t(x) = P (x,N∆t), then we have

P (x, (N + 1)∆t)− P (x,N∆t) =
∂2

∂x2
P (x,N∆t)

⟨ξ⟩2

2

Assuming ⟨ξ⟩2
2 = D∆t then ∆t→ 0. We find

∂P

∂t
= D

∂2P

∂x2
(4.4)

4.2. Similarity solution

The characteristic relation between variance and time, suggest seeking solutions with
dimensionless parameter

η ≡ x

2
√
Dt

(4.5)

Can we find solutions θ(x, t) = θ(η)? Change variables in (4.3):

LHS :
∂θ

∂t
=
∂η

∂t

∂θ

∂η
= −1

2

x√
Dt3/2

θ′ = −1

2

η

t
θ′

RHS : D
∂2θ

∂x2
= D

∂

∂x

(
∂η

∂x

∂θ

∂η

)
= D

∂

∂x

(
1

2
√
Dt

θ′
)

=
D

4Dt
θ′′ =

1

4t
θ′′
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Equating
θ′′ = −2ηθ′ (4.6)

Take ψ = θ′, ψ
′

ψ = −2η =⇒ lnψ = −η2 + const

=⇒ ψ = θ′ = (const)e−η
2

Integrate to find

θ = c
2√
π

∫ η

0
e−u

2
du = c erf

(
x

2
√
Dt

)
(4.7)

where the error function is

erf(Z) =
2√
π

∫ z

0
e−u

2
du

This describes discontinuous initial conditions that spread over time (D = 1):

4.3. Heat conduction in a finite bar

Suppose we have a bar of length wL with −L ≤ x ≤ L and initial temperature:

θ(x, 0) = H(x) =

{
1 0 ≤ x ≤ L

0 −L ≤ x < 0
(4.8)

with boundary conditions
θ(h, t) = 1, θ(−h, t) = 0 (4.9)

Transforming boundary conditions: The boundary conditions (4.9) are not homoge-
neous. Can we identify steady state solution (time independent) that reflects late-time
behaviour? Try

θs(x) = Ax+B

satisfies ∂2θ
∂x2

= 0. To satisfy (4.9), A = 1
2L , B = 1

2 .

θS =
x+ L

2L
(4.10)
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Transform and solve for
θ̂(x, t) = θ(x, t)− θS(x)

with homogeneous boundary conditions

θ̂(−L, t) = θ̂(L, t) = 0

and initial conditions

θ̂(x, 0) = H(x)− x+ L

2L
Separation of variables: try

θ̂(x, t) = X(x)T (t)

=⇒ X ′′ = −λX, Ṫ = −DλT (4.12)

Boundary conditions imply λ > 0 with

X(x) = A cos
√
λx+B sin

√
λx

For cos(
√
λL) = 0

=⇒
√
λm =

mπ

2L
m = 1, 3, 5, . . .

sin(
√
λL) = 0

=⇒
√
λn =

nπ

L
n = 1, 2, 3, . . .

but initial conditions are odd (Am = 0) so take

Xn = Bn sin
nπx

L
λn =

n2π2

L2

Put λn into (4.12) Ṫ = −DλT to find

Tn(t) = Cn exp

(
−Dn

2π2

L2
t

)
Start of
lecture 11

General solution:

θ̂(x, t) =
∞∑
n=1

bn sin
nπx

L
e−

Dn2π2

L2 t (4.13)

Now impose initial conditions (4.11) at t = 0

bn =
1

L

∫ L

−L
ϕ̂(x, 0)︸ ︷︷ ︸

H(x)−x+L
2L

sin
nπx

L
dx

=
2

L

∫ L

0
(H(x)− 1

2
) sin

nπx

L
dx− 2

L

∫ L

0

x

2L
sin

nπx

L
dx

=
2

nπ
(n odd)− (−1)n+1

nπ

=
1

nπ
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Solution

θ̂(x, t) =
∞∑
n=1

1

nπ
sin

nπx

L
e−D

n2π2

L2 t

or with original boundary conditions (4.9)

θ(x, t) =
x+ L

2L
+ θ̂(x, t) (4.14)

Plot with L = 1 and D = 1.

(the dotted lines are the fundamental solutions). Approximate solution (4.7) (12 erf
(

x
2
√
Dt

)
)

are excellent for t ≤ 0.1.

44



5. The Laplace Equation

Laplace’s equation

∇2ϕ = 0 (5.1)

has wide application in math physics & applications:

� Steady state heat flow

� Potential theory F = −∇ϕ (also ∇2ϕ = ρ(x))

� Incompressible fluid flow v = ∇ϕ etc.

We solve (5.1) in a domain D subject to boundary conditions either:

� Dirichlet: ϕ given on boundary surface ∂D

� Neumann: n · ∇ϕ given on boundary surface ∂D.

5.1. 3D Cartesian coordinates

Equation (5.1) becomes
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= 0 (5.2)

Seek separable solution ϕ(x, y, z) = X(x)Y (y)Z(z)

X ′′Y Z +XY ′′Z +XY Z ′′ = 0

X ′′

X
= −Y

′′

Y
− Z ′′

Z
= −λl(constant)

and
Y ′′

Y
= −λm(constant)

so
Z ′′

Z
= −λn = λl + λm

General solution from eigenmodes

ϕ(x, y, z) =
∑
l,m,n

almnXl(x)Ym(y)Zn(z) (5.4)

45



46



Example (Steady heat conduction). ((4.3) with ∂ϕ
∂t = 0 =⇒ (5.1)) Consider a

semi-infinite rectangular bar

with boundary conditions ϕ = 0 at x = 0, a and y = 0, b. ϕ = 1 at z = 0, ϕ → 0 as
z → ∞. Solve for eigenmodes successively:

� X ′′ = −λlX with X(0) = X(a) = 0

λl =
l2π2

a2
, Xl = sin

lπx

a
l = 1, 2, . . .

� Y ′′ = −λmY

λm =
m2π2

b2
Ym = sin

mπy

b
m > 0

� Z ′′ = −λnZ = (λl+λm)z = π2
(
l2

a2
+ m2

b2

)
Z with boundary conditions Z → 0

as z → ∞

Zlm = exp

[
−
(
l2

a2
+
m2

b2

) 1
2

πz

]
So our general solution (5.4) becomes

ϕ(x, y, z) =
∑
l,m

alm sin
lπx

a
sin

mπy

b
exp

[
−
(
l2

a2
+
m2

b2

) 1
2

πz

]

Now fix akm using ϕ(x, y, z) = 1 using Fourier sine bn (1.12)

alm =
2

b

∫ b

0
dy

2

a

∫ a

0
dx 1 sin

lπx

a
sin

mπy

b︸ ︷︷ ︸
square wave FS (1.7)

=
4a

alπ

4b

bmπ
(l,m, odd)

=
16

π2lm
(l,m odd)

so the heat flow solution is

ϕ(x, y, z) =
∑

l,m odd

16

π2lm
sin

lπx

a
sin

mπy

b
exp

[
−
(
l2

a2
+
m2

b2

) 1
2

πz
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5.2. 2D Plane Polar coordinates

Recall

∇2 =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂θ2
= 0 (5.6)

and try ϕ(r, θ) = R(r)H(θ) to find

H ′′ + µH = 0 and r(rR′)′ − µR = 0

� Polar equation periodic boundary conditions =⇒ µ = m2. (as before (3.25),
Hm(θ) = cosmθ and sinmθ)

� Radial equation r(rR′)′−m2R = 0 (5.7). Try R = αrβ =⇒ β2−m2 = 0, β = ±m

Rm = rm and r−m

If m = 0, (rR′)′ = 0 =⇒ rR′ = const =⇒ R = log r.

R0 = const and log r.

General solution:

θ(r, 0) =
a0
2

+ c0 log r +
∞∑
m=1

(am cosmθ + bm sinmθ)rm

+

∞∑
m=1

(cm cosmθ + dm sinmθ)r−m (5.8)
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Example. Soap film on unit disk. Solve (5.6) with a distorted circular disk (wire)
radius r = 1 with given boundary conditions:

ϕ(1, θ) = f(θ)

to find ϕ(r, θ) on r < 1. Regularity at r = 0 implies cm = dm = 0 for all n, so (5.8)
becomes

θ(r, θ) =
1

2
a0 +

∞∑
m=1

(aM cosmθ + bm sinmθ)rm

At r = 1, ϕ(1, 0) = f(θ) = 1
2a0 +

∑
m(am cosmθ + bm sinmθ) so the Fourier series

coefficients (1.5) are

am =
1

π

∫ 2π

0
f(θ) cosmθdθ, bm =

1

π

∫ 2π

0
f(θ) sinmθdθ

Note high harmonics are confined near r = 0 edge becomes rm term

Start of
lecture 12 5.3. 3D Cylindrical Polar Coordinates

Here

∇2 =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂θ2
+
∂2ϕ

∂z2
= 0 (5.9)

Substitute ϕ(r, θ, z) = R(r)H(θ)Z(z) to find

H ′′ = −µH, Z ′′ = λZ

r(rR′)′ + (λr2 − µ)R = 0

� Polar (as before) µm = m2,

Hm = cosmθ and sinmθ
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� Radial (Bessel’s equation (3.26))

r(rR′)′ + (λr2 −m2)R = 0

with solutions R = Jm(kr) and Ym = (kr). Setting boundary conditions R = 0 at
r = 1 means

Jm(ka) =⇒ k =
jmn
a

where jmn is the n-th zero (see (3.32)). Radial eigenfunction

Rmn = Jm

(
jmn
a
r

)
(3.10)

(eliminate Ym since Ym → −∞ as r → 0)

� Z equation: Z ′′ = k2Z implies Z = e−kz and z = ekz (usually eliminate ekz with
z → 0 as z → ∞.)

So general solution is

ϕ(r, θ, z) =

∞∑
m=0

∞∑
n=1

(amn cosmθ + bmn sinmθ)× Jm(
jmn
a
r)e−jmnz/a (5.11)

Exercise: Describe steady-state heat flow in a semi-infinite circular wire with boundary
conditions ϕ = 0 at r = a, ϕ = T0 at z = 0 and ϕ → 0 as z → ∞ (see section 3.9 and
5.9). Show that the solution is

ϕ(r, θ, z) =

∞∑
k=1

2Tc
j0nJ1(j0n)

J0

(
j0n
a
r

)
e−j0nz/a

5.4. 3D Spherical Polar Coordinates

Recall that
x = r sin θ cos θ

y = r sin θ sin θ

z = r cos θ

and dV = r2 sin θdrdθdϕ, 0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π.
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Laplace’s equation (5.1) becomes

1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin θ

∂2Φ

∂ϕ2
= 0 (5.12)

Axisymmetric case (no ϕ dependence)

Seek separable Φ(r, θ) = R(r)H(θ).

(sin θH ′)′ + λ sin θH = 0

(r2R′)′ = λR = 0 (5.13)

Polar (Legendre’s) equation: Substitute x = cos θ with

dx

dθ
= − sin θ =⇒ dH

dθ
= − sin θ

dH

dx

−���sin θ
d

dx

[
− sin2 θ

dH

dx

]
+ λ���sin θH = 0

d

dx

(
(1− x2)

dH

dx

)
+ λH = 0

which is Legendre’s equation (2.21) with eigenvalues λl = l(l + 1) and eigenfunctions
(2.23)

Hl(θ) = Pl(x) = Pl(cos θ) (5.14)

(see section 2.5)

� Radial equation:
(r2R′)′ − l(l + 1)R = 0

Seek solutions R = αrβ.

β(β + 1)− l(l + 1) = 0 =⇒
(
β +

1

2

)2

=

(
l +

1

2

)2
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with two solutions β = l and β = −l − 1.

Rl = rl and r−l−1

General axisymmetric solution:

Φ(r, θ) =
∞∑
l=0

(alr
l + blr

−l−1)Pl(cos θ) (5.15)

where al, bl determined by boundary conditions, usually at fixed r = r0. Use orthogo-
nality conditions for Pl’s, see (2.24).

Unit sphere solution: Solve ∇2Φ = 0 for r < 1 given axisymmetric boundary conditions
at r = 1, Φ(1, θ) = f(θ). Regularity implies that bl = 0, so we have

f(θ) =

∞∑
l=0

alPl(cos θ)

or with f(θ) = F (cos θ) = F (x),

F (x) =

∞∑
l=0

alPl(x)

so by (2.25) so

al =
2l + 1

2

∫ 1

−1
F (x)Pl(x)dx

Exercise: Show f(θ) = sin2 θ yields solution

Φ(r, θ) =
2

3
(1− P2(cos θ)r

2)

Generating function for Pl(x) (2.23a)

Consider a charge on z-axis at z = 1, r0 = (0, 0, 1) then the potential P becomes

Φ(r) =
1

|r− r0|

=
1

(x2 + y2 + (z − 1)2)
1
2

=
1

(r2 sin2 θ + r2 cos2 θ − 2r cos θ + 1)
1
2

=
1√

r2 − 2r cos θ + 1

=
1√

r2 − 2rx+ 1
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(x = cos θ)
Exercise: verify Φ = 1

|r−r0| satisfies ∇
2Φ = 0 whenever r ̸= r0.

We can represent any axisymmetric solution (5.12) as a sum (5.15) (with bn = 0) for
r < 1:

1√
r2 − 2rx+ 1

=

∞∑
l=0

alPl(x)r
l

with norm at x = 1, Pl(1) = 1, we get

1

1− r
=

∞∑
l=0

alr
l

so al = 1 (for a geometric series). Thus generating function for Pl(x) is

1√
1− 2xr + r2

=

∞∑
l=0

Pl(x)r
l (5.16)

Expand LHS with binomial theorem to find Pl(x) (coefficient of the rl term) Use to
obtain norm condition (2.24). (Example sheet 2, Q5)

Example (Electric multipole).

Start of
lecture 13
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6. The Dirac Delta Function

6.1. Definition of δ(x)

Define a generalised function δ(x− ξ) with the following properties:

δ(x− ξ) = 0, ∀x ̸= ξ∫ ∞

−∞
δ(x− ξ)dx = 1

(6.1)

This acts as a linear operator
∫
dxδ(x − ξ) on an arbitrary function f(x) to produce a

number f(ξ), that is, ∫ ∞

−∞
dxδ(x− ξ)f(x) = f(ξ) (6.2)

provided f(x) is ‘well-behaved’ at x = ξ and ±∞.

Notes

� The delta function δ(x) is classified as a distribution (not a function). See lecture
notes of Jozsa and Skinner section 6.1 (optional).

� δ(x) always appears in an integrand as a linear operator where it is well-defined.

� Represents a unit point source (for example mass, charge) or an impulse.

Some limiting approximations

Discrete:

lim
n→∞

δn(x) =


0 x > 1

n
n
2 |x| ≤ 1

n

0 x < − 1
n
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Continuous:

lim
ε→0

δε(x) =
1

ε
√
π
e−x

2/ε2 (6.3)

verify (6.2): ∫ ∞

−∞
f(x)δ(x)dx = lim

ε→0

∫ ∞

−∞

1

ε
√
π
e−x

2/ε2f(x)dx

= lim
ε→0

∫ ∞

−∞

1√
π
e−y

2
f(εy)dy

= lim
ε→0

∫ ∞

−∞
dy

1√
π
(f(0) + εyf ′(0) + · · · )

= f(0)

∀f . ‘well-behaved’ at x = 0 so that we can take the Taylor expansion, and also need
well behaved at ±∞ so that it doesn’t grow faster than 1/e−x

2/ε2

Further examples: (limn→ ∞)

δn(x) =
sinnx

πx
=

1

2π

∫ n

−n
eikxdk (6.4)
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δn(x) =
n

2
sech2nx (6.5)

6.2. Properties of δ(x)

Heaviside function H(x)

The unit step function,

H(x) =

{
1 x ≥ 0

0 x < 0
(6.6)

is the integral of δ(x).

H(x) =

∫ x

−∞
δ(x)dx (6.7)

and we can identify H ′(x) = δ(x).

Example. Verify using (6.5) δ(x) = limn→∞
n
2 sech

2nx. (You will find 1
2(tanhnx+1)

is the approximate step function. - also H(0) = 1
2 (alternate definition).)

Derivative of δ(x)

Define δ′(x) using integration by parts:∫ ∞

−∞
δ′(x− ξ)f(x)dx = [δ(x− ξ)f(x)]∞−∞ −

∫ ∞

−∞
δ(x− ξ)f ′(x)dx

= −f ′(ξ) (6.8)

for all f(x) smooth at x = ξ.
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Example. Consider Gaussian approximation (6.3)

δ′ε(x) = − 2x

ε3
√
π
e−x

2/ε2

Sampling property ∫ b

a
f(x)δ(x− ξ)dx =

{
f(ξ) a < ξ < b

0 otherwise

Even property ∫ ∞

−∞
f(x)δ(−(x− ξ))dx =

∫ ∞

−∞
f(x)δ(x− ξ)dx (6.10)

LHS =

∫ −∞

∞
f(ξ − u)δ(u)(−du)

=

∫ ∞

−∞
f(ξ − u)δ(u)du

= f(ξ)

= RHS

Scaling property ∫ ∞

−∞
f(x)δ(a(x− ξ))dx =

1

|a|
f(ξ) (6.11)

Exercise: Show this using u = ax (noting integral limit order with a < 0).
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Advanced scaling

Suppose g(x) has n isolated zeros at x1, x2, . . . , xn then (with g′(xi) ̸= 0):

δ(g(x)) =
n∑
i=1

δ(x− xi)

|g′(xi)|
(6.12)

(Exercise: Show for g has 1 root at x = xi).

Example.

I =

∫ ∞

−∞
f(x)δ(x2 − 1)dx

x2 − 1 has roots x = ±1 with g′(x) = 2x. So

I =

∫ 1+ε

1−ε
f(x)

δ(x− 1)

|2x|
dx+

∫ −1+ε

−1−ε
f(x)

δ(x+ 1)

|2x|
dx

=
1

2
(f(1) + f(−1))

Isolation property

If g(x) is continuous at x = 0 then

g(x)δ(x) = g(0)δ(x) (6.13)

Exercise: evaluate and show ∫ ∞

0
δ′(x2 − 1)x2dx = −1

4

using u = x2 − 1 and note (6.8) and (6.12).
Start of
lecture 14 6.3. Eigenfunction expansions of δ(x)

Fourier series (complex)

For −1 ≤ x < L, represent

δ(x) =
∞∑

n=−∞
cne

−nπx/L

Fourier series coefficient (1.15):

cn =
1

2L

∫ L

−L
δ(x)e−nπx/Ldx =

1

2L

so

δ(x) =
1

2L

∞∑
n=−∞

einπx/L (6.14)
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Take f(x) =
∑∞

n=−∞ dne
inπx/L, then (using section 2.2)∫ L

−L
f∗(x)δ(x)dx =

1

2L

∑
n

dn

∫ L

−L
e−inπx/Leinπx/Ldx

=
∑
n

dn

= f(0)

The Diract count comes from extending periodically to all R:
∞∑

m=0∞
δ(x− 2mL) =

1

2L

∞∑
n=−∞

einπx/L

General eigenfunctions

Suppose δ(x− ξ) =
∑∞

n=1 anyn(x), a ≤ x ≤ b with coefficients (2.17):

an =

∫ b
a ω(x)yn(x)δ(x− ξ)dx∫ b

a ωy
2
ndx

=
ω(ξ)yn(ξ)∫ b
a ωy

2
ndx

= ω(ξ)Yn(ξ)

for unit norm Yn (2.18). Then

δ(x− ξ) = ω(ξ)
∞∑
n=1

Yn(ξ)Yn(x)

= ω(x)
∞∑
n=1

Yn(ξ)Yn(x)

since
ω(x)

ω(ξ)
δ(x− ξ) = δ(x− ξ)
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by (6.13). Hence

δ(x− ξ) = ω(x)

∞∑
n=1

yn(ξ)yn(x)

Nn
(6.15)

where Nn =
∫ b
a ωy

a
ndx.

Example. Consider Fourier series y(0) = y(1) = 0 with yn(x) = sinnπx. Here,
from (1.11) we have

δ(x− ξ) = 2
∞∑
n=1

sinnπξ sinnπx (∗)

Exercise:

(i) Integrate both sides to show

∞∑
m=1

(−1)m+

2m− 1
=

1

4

when ξ = 1
2 .

(ii) Integrate twice and compare with G(x, ξ) (1.25) or (2.31).
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7. Green’s Function

7.1. Physical motivation: Static forces on a string

Consider a massive static string (tension T , density µ) with fixed ends

y(0) = y(1) = 0 (7.1)

By resolving forces, we have (3.3)

T
∂2y

∂x2
− µg = 0

(time independent). So solve inhomogeneous ODE subject to (7.1) with f(x) = −µg
T .

−d2y

dx2
= f(x) (7.2)

Solution 1: Direct integration for uniform mass density ODE (7.2) implies:

−y = −µg

2T
x2 + k1x+ k2

Boundary conditions (7.1) implies

y(x) =
(
−µg
T

) 1

2
x(1− x) (7.3)

Solution 2: Superposition of point masses on light string µ̃ → 0. Consider point mass
δm (= µδx) suspended at x = ξ:
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Resolve in y dimension to find yi(ξi):

0 = T (sin θ1 + sin θ2)− δmg

= T

((
−yi
ξi

)
+

(
−yi
1− ξi

))
− δmg

=⇒ −T (yi(1− ξi) + yiξi) = δmgξi(1− ξi)

so

yi(ξi) =

(
−δmg

T

)
ξi(1− ξi)

Hence solution

yi(x) =

(
−δmg

T

){
x(1− ξi) x < ξi

ξi(1− x) x < ξi
= fiG(x, ξ)

where fi is the source (here, (− δmg
T ) and G(x, ξ) is the solution for unit point mass

(Green’s function). Now sum N point masses δm at x = {ξi} by linearity

y(x) =
N∑
i=1

fiG(x, ξi)

or in continuum limit with

fi = −δmg
T

= −µδxg
T

≡ f(x)dx

f(x) = −µg
T . We have (x→ ξ):

y(x) =

∫ 1

0
f(ξ)G(x, ξ)dξ (7.5)

=
(
−µg
T

)[∫ x

0
ξ(1− x)dξ +

∫ 1

x
x(1− ξ)dξ

]
=
(
−µg
T

)([ξ2
2
(1− x)

]x
0

+

[
x

(
ξ − ξ2

2

)]1
x

)

=
(
−µg
T

)(x2
2
(1− x)− 0 +

x

2
− x

(
x− x2

2

))
=

(
−µg
T

)
1

2
x(1− x)

so it matches (7.3).
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7.2. Definition of Green’s function

We wish to solve inhomogeneous ODE (section 2.1) on a ≤ x ≤ b.

Ly ≡ α(x)y′′ + β(x)y′ + γ(x)y = f(x) (7.6)

f(x) is a source. With α ̸= 0, β, γ continuous and bounded. Homogeneous boundary
conditions y(a) = y(b) = 0. The Green’s function for the operator L is the solution for
a unit point source (or impulse) at x = ξ.

LG(x, ξ) = δ(x− ξ) (7.7)

which satisfies G(a, ξ) = G(b, ξ) = 0 (or similar). By linearity, we construct solutions by
integrating over source f(x) with G:

y(x) =

∫ b

a
G(x, ξ)f(ξ)dξ (7.8)

Formally verify this:

Ly =

∫
L(x)G(x, ξ)f(ξ)dξ =

∫
δ(x− ξ)f(ξ)dξ = f(x)

so the solution (7.8) is given by the inverse operator L−1 =
∫
dxG(x, ξ).

Defining properties (summary)

The Green’s function splits into two parts:

G(x, ξ) =

{
G1(x, ξ) a ≤ x < ξ

G2(x, ξ) ξ < x ≤ b
(7.9)

such that:

(1) Homogeneous solutions: G solves homogeneous equation for all x ̸= ξ. So

LG1 = 0, LG2 = 0 (7.10)

(2) Homogeneous boundary conditions: G satisfies homogeneous boundary conditions
so

G1(a, ξ) = 0, G2(b, ξ) = 0 (2.11)

(3) Continuity condition: G is continuous at x = ξ so

G1(ξ, ξ) = G2(ξ, ξ)

(4) Jump condition: Derivative discontinuous at x = ξ with

[G′]
ξ+
ξ−

=
dG2

dx

∣∣∣∣
x=ξ+

− dG1

dx

∣∣∣∣
x=ξ−

=
1

α(ξ)
(7.13)

where α(x) is defined in (7.6).

Start of
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7.3. Constructing G(x, ξ): Boundary Value Problems

Solve
LG(x, ξ) = δ(x− ξ)

on a ≤ x ≤ b with G(a, ξ) = G(b, ξ) = 0.

1 & 2 Solves homogeneous equation with homogeneous boundary conditions

Assume 2 independent homogeneous solutions y1(x), y2(x) known.
For a ≤ x < ξ: G1(x, ξ) = Ay1(x) +By2(x) such that Ay1(a) +By2(a) = 0 (i.e. choose
suitable A, B). This defines a complementary function (2.3) y−(x) such that y−(a) = 0

G1 = Cy−(x) with y−(a) = 0 (7.14)

For ξ < x ≤ b: Similarly find

G2 = Dy+(x) with y+(b) = 0 (7.15)

where y+(x) is a complementary function (2.3).

3. Why is G continuous at x = ξ?

Suppose G were discontinuous locally, so G ∝ H(x, ξ) + · · · (6.7)

Then we would have G′ ∝ δ(x, ξ) and G′′ ∝ δ′(x− ξ). So LHS

LG ∝ α(x)δ′(x− ξ) + β(x)δ(x− ξ) + γ(x)H(x, ξ)

there is no term ∝ δ′(x− ξ). So G isn’t discontinuous. Hence we have [G]ξ
+

ξ−
= 0, so

Cy−(ξ) = Dy+(ξ) (7.16)
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4. Why the jump condition for G′ at x = ξ?

Integrate LG = δ(x, ξ) across x = ξ:

LHS +

∫ ξ+

ξ−

LGdx =

∫ ξ+

ξ−

(αG′′ + βG′ + γG)dx

= α(ξ)[G′]ξ
+

ξ−
+ (β − α′)[G]ξ

+

ξ−︸ ︷︷ ︸
=0by continuity (7.16)

+

∫ ξ+

ξ−

(γ − β′ + α′′)Gdx︸ ︷︷ ︸
=0by continuity

RHS =

∫ ξ+

ξ−

δ(x− ξ)dx

= 1

So [G′]ξ
+

ξ−
= 1

α(ξ) so

Dy′+(ξ)− Cy′−(ξ) =
1

α(ξ)
(7.17)

Wronskian W (ξ)

Solving (7.16) and (7.17) we find

C(ξ) =
y+(ξ)

α(ξ)W (ξ)
, D(ξ) =

y−(ξ)

α(ξ)W (ξ)

where W (ξ) = y−(ξ)y
′
+(ξ)− y+(ξ)y

′
−(ξ) ̸= 0 if y+, y− are linearly independent. Hence

G(x, ξ) =

{
y−(x)y+(ξ)
α(ξ)W (ξ) a ≤ x < ξ
y+(x)y−(ξ)
α(ξ)W (ξ) ξ < x ≤ b

(7.20)

So the solution to (7.6) with y(a) = y(b) = 0
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y(x) =

∫ b

a
G(x, ξ)f(ξ)dξ

=

∫ x

a
G2(x, ξ)f(ξ)dξ +

∫ b

x
G1(x, ξ)f(ξ)dξ

y(x) = y+(x)

∫ x

a

y−(ξ)f(ξ)

α(ξ)W (ξ)
dξ + y−(x)

∫ b

a

y+(ξ)f(ξ)

α(ξ)W (ξ)
dξ (7.21)

Notes:

(1) If L is in Sturm Liouville form (2.7) i.e. β = α′ then denominator α(ξ)W (ξ) is a
constant and G is symmetric, G(x, ξ) = G(ξ, x). Exercise: show d

dx (α(x)W (x)) = 0
if α′ = β and using (2.10) (self-adjoint form).

(2) Often take α = 1 (but Sturm Liouville form α < 0).

(3) Indefinite integrals
∫
x in (7.21) are particular integral in general solution (2.5).

Exercise: For −y′′ = f(x), y(0) = y(1) = 0 directly construct the Green’s function (7.4)
(i.e. with y1 = x, y2 = constant).
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Example. Solve y′′ − y = f(x) with y(0) = y(1) = 0. Construct G(x, ξ):

1&2 Homogeneous solutions y1 = ex and y2 = e−x so with homogeneous boundary
conditions (by inspection):

G =

{
C sinhx 0 ≤ x < ξ

D sinh(1− x) ξ < x ≤ 1

3 Continuity at ξ implies C sinh ξ = D sinh(1− ξ)

C =
D sinh(1− ξ)

sinh ξ

4 [G′] = 1 implies
−D cosh(1− ξ)− C cosh ξ = 1

(α = 1) so

−D[cosh(1− ξ) sinh ξ + sinh(1− ξ) cosh ξ] = sinh ξ (∗)

−D[sinh 1] = sinh ξ

D = −sinh ξ

sinh 1
, C = −sinh(1− ξ)

sinh 1

so the solution is

y = −sinh(1− x)

sinh 1

∫ x

0
sinh ξf(ξ)dξ − sinhx

sinh 1

∫ 1

x
sinh(1− ξ)f(ξ)dξ (7.22)

Inhomogeneous Boundary conditions

Find yp solution to Ly = 0 satisfying boundary conditions (y(a) ̸= 0, y(b) ̸= 0). Find
Green’s function for Lyg = f with ya(a) = yg(b) = 0 where yg = y − yp. For example

y′′ − y = f(x)

with y(0) = 0 and y(1) = 1.

yp = A sinhx+B coshx

yp(0) = 0 implies B = 0, yp(1) = 1 implies A = 1
sinh 1 . Solve for yg = y − yp with

homogeneous boundary conditions. Solution is

y(x) =
sinhx

sinh 1
+ yg(x)

(i.e. equation (7.22))
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Higher-order ODEs (BVP)

If Ly = f(x) to n-th order (coefficient α(x)d
ny

dxn ) with homogeneous boundary conditions
then we generalize Green’s function L(x, ξ) = δ(x− ξ) with properties:

1&2 G1, G2 homogeneous solutions satisfying homogeneous boundary conditions.

3 Continuity: G1 = G2, G
′
1 = G′

2, . . . , G
(n−2)
1 = G

(n−2)
2 at x = ξ.

4 Jump in (n− 1) derivative:

[G(n−1)]ξ
+

ξ−
= G

(n−1)
2 |ξ+ −G

(n−1
1 |ξ− =

1

α(ξ)

Start of
lecture 16 Eigenfunction expansion of G(x, ξ)

Suppose L is in Sturm Liouville form (2.7) with eigenfunctions yn(x) and eigenvalues
λn, then seek

G(x, ξ) =
∞∑
n=1

Anyn(x)

satisfying LG = δ(x− ξ).

LG =
∑
n

AnLyn(x)

=
∑
n

Anλnω(x)yn(x)

= δ(x− ξ)

= ω(x)
∑
n

yn(ξ)yn(x)

Nn

with Nn =
∫
ωy2ndx. So An(ξ) =

yn(ξ)
λnNn

by orthogonality (2.13). Thus

G(x, ξ) =
∞∑
n=1

yn(ξ)yn(x)

λnNn
=

∞∑
n=1

Yn(ξ)Yn(x)

λn
(7.23)

which obtained without δ(x− ξ) in (2.31): refer to section 2.6 Sturm Liouville theory.

7.4. Constructing G(t, τ): Initial Value Problem

Solve Ly = f(t) for t ≥ a with y(a) = y′(a) = 0 using G(t, c) satisfying LG = δ(t − τ)
with same boundary conditions.
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� For t < τ , G1 = Ay1(t) +By2(t) with W (a) ̸= a, y1, y2 independent.

Ay1(a) +By2(a) = 0

and
Ay′1(a) +By′2(a) = 0

implies
y1y

′
2 − y2y

′
1 = 0

unless A = B = 0. So G1(t, τ) ≡ 0, a ≤ t < τ , i.e. no change until impulse at
t = τ .

� For t > τ , by G continuity (7.12), G2(τ, τ) = 0 so choose G2 = Dy+(t), y+(t) =
Ay1(t) +By2(t) such that y+(τ) = 0.

But by discontinuity in G′ (7.13):

[G′]τ+τ− = G′
2(τ, τ)−G′

1(τ, τ) = Dy′+(τ) =
1

α(τ)

i.e. Ay′1(τ) +By′2(τ) =
1

α(τ) so

D(τ) =
1

α(τ)y′+(τ)

or solve for A,B. Hence, we have

G(t, τ) =

{
0 t < c
y+(t)

α(τ)y′+(τ)
t > τ

(7.25)
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The initial value problem is

y(t) =

∫ t

a
G(t, τ)f(τ)dτ

=

∫ t

a

y+(t)f(τ)

α(τ)y′+(τ)
dτ

Causality is “built in”, as only forces acting prior to t affect the solution at t.

Example. Solve
y′′ − y = f(t)

with y(0) = y′(0) = 0.

1&2 Homogeneous solutions and initial conditions

� t < τ , G1 = 0,

� t > τ , G2 = Aet +Be−t

3 Continuity implies G2(τ, τ) = 0 =⇒ G2 = D sinh(t− τ)

1. [G′] = 1
α = 1 =⇒ G′

2(τ, τ) = D cosh(0) = D = 1.

Hence, solution (7.26) is

y(t) =

∫ t

0
f(τ) sinh(t− τ)dt
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8. Fourier Transforms

8.1. Introduction

Definition. The Fourier transform (FT) of a function f(x) is

f̃(k) = F(f)(k)

=

∫ ∞

−∞
f(x)e−ikxdx (8.1)

and the inverse Fourier transform is

f(x) = F−1(f̃)(x)

=
1

2π

∫ ∞

−∞
f̃(k)eikxdk (8.2)

Beware there are several conventions.

The Fourier inversion theorem states that

F−1(F(f))(x) = f(x) (8.3)

with a sufficient condition that f and f̃ are absolutely integrable. That is,∫ ∞

−∞
|f(x)|dx =M <∞

so f → 0 as x→ ±∞.

Gaussian example

Find the Fourier transform of

f(x) =
1

σ
√
π
e−x

2/σ2
(8.4)

f̃(k) =
1

σ
√
π

∫ ∞

−∞
e−x

2/σ2
e−ikxdx

=
1

σ
√
π

∫ ∞

−∞
e−x

2/σ2
cos kxdx

Consider df̃
dk :

f̃ ′(k) = − 1

σ
√
π

∫ ∞

−∞
xe−x

2/σ2
sin kxdx

=
1

σ
√
π

[
σ2

2
e−x

2/σ2
sin kx

]∞
−∞

− 1

σ
√
π

∫ ∞

−∞

(
kσ2

2

)
e−x

2/σ2
cos kxdx

= −kσ
2

2
f̃(k)
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Integrate f̃ ′

f̃
= −kσ2

2 to find

f̃(k) = Ce−k
2σ2/4

But put k = 0 into (8.4), f̃(0) = 1 =⇒ C = 1

f̃(k) = e−k
2σ2/4 (8.5)

Exercise: Show that F−1(e−k
2σ2/4) = f(x).

Exponential exercise:

Show that f(x) = e−a|x|, a > 0 has Fourier Transform

f̃(k) =
2a

a2 + k2
(8.6)

in two ways:

(i) Integrate 2
∫∞
0 e−ax cos kxdx by parts twice.

(ii) Integrate
∫∞
0 e−(a−ik)xdx+

∫ 0
−∞ e(a+ik)xdx directly.

Note if

f(x) =

{
e−ax x > 0

0 x ≤ 0

(a > 0) then

f̃(k) =
1

ik + a
(8.6a)

8.2. Fourier Transform relation to Fourier series

We can write Fourier series (1.13) as

f(x) =
∞∑

n=−∞
cne

iknx (∗)

where kn = nπ
L , so write kn = n∆k with ∆k = π

L , then

cn =
1

2L

∫ L

−L
f(x)e−iknxdx

=
∆k

2π

∫ L

−L
f(x)e−iknxdx

Start of
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Then the Fourier series (∗) becomes

f(x) =
∞∑

n=−∞

∆k

2π
eiknx

∫ L

−L
f(x′)e−iknx

′
dx′

But
∑∞

n=−∞∆kg(kn) →
∫∞
−∞ g(k)dk with g(kn) = eiknx

2π

∫ L
−L f(x

′)e−ikx
′
dx′. So take

limit as L→ ∞ and we have

f(x) =
1

2π

∫ ∞

−∞
dkeikx

[∫ ∞

−∞
f(x′)e−ikx

′
dx′
]
= F−1(F(f))(x)

(i.e. equation (8.3))

resolution F (decomposition) → synthesis (reconstruction)

Note when f(x) is discontinuous at x (like Fourier series) the Fourier Transform gives

F−1(F(f))(x) =
1

2
(f(x−) + f(x+)) (8.7)

8.3. Fourier Transform Properties

f̃(t) =

∫ ∞

−∞
f(x)e−ikxdx

(1) Linearity:
h(x) = λf(x) + µg(x) ⇐⇒ h̃(k) = λf̃(k) + µg̃(k) (8.8)

(2) Translation:
h(x) = f(x− λ) ⇐⇒ h̃(k) = e−iλkf̃(k) (8.9)

h̃(k) =

∫
f(x− λ)e−ikxdx =

∫
f(y)e−ik(y+λ)dy = e−iλkf̃(k)

(3) Frequency:
h(x) = eiλxf(x) ⇐⇒ h̃(k) = f̃(k − λ) (8.10)

(4) Scaling:

h(x) = f(λx) ⇐⇒ h̃(k) =
1

|λ|
f̃

(
k

λ

)
(8.11)

(|λ| because x→ −x changes limits)

(5) Multiplication by x:
h(x) = xf(x) ⇐⇒ h̃(k) = if̃ ′(k) (8.12)

because ∫ ∞

−∞
xf(x)e−ikxdx = −1

i

d

dk

(∫ ∞

−∞
f(x)e−ikxdx

)
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(6) Derivative:

h(x) = f ′(x) ⇐⇒ h̃(k) = ikf̃(k) (8.13)

because

h̃(k) =

∫ ∞

−∞
f ′(x)e−ikxdx

= [f(x)e−ikx]∞−∞ + ik

∫ ∞

−∞
f(x)e−ikxdx

= ikf̃(k)

(7) General duality: Consider (8.2) with x→ −x

f(−x) = 1

2π

∫ ∞

−∞
f̃(k)e−ikxdk

so k ↔ x

=⇒ f(−k) = 1

2π

∫ ∞

−∞
f̃(x)eikxdx

Thus

g(x) = f̃(x) ⇐⇒ g̃(x) = 2πf(−k) (8.14)

We have f(−x) = 1
2πF(f̃)(x) = 1

2πF
2(f)(x), so repeating, F4(f)(x) = 4π2f(x).

Exercise: Verify 1-7.

“Top hat” example:

Find Fourier Transform for

f(x) =

{
1 |x| ≤ a

0 |x| > a
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(a > 0)

f̃(k) =

∫ ∞

−∞
f(x)e−ikxdx

=

∫ a

−a
cos kxdx

= 2
sin ka

a
(8.15)

Fourier inversion, then (8.3) implies

1

π

∫ ∞

−∞
eikx

sin ka

k
dk =

{
1 |x| ≤ a

0 |x| > a

Now set x = 0, then take k → x to obtain Dirchlet discontinuous formula:

∫ ∞

0

sin ax

x
dx =


π
2 a > 0

0 a = 0

−π
2 a < 0

=
π

2
sgn(a) (8.16)

Here, we allow a < 0, so sin(−ax) = − sin ax. (See RJ notes for direct inverse Fourier
transform of (8.15))

8.4. Convolution and Parseval’s Theorem

We want to multiply Fourier Transforms in frequency domain h̃(k) = f̃(k)g̃(k) so con-
sider the inverse:

h(x) =
1

2π

∫ ∞

−∞
f̃(k)g̃(k)eikxdk

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f(y)e−ikydy

)
g̃(k)eikxdk

=

∫ ∞

−∞
f(y)

(
1

2π

∫ ∞

−∞
g̃(k)eik(x−y)dk

)
dy see (8.9)

=

∫ ∞

−∞
f(y)g(x− y)dy

≡ f ∗ g(x) (8.17)

(convlution definition). By duality (8.14) we also have

h(x) = f(x)g(x) ⇐⇒ h̃(k) =
1

2π

∫ ∞

−∞
f̃(p)g̃(k − p)dp (8.18)
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Parseval’s Theorem

Consider h(x) = g∗(−x), then

h̃(k) =

∫ ∞

−∞
g∗(−x)e−ikxdx

=

[∫ ∞

−∞
g(−x)eikxdx

]∗
=

[∫ ∞

−∞
g(y)e−ikydy

]∗
= g̃∗(k)

Substitute into (8.17) g(x) → g∗(−x),∫ ∞

−∞
f(y)g∗(y − x)dy =

1

2π

∫ ∞

−∞
f̃(k)g̃∗(k)eikxdk

Take x = 0, then dummy variable y → x on LHS:∫ ∞

−∞
f(x)g∗(x)dx =

1

2π

∫ ∞

−∞
f̃(k)g̃∗(k)dk (8.19)

Or equivalently,

⟨g, f⟩ = 1

2π
⟨g̃, f̃⟩k

see section (2.1). Now g = f∗:∫ ∞

−∞
|f(x)|2dx =

1

2π

∫ ∞

−∞
|f̃(k)|2dk (8.20)

which is Parseval’s theorem.
Start of
lecture 18 8.4a Fourier Transform of Generalised Functions

(See discussion in section 8.3 of R Jorsa notes (or D Skinner))

Dirac delta function δ(x)

Consider the inversion then (8.3):

f(x) = F−1(F(f))(x) =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f(u)e−ikudu

]
eikxdk

=

∫ ∞

−∞
f(u)

[
1

2π

∫ ∞

−∞
eik(x−u)dk

]
du

so identify

δ(x− u) =
1

2π

∫ ∞

−∞
eik(x− u)dk =

1

2π

∫ ∞

−∞
e−ikueikxdk

77

https://notes.ggim.me/Methods#lecturelink.18


� If f(x) = δ(x− a), then f̃(k) = e−ika (8.21).

� If f(x) = δ(x) then

f̃(k) =

∫ ∞

−∞
δ(x)eikxdx = 1 (8.22)

� If f(x) = 1, then

f̃(k) =

∫ ∞

−∞
e−ikxdx = 2πδ(k) (8.23)

by duality (8.14).

Trig Functions

f(x) = cosωx ⇐⇒ f̃(k) = π(δ(k + w) + δ(k − w))

f(x) = sinωx ⇐⇒ f̃(k) = iπ(δ(k + w)− δ(k − w)) (8.24)

Exercise: Find F−1 for sinωk, cosωk using (8.14).

Heaviside function

Subtle derivation requiring central value H(0) = 1
2 ; then H(x) + H(−x) = 1 for all x

and continuous at x = 0. By (8.8) and (8.23)

H̃(k) + H̃(−k) = 2πδ(k) (∗)

Recall (6.7) H ′(x) = δ(x) which implies

ikH̃(k) = 1 (�)

by (8.13) and (8.22). But kδ(k) = 0, so (∗) and (†) are consistent if

H̃(k) = πδ(k) +
1

ik
(8.25)

Dirichlet discontinuous formula (8.16): Rewrite as

1

2
sgn(x) =

1

2π

∫ ∞

−∞

eikx

ik
dx

so

f(x) =
1

2
sgn(x) ⇐⇒ f̃(k) =

1

ik
(8.26)
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8.5. Applications of Fourier Transforms

Motivation I: ODE for BVP

Consider y′′ − y = f(x) with homogeneous boundary conditions y → 0 as x → ±∞.
Take the Fourier Transform:

(ik)2ỹ − ỹ = (−k2 − 1)ỹ = f̃

by (8.13). SO the solution is

ỹ(k) = − f̃(k)

1 + k2
≡ f̃(k)g̃(k)

where g̃(k) = − 1
1+k2

but this is the Fourier Transform of g(x) = −1
2e

−|x| (see (8.6)).
Thus convolution theorem (8.17) implies

y(x) =

∫ ∞

−∞
f(x)g(x− u)du

= −1

2

∫ ∞

−∞
f(u)e−|x−u|du

= −1

2

∫ x

−∞
f(u)eu−xdu− 1

2

∫ ∞

x
f(u)ex−udu

which is in the form of a BVP Green’s function.
Exercise: Verify by constructing Green’s function.

Motivation II: Signal processing (IVP)

Suppose (given) input J (t) acting on by linear operator Lin to yield output θ(t).

θ(t) = LinJ (t)

The Fourier Transform J̃ (ω) is denoted the resolution

J̃ (ω) =

∫ ∞

−∞
J (t)e−iωtdt (8.27)

In frequency domain LinJ (t) means J̃ (ω) is multiplied by a transfer function R̃(ω) to
yield output

θ(t) =
1

2π

∫ ∞

−∞
R̃(ω)J̃ (ω)eiωtdω (8.28)

with response function given by

R(t) =
1

2π

∫ ∞

−∞
R̃(ω)eiωtdω (8.29)
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By the convolution theorem (8.17), output is

θ(t) =

∫ ∞

−∞
J (u)R(t− u)du

We assume no input J (t) = 0 for t < 0 and by causality, zero output for R(t) = 0 for
t < 0 (i.e. R(t− u) has source δ(t− u)), so we require 0 < u < t:

θ(t) =

∫ r

0
J (u)R(t− u)du (8.30)

i.e. the same form as IVP Green’s function.

General transfer functions for ODEs

Suppose input / output relation given by linear ODE (n-th order)

Lθ(t) ≡

(
n∑
i=0

ai
di

dti

)
θ(t) = J (t) (8.31)

where ai are constant and here set Lin = 1. Take the Fourier Transform:

(a0 + a1(iω) + a2(iω)
2 + · · ·+ an(iω)

n)θ(ω) = J̃ (ω)

so the transfer function (8.28) is

R̃(ω) =
1

a0 + a1(iω) + · · ·+ an(iω)n
(8.32)

Factorise n-th degree polynomial into product of n roots (iω− cj)
kj with j = 1, 2, . . . , J

(with repeated roots kj > 1) i.e.
∑J

j=1 kj = n. Then

R̃(ω) =
1

(iω − c1)k1 + · · ·+ (iω − cJ)kJ

=

J∑
j=1

kj∑
m=1

Γjm
(iω − cj)m

(8.33)

since it can be expanded in partial fractions (constant Γjm). For repeated roots (1 ≤
m ≤ kj):

1

(iω − cj)kj
→ Γj1

(iω − cj)
+

Γj2
(iω − cj)2

+ · · ·+
Γjk

(iω − cj)kj

To solve we must invert 1
(iω−a)m , m ≥ 1. We know (8.6a)

F−1

(
1

iω − a

)
=

{
eat t > 0

0 t < 0
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for Re(a) < 0, so we assume Re(cj) < 0, ∀j (eliminate exponential growing modes).
Start of
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For m = 2 note i d
dω

(
1

iω−a

)
= 1

(iω−a)2 and recall (8.12) F(tf(t)) = if̃ ′(ω), so

F−1

(
1

(iω − a)2

)
=

{
teat t > 0

0 t < 0

By induction,

F−1

(
1

(iω − a)m

)
=

{
tm−1

(m−1)!e
at t > 0

0 t < 0
(8.34)

Thus the response function takes the form

R(t) =
∑
j

∑
m

Γjm
tm−1

(m− 1)!
ecjt t > 0 (8.35)

We can solve (8.31) in Green’s function form (8.30) or directly invert R̃(ω)J̃(ω) for
polynomial J̃(ω).

Example (Damped oscillator). Solve

Ly ≡ y′′ + 2py′ + (p2 + q2)y = f(t)

with damping p > 0 and homogeneous initial conditions y(0) = y′(0) = 0. Fourier
Transform is

(iω)2ỹ + 2ipωỹ + (p2 + q2)ỹ = f̃

ỹ =
f̃

−ω2 + 2ipω + p2 + q2
≡ R̃f̃

Inverting with convolution theorem (8.17)

y(t) =

∫ t

0
r(t− τ)f(τ)dτ

with response

R(t− τ) =
1

2π

∫ ∞

−∞

eiω(t−τ)dω

p2 + q2 + 2ipω − ω2

Exercise: Show LR(t − τ) = δ(t − τ) using (8.23). That is, the response function for
R(t− τ) is the Green’s function (see Example sheet 3, Q4).

8.6. Discrete Fourier Transforms

Discrete sampling & the Nyquist frequency

Sample a signal h(t) at equal times tn = n∆ with time-sampling ∆, and values

hn = h(n∆), n = . . . ,−2, 1, 0, 1, 2, . . . (8.36)
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i.e. with sampling frequency 1
∆ (ωs = 2πfs =

2π
∆ ).

The Nyquist frequency fc =
1
2∆ (8.37) is the highest frequency actually sampled at ∆.

Suppose we have a signal with given frequency f .

gf (t) = A cos(2πft+ ϕ)

= Re(Ae2πift+ϕ)

=
1

2
(Aeiϕe2πift +Ae−iϕe−2πift) (8.38)

(i.e. for real complex Fourier Series, the sum of positive frequencies f and negative
frequency −f modes).
What happens if we sample at Nyquist f = fc?

gfc(tn) = A cos(2π

(
1

2∆
n∆+ ϕ

)
= A cosπn cosϕ+A sinnπ sinϕ

= A′ cos(2πfctn) (8.39)

with A′ = A cosϕ. So phase / amplitude information is lost (no distinction) and we can
identify fc ↔ −fc i.e. (8.38) and (8.39) are aliased together.
What happens if we sample above f > fc? Exercise: Take f = fc + δf > fc and show
that (δf < fc)

gf (tn) = A cos(2π(fc + δf)tn + ϕ)

= A cos(2π(fc − δf)tn − ϕ) (8.40)

So the effect is to alias a “ghost signal” to frequency fc − δf (actually - −(fc − δf)).

Sampling Theorem

A signal g(t) is bandwidth limited if it contains no frequencies above ωmax = 2πfmax, i.e.
g̃(ω) = 0 for |ω| > ωmax. So

g(t) =
1

2π

∫ ∞

−∞
g̃(ω)eiωtdω

=
1

2π

∫ ωmax

−ωmax

g̃(ω)eiωtdω (8.41)

Set sampling to satisfy Nyquist condition

∆ =
1

2fmax

then

gn ≡ g(tn) =
1

2π

∫ ωmax

−ωmax

g̃(ω)eiπnω/ωmaxdω
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which is complex Fourier series coefficient (1.13) cn × ωmax
π (x→ ω). The Fourier Series

represents a periodic function (period 2ωmax)

g̃per(ω) =
π

ωmax

∞∑
n=−∞

gne
−iπnω/ωmax (8.42)

The actual Fourier Transform g̃(ω) is found by multiplying by a “top hat”

h̃(ω) =

{
1 |ω| ≤ ωmax

0 otherwise

i.e.
g̃(ω) = g̃per(ω)h̃(ω) (8.43)

which is an exact relation. Inverting with (8.42):

g(t) =
1

2π

∫ ∞

−∞
g̃per(ω)h̃(ω)e

iωtdω

=
1

2ωmax

∞∑
n=−∞

gn

∫ ωmax

−ωmax

exp

(
iω

(
t− nπ

ωmax

))
dω

=

∞∑
n=−∞

gn
sin(ωmaxt− πn)

ωmaxt− πn
(8.44)

So g(t) can be exactly represented after sampling at discrete times tn (sampling theo-
rem).

Start of
lecture 20 Discrete Fourier Transform

Suppose we have a finite number N of samples

hm = h(tm), tm = m∆, m = 0, 1, . . . , N − 1 (8.45)

We want to approximate the Fourier Transform for N frequencies using equally spaced
frequencies ∆f = 1

N∆ in the range −fc ≤ f ≤ fc. We could take fn = n∆f = n
n∆

with n = −N
2 ,−

N
2 + 1, . . . ,−1, 0, 1, . . . , N2 . But this has N + 1 frequencies, with fc
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and −fc aliased (8.39). Instead, note that
(
N
2 +m

)
∆f = fc + δf is aliased back to(

N
2 −m

)
∆f = −(fc − δf) from (8.40) so we choose

fn =
n

N∆
with n = 0, 1, 2, . . . ,

N

2
− 1,

N

2
,
N

2
+ 1, . . . , N − 1

The discrete Fourier Transform at frequency fn becomes (8.46)

h̃(fn) =

∫ ∞

−∞
e−2πifntdt

≃ ∆

N−1∑
m=0

hme
−2πifntm

= ∆

N−1∑
m=0

hme
−2πimn/N

= ∆h̃d(fn) (8.47)

Recalling section 8.2 Fourier series→ Fourier transform Riemann integral. Here h̃d(fn) ≡
h̃n is the discrete Fourier Transform. So the matrix [DFT ]mn = e−2πimn/n defines the
discrete Fourier Transform for h = {hm} (data vector) as h̃d = [DFT ]h.
The inverse is its adjoint [DFT ]−1 = 1

N [DFT ]† and it’s built from roots of unity ω =

e−2πi/N . For example N = 4, ω = −i,

DFT =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


The inverse DFT is

hm = h(tm)

=
1

2π

∫ ∞

−∞
h̃(ω)eiωtmdω

=

∫ ∞

−∞
h̃(f)e2πiftmdf

≃ 1

N∆

N−1∑
m=0

∆h̃d(fn)e
2πimn/N

=
1

N

N−1∑
n=0

h̃ne
2πimn/N (8.48)

or interpolating Fourier series is h(t) = 1
N

∑N−1
n=0 h̃ne

2πint/N .

Exercise: Establish Parseval’s theorem

N−1∑
m=1

|hm|2 =
1

N

N−1∑
m=0

|h̃m|2 (8.49)
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The convolution theorem for gm, hm is

ck =
N−1∑
m=0

gmhk−m ⇐⇒ c̃k = g̃kh̃k (8.50)
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9. Characteristics

9.1. Well-posed Cauchy Problems

Solving PDEs depends on the nature of the equations in combination with the boundary
and / or initial data. A Cauchy problem is the PDE for ϕ together with this auxillary
data (i.e. ϕ and its derivatives) specified on a surface (or curve in 2D), which is called
Cauchy data.
A Cauchy problem is well-posed if:

(i) a solution exists

(ii) the solution is unique item the solution depends continuously on auxillary data.

9.2. Method of Characteristics

Consider a parametrised curve C given by (x(S), y(s)) with tangent vector v =
(
dx
ds (s),

dy
ds (s)

)
.

For a function ϕ(x, y) we can define a directional derivative along C

dϕ

ds

∣∣∣∣
C

=
dx(s)

ds

∂ϕ

∂x
+

dy(s)

ds

∂ϕ

∂y
= v · ∇ϕ|C (9.1)

If v · ∇ϕ = 0, then dϕ
ds = 0 and ϕ = constant along C.

Now suppose we have a vector field

u = (α(x, y), β(x, y)) (9.2)

with its family of integral curves C non-intersecting and filling R2 (i.e. at a point (x, y)
the integral curve has tangent u).
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Define a curve B by ((x(t), y(t)) transverse to u, such that its tangent ω =
(
dx(t)
dt , dy(t)dt

)
is nowhere parallel to u. Label each integral curve C of u using t at the intersection
point with B, then use s to parametrise along the curve (i.e. take s = 0 at B).
Our integral curves (x(s, t), y(s, t)) satisfy:

dx

ds
= α(x, y),

dy

ds
= β(x, y) (9.3)

Solve these to find a family of characteristic curves along which t remains constant (i.e.
new coordinates (s, t)).

9.3. Characteristics of a 1st order PDE

Consider 1st order linear PDE

α(x, y)
∂ϕ

∂x
+ β(x, y)

∂ϕ

∂y
= 0 (9.4)

with specified Cauchy data on an initial curve B (x(t), y(t)):

ϕ(x(t), y(t)) = f(t) (9.5)

Start of
lecture 21

Note from (9.1) and (9.2) that

αϕx + βϕy = u · ∇ϕ =
dϕ

ds

∣∣∣∣
C

is the directional derivative along integral curves C of u = (α, β), called the characteristic
curves of the PDE. Since dϕ

ds = αϕx + βϕy = 0 from (9.4), the function ϕ(x, y) will be
constant along the curves C, i.e. the Cauchy data f(t) defined on B at s = 0 will be
propagated constantly along the curve C to give solution

ϕ(s, t) = ϕ(x(s, t), y(s, t)) = f(t) (9.6)
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To obtain ϕ(x, y) transform coordinates from ϕ(t, s) using s = s(x, y), t = t(x, y) (pro-
vided Jacobian J = xtys − xsyt ̸= 0) to finally obtain

ϕ(x, y) = f(t(x, y)) (9.7)

Prescription: To solve (9.4) with (9.5)

(1) Find characteristic equation (9.3) dx
ds = α, dy

ds = β.

(2) Parametrise initial conditions on B (x(t), y(t)) (9.8)

(3) Solve characteristic equation (9.3) to find x(s, t) and y(s, t) subject to (9.8) at s = 0,
x(0, t) = x(t), y(0, t) = y(t).

(4) Solve (9.4) with (9.1)
dϕ

ds
= αϕx + βϕy = 0

(9.6) ϕ(s, t) = f(t) [or γ(s, t) on RHS].

(5) Invert relations s = s(x, y), t = t(x, y).

(6) Change coordinates to obtain (9.7), ϕ(x, y).

Example. Solve exϕx + ϕy = 0 with ϕ(x, 0) = coshx.

(1) Characteristic equations
dx

ds
= ex,

dy

ds
= 1 (∗)

(2) Initial conditions x(t) = t, y(t) = 0 on the x axis (†).

(3) From (∗), dx
ex = ds, −e−x = s + c, y = s + d. At s = 0, x = 0, −e−t = c,

y = 0 = d.
−e−x = e−t − s, y = s

(characteristics).

(4) dϕ
ds = 0 =⇒ ϕ(s, t) = cosh t.

(5) s = y, e−t = y + e−x =⇒ t = − log(y + e−x).

(6) So
ϕ(x, y) = cosh[− log(y + e−x)]

Inhomogeneous 1st order PDE

Want to solve
α(x, y)ϕx + β(x, y)ϕy = γ(x, y) (9.9)
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with Cauchy data ϕ(x(t), y(t)) = f(t) on curve B. The characteristic curves C are
identical to homogeneous case (9.4) but now (9.1) implies

dϕ

ds

∣∣∣∣
C

= u · ∇ϕ = γ(x, y) (9.10)

with ϕ = f(t) at s = 0 on B, i.e. no longer propagating constantly and we must solve
an ODE (9.10). So upgrade point 4 in prescription to integrate ϕ(s, t) before reverting
to ϕ(x, y).

Example. Solve ϕx + 2ϕy = yex with ϕ = sinx on y = x.

(1) Characteristic equation
dx

ds
= 1,

dy

ds
= 2 (∗)

(2) So on y = x, take (x(t), y(t)) = (t, t) (†).

(3) From (∗), x = s+ c, y = 2s+ d. So because of (†), s = 0, x = t = c, y = t = d.

x = s+ t, y = 2s+ t

(4) Solve dϕ
ds = γ = yex = (2s + t)es+t with ϕ = sin t at s = 0. Note d

ds (2se
s) =

2es + 2ses so
ϕ(s, t) = (2s− 2 + t)es+t + const

But at using s = 0 condition we have ϕ(0, t) = sin t = (t− 2)et + const so

ϕ(s, t) = (2s− 2 + t)es+t + sin t+ (2− t)et

(5) Invert s = y − x, t = 2x− y.

(6) So
ϕ(x, y) = (y − 2)ex + (y − 2x+ 2)e2x−y + sin(2x− y)

9.4. Second-order PDE classification

In two dimensions, the general 2nd order linear PDE is

L ≡ a(x, y)
∂2ϕ

∂x2
+2b(x, y)

∂2ϕ

∂x∂y
+c(x, y)

∂2ϕ

∂y2
+d(x, y)

∂ϕ

∂x
+e(x, y)

∂ϕ

∂y
+f(x, y)ϕ(x, y) = 0

The principal part is given by

σp(x, y, kx, ky) ≡ K⊤AK

= (kx ky)

(
a(x, y) b(x, y)
b(x, y) c(x, y)

)(
kx
ky

)
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The PDE is classified by the eigenvalues of A:

� b2 − ac < 0 elliptic (λ1, λ2 same sign)

� b2 − ac > 0 hyperbolic (λ1, λ2 opposite sign)

� b2 − ac parabolic (λ1 or λ2 = 0)

Exercise: show this from det(A− λI), i.e. λ± = 1
2(Tr±

√
Tr2−4 det).

Examples

� Wave equation (3.4)
1

c2
∂2ϕ

∂t2
=
∂2ϕ

∂x2

a = 1
c2
, b = 0, c = −1 is hyperbolic.

� Heat equation (4.3) a = 0, b = 0, c = −D is parabolic.

� Laplace equation (5.1) a = 1, b = 0, c = 1 is elliptic.

Characteristic curves

A curve defined by f(x, y) = 0 will be a characteristic curve if

(fx fy)

(
a b
b c

)(
fx
fy

)
= 0 (9.12)

(generalisation 1st order ∇f · u = 0, u = (α, β)). The curve can be written as y = y(x)
where

∂f

∂x
+
∂f

∂y

dy

dx
= 0 =⇒ fx

fy
= −dy

dx
(9.13)

Substituting into (9.12) we obtain a quadratic with solution

dy

dx
=
b±

√
b2 − ac

a
(9.14)

(exercise).
Start of
lecture 22 � Hyperbolic if b2 − ac > 0, then 2 solutions

� Parabolic if b2 − ac = 0, then 1 solution

� Elliptic if b2 − ac < 0, no real solutions

Transforming to characteristic coordinates (u, v) would set a = c = 0 in (9.11) so the
PDE takes canonical form

∂2ϕ

∂u∂v
+ · · · = 0 (9.15)

where the dots would be lower-order terms ϕu, ϕv, ϕ (Refer to section 9.4 in R Josza
lecture notes).
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Example. Consider
−yϕxx + ϕyy = 0 (∗)

With a = −y, b = 0, c = 1, b2 − ac = y. So hyperbolic for y > 0 (elliptic for y < 0,
parabolic for y = 0). Find characteristics for y > 0 satisfying (9.14)

dy

dx
=
b±

√
b2 − ac

a
± 1

√
y

=⇒ √
ydy = ±dx

=⇒ 2

3
y3/2 ± x = c±

so characteristic curves are

u =
2

3
y3/2 + x, v =

2

3
y3/2 − x

Derivatives are ux = 1, uy = y1/2, vx = −1, vy = y1/2. Hence

ϕx = ϕuux + ϕvvx = ϕu − ϕv

ϕy = y1/2(ϕu + ϕv)

ϕxx = ϕuu − 2ϕuv + ϕvv

ϕyy = y(ϕuu + 2ϕuv + ϕvv) +
1

2y1/2
(ϕu + ϕv)

From (∗)
−yϕxx + ϕyy = y(4ϕuv +

1

2y3/2
(ϕu + ϕv) = 0

Now using u+ v = 4
3y

3/2 and y > 0, the canonical form is

ϕuv +
1

6(u+ v)
(ϕy + ϕv) = 0

9.5. General solution for Wave Equation (D’Alembert)

Solve (3.4)
1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂x2
= 0

with initial conditions

ϕ(x, 0) = f(x), ϕt(x, 0) = g(x) (9.16)

With a = 1
c2
, b = 0, c = −1 the characteristic equation

dx

dt
=

−0±
√
0 + 1

c2

1
c2

= ±c
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so choose u = x− ct and v = x+ Ct, which yields simple canonical form:

∂2ϕ

∂u∂v
= 0 (9.17)

Integrate with respect to u, ∂ϕ∂v = F (v) and then with respect to u

ϕ = G(u) +

∫ v

F (y)dy = G(u) +H(v)

Impose our initial conditions at t = 0 when u = v = x,

ϕ(x, 0) = G(x) +H(x) = f(x) (∗)

ϕt(x, 0) = −cG′(x) + cH ′(x) = g(x) (†)

Differentiating (∗):
G′(x) +H ′(x) = f ′(x) (‡)

So (†) and (‡)
=⇒ H ′(x) =

1

2
(f ′(x) +

1

c
g(x))

Integrate

H(x) =
1

2
(f(x)− f(0)) +

1

2c

∫ x

0
g(y)dy

and from (∗)

G(x) =
1

2
(f(x)− f(0))− 1

2c

∫ x

0
g(y)dy

Putting together:

ϕ(x, t) = G(x− ct) +H(x+ ct)

=
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(y)dy
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10. Solving PDEs with Green’s Functions

10.1. Diffusion equation and Fourier transform

Recall heat equation (4.3) for a conducting wire

∂θ

∂t
(x, t)−D

∂2θ

∂t2
(x, t) = 0 (10.1)

with initial conditions θ(x, 0) = h(x) with θ → 0 as x → ±∞. Take the Fourier
Transform with respect to x using (8.13)

∂

∂t
θ̃(k, t) = −Dk2θ̃(k, t)

Integrate θ̃(k, t) = Ce−Dk
2t with initial conditions θ̃(k, 0) = h̃(k), we have

θ̃(k, t) = h̃(k)e−Dk
2t

Now invert

θ(x, t) =
1

2π

∫ ∞

−∞
h̃(k) e−Dk

2t︸ ︷︷ ︸
Gaussian (8.5)

eikxdk

=
1√
4πDt

∫ ∞

−∞
h(u) exp

(
−(x− u)2

4Dt

)
du by convolution theorem (8.17)

≡
∫ ∞

−∞
h(u)Sd(x− u, t)du (10.2)

where the fundamental solution is

Sd(x, t) =
1√
4πDt

e−x
2/4Dt (10.3)

(Fourier transform is S̃d(k, t) = e−Dk
2t). Also known as diffusion kernel or source.

Note. With localised initial conditions θ(x, 0) = θ0δ(x) then

θ(x, t) = θ0Sd(x, t) =
θ0√
4πDt

e−η
2

(10.4)

where η = x
2
√
Dt

is the similarity parameter. Initial condition t ≥ 0 spreads smoothly

as a Gaussian.
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Example (Gaussian pulse). Suppose initially

f(x) =

√
a

π
θ0e

−ax2

θ(x, t) =
θ0
√
a√

4π2Dt

∫
exp

[
−au2 − (x− u)2

4Dt

]
du

=
θ0
√
a√

4π2Dt

∫ ∞

−∞
exp

[
(1 + 4aDt)u2 − 2xu+ x2

4Dt

]
du

=
θ0
√
a√

4π2Dt

∫ ∞

−∞
exp

[
−(1 + 4aDt)

4Dt

(
u− x

1 + 4Dt

)2
]
du× exp

[
−ax2

1 + 4aDt

]
= θ0

√
a

π(1 + 4Dt)
exp

[
−ax2

1 + 4aDt

]
(10.5)

Here, width spreads as standard deviation ∝
√
t with area constant (i.e. heat energy

conserved).

Start of
lecture 23 10.2. Forced heat (diffusion) equation

Consider
∂

∂t
θ(x, t)−D

∂2

∂x2
θ(x, t) = f(x, t) (10.6)

with homogeneous boundary conditions θ(x, 0) = 0. Construct a 2D Green’s function
G(x, t; ξ, τ) such that

∂G

∂t
−D

∂2G

∂x2
= δ(x, ξ)δ(t− τ) (10.7)

with G(x, 0; ξ, τ) = 0. Take Fourier Transform with respect to x using (8.23)

∂G̃

∂t
+Dk2G̃ = e−ikξδ(t− τ)

Using multiplicative factor eDk
2t

∂

∂t
[eDk

2tG̃] = eikξ+Dk
2tδ(t− τ)

Integrate with respect to t using G = 0, at t = 0

eDk
2tG̃ = e−ikξ

∫ t

0
eDk

2t′δ(t′ − τ)dt′ by (6.7)

= e−ikξeDk
2τH(t− τ)
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G(x, t; ξ, τ) = H(t− τ)e−ikξe−Dk
2(t−τ)

So inverting we get Green’s function

G(x, t; ξ, τ) =
H(t− τ)

2π

∫ ∞

−∞
e−k(x−ξ)e−Dk

2(t−τ)dk

=
H(t′)

2π

∫ ∞

−∞
eikx

′
e−Dk

2t′dk t′ = t− τ, x′ = x− ξ

=
H(t′)√
4πDt′

e−x
2/4Dt′ see section 8.1

= H(t− τ)Sd(x− ξ), t− τ) (10.8)

where Sd is the fundamental solution (10.3). General solution is

θ(x, t) =

∫ ∞

0

∫ ∞

−∞
G(x, t; ξ, τ)f(ξ, τ)dξdτ

=

∫ t

0

∫ ∞

−∞
f(u, τ)Sd(x− u, t− τ)dudτ (10.9)

This is an example of Duhamel’s principle relating (i) solution of forced PDE with
homogeneous boundary conditions (10.6) to (ii) solutions of homogeneous PDE with
inhomogeneous boundary conditions (10.1).
Recall solutions of (10.1) with initial conditions at t = τ

θ(x, t) =

∫ ∞

−∞
f(u)Sd(x− u, t− τ)du (t > τ)

So forcing term f(x, t) at t = τ acts as an initial condition for subsequential evolution.
The integral (10.9) is a superposition of all these initial condition effects for 0 < τ < t.

Duhamel’s principle

Let L be a linear differential operator involving no time derivatives, and D a spatial
domain D in Rn. Let P sf denote the solution to the homogeneous problem:

ut − Lu = 0 (x, t) ∈ D × (s,∞)

u = 0 on ∂D

u(x, s) = f(x, s) x ∈ D

Then the solution to the forced problem:
ut − Lu = 0 (x, t) ∈ D × (0,∞)

u = 0 on ∂D

u(x, 0) = 0 x ∈ D

is given by

u(x, t) =

∫ t

0
(P sf)(x, t)ds
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10.3. Forced wave equation

Consider
∂2ϕ

∂t2
− c2

∂2ϕ

∂x2
= f(x, t) (10.10)

with ϕ(x, 0) = 0, ϕt(x, 0) = 0. Construct Green’s function

∂2G

∂t2
− c2

∂2G

∂x2
= δ(x− ξ)δ(t− τ)

with G = 0, Gt = 0 at t = 0. Take Fourier transform with respect to x

∂2G̃

∂t2
+ c2k2G̃ = e−ikξδ(t− τ)

Recall section 7.4 for IVP Green’s function (7.26)

G̃ =

{
0 t < τ

e−ikξ sin kc(t−τ)kc t > τ
= e−ikξ

sin kc(t− τ)

kc
H(t− τ)

Invert Fourier Transform

G(x, t; ξ, τ) =

∫ ∞

−∞

eik

A︷ ︸︸ ︷
(x− ξ) sin k

B︷ ︸︸ ︷
c(t− τ)

k
dk

=
H(t− τ)

2πc
· 2
∫ ∞

0

cos kA sin kB

k
dk

=
H(t− τ)

2πc

∫ ∞

0

sin k(A+B)− sin(A−B)

k
dk

=
H(t− τ)

4c
[sgn(A+B)− sgn(A−B)]

=
H(t− τ)

4c
[2H(B − |A|)]

Now withH(t−τ) =⇒ B = c(t−τ) > 0 so only non-zero if |A| < B, i.e. |x−ξ| < c(t−τ).
So Green’s function or causal fundamental solution is

G(x, t; ξ, τ) =
1

2c
H(c(t− τ)− |x− ξ|) (10.11)
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The solution is

ϕ(x, t) =

∫ ∞

0

∫ ∞

−∞
f(ξ, τ)G(x, t; ξ, τ)dξdτ

=
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
f(ξ, τ)dξdτ (10.12)

Exercise: relation (10.12) to D’Alembert’s solution with initial conditions (9.18) at t = 0,
ϕ = 0, ϕt = g(x) as an example of Duhamel’s principle.

10.4. Poisson’s Equation

∇2ϕ = −ρ(x) (10.13)

on domain D with Dirichlet boundary conditions ϕ = 0 on ∂D.
Fundamental solution: The δ(x) function in R3 has the following properties:

δ(x− x′) = 0, ∀x ̸= x′

∫
∂D
δ(x− x′)dx =

{
1 x′ ∈ D
0 otherwise

(10.14)

Sampling property ∫
D
f(x)δ(x− x′)dx = f(x′)

The free-sapce Green’s function is defined to be

∇2G(x;x′) = δ(x− x′) (10.15)

with homogeneous boundary conditions on R3, G→ 0 as x → ∞.

This is spherically symmetric about x′, so the fundamental solution can only depend on
the scalar distance G(x;x′) = G(|x−x′|) = G(r). WLOG x′ = 0. Integrate (10.15) over
ball B radius r around x′ = 0.

Start of
lecture 24
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LHS =

∫
B
∇2Gdx

=

∫
S
∇G · ndS

= 4πr2
dG

dr

RHS =

∫
B
δ(x)dx

= 1 by (10.14)

So
dG

dr
=

1

4πr2
=⇒ G = − 1

4πr
+ c

But G→ 0 as r → ∞, so c = 0. Free-space Green’s function:

G(x;x′) = − 1

4π|x− x′|
(10.16)

General solution in R3

ϕ(x) =
1

4π

∫ ∞

−∞

ρ(x′)

|x− x′|
dx′

Exercise: Similarly in R2 derive

G2D(x;x
′) =

1

2π
log(|x− x′|) + c2

Green’s Identities

Consider two scalar functions ϕ, φ twice differentiable on D.∫
D
∇ · (φ∇ψ)dx =

∫
D
(ϕ∇2ϕ+∇ϕ · ∇ψ)dx

=

∫
∂D
ϕ∇ψ · n̂dS (10.17)

This is Green’s first identity ϕ ↔ ψ and subtract from (10.17), then Green’s second
identity ∫

∂D

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
dS =

∫
D
(ϕ∇2ψ − ψ∇2ϕ)dx (10.18)

Now consider a small spherical ball Bε (radius ε) about x (WLOG x′ = 0) Take ϕ in
(10.18) such that ∇2ϕ = −ρ(x) and ψ = G(x;x′) (∇2G = δ(x− x′))
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RHS =

∫
D−Bε

(ϕ∇2G︸︷︷︸
=0

−G∇2ϕ︸︷︷︸
=ρ

)dx

=

∫
D−Bε

Gρdx

LHS =

∫
∂D

(
ϕ
∂G

∂n
−G

∂ϕ

∂n

)
dS +

∫
Sε

(
ϕ
∂G

∂n
−G

∂ϕ

∂n

)
︸ ︷︷ ︸

(∗)

dS

Second integral on small sphere Sε, ε→ 0 (outward normal on Sε points in − direction)∫
Sε

(∗)dS =

(
ϕ

(
− 1

4πε2

)
− 1

4πε2
∂ϕ

∂r

)
4πε2 = −ϕ(0)

(ϕ denotes the average value, because we are on Sε) Combining (with arbitrary x′ now)
we get Green’s third identity

ϕ(x′) =

∫
D
G(x;x′)(−ρ(x))dx+

∫
∂D

(
ϕ(x)

∂G

∂n
(x;x′)−G(x;x′)

∂ϕ

∂n
(x)

)
dS (10.19)

Dirichlet Green’s function:
Solve ∇2ϕ = −ρ on D with inhomogeneous boundary conditions ϕ(x) = h(x) on ∂D.
Dirichlet Green’s function satisfies

(i) ∇2G(x;x′) = 0, ∀x ̸= x′

(ii) G(x;x′) = 0 on ∂D.

(iii) G(x;x′) = GFS(x;x
′) +H(x;x′) with ∇2H(x;x′) = 0 ∀x ∈ D.
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Green’s second identity (10.18) with ∇2ϕ = −ρ, ∇2H = 0∫
∂D

(
ϕ
∂H

∂n
−H

∂ϕ

∂n

)
dS =

∫
D
Hρdx (�)

Now we use GFS = G−H in Green’s third identity (10.19)

ϕ(x′) =

∫
D
(G−H)(−ρ)dx+

∫
∂D

(
ϕ
∂(G−H)

∂n
− (G−H)

∂ϕ

∂n

)
dS

Subtract H terms above in (†) (G = 0, ϕ = h on ∂D)

ϕ(x′) =

∫
D
G(x;x′)(−ρ(x))dx+

∫
∂D
h(x)

∂G

∂n
(x;x′)dS (10.20)

Exercise: Use (10.18) to show that GF is symmetric (third identity), G(x;x′) = G(x′;xbf),
∀x ̸= x′.

For Neumann BCs specifying
∂ϕ

∂n
= K(x)

on ∂D we have

ϕ(x′) =

∫
∂D
G(x;x′)(−ρ(x))dx+

∫
∂D
G(x;x′)(−K(x))dS

(see RJ lecture notes)

10.5. Method of images

For symmetric domains D we can construct Green’s functions with G = 0 on ∂D by
cancelling the Boundary non-zero values by placing “an image” of Green’s function
outside D.

Laplace’s equation on half-space

Solve ∇2ϕ = 0 on D = {(x, y, z) : z > 0} with ϕ(x, y, z = 0) = h(x, y) and ϕ→ 0 as x →
∞. Now fundamental solution G(x;x′) → 0 as |x → ∞, but G ̸= 0 at z = 0. So for G at

x′ = (x′, y′, z′) subtract “image”G at x′′ = (x′, y′,−z′). G(x;x′) = − 1
4π|−x′|−

(
1

4π|x−x′′|

)
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G(x;x; ) = − 1

4π
√
(x− x′)2 + (y − y′)2 + (z − z′)2

+
1

4π
√
(x− x′)2 + (y − y′)2 + (z − z′)2

= 0 if z = 0, i.e. satisfies the Dirichlet BCs on all ∂D. Contribution from the Boundary

∂G

∂n

∣∣∣∣
z=0

= −∂G
∂z

∣∣∣∣
z=0

= − 1

4π

(
z − z′

|x− x′|3
− z + z′

|x− x′′|3

)∣∣∣∣
z=0

=
z′

2π
((x− x′)2 + (y − y′)2 + z′2)−3/2 (10.22)

Solution is then from (10.20) (no sources)

ϕ(x′, y′, z′) =
z′

2π

∫ ∞

−∞

∫ ∞

−∞
((x− x′)2 + (y − y′)2 + z′2)−3/2h(x, y)dxdy (10.23)

Wave equation for x > 0

∂2ϕ

∂t2
− c2

∂2ϕ

∂n2
= f(x, t)

BCs ϕ(0, t) = 0 Dirichlet BCs. Create matching Green’s function from (10.11) with
opposite sign centred at x = −ξ

G(x, t; ξ, τ) =
1

2c
H(c(t− τ)− |x− ξ|)− 1

2c
H(c(t− τ)− |x+ ξ|)

Similarly, for a homogeneous Neumann BC at x = 0 ∂G
∂n

∣∣ |x=0 = 0 for all t the appropriate
Green’s function is

G(x, t; ξ, τ) =
H(c(t− τ)− |x− ξ|)

2c
+
H(c(t− τ)− |x+ ξ|)

2c
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Note. Image has the same sign.

For small x > 0, | − ξ| = ξ − x, |x+ ξ| = x+ ξ. For all t

∂G

∂n

∣∣∣∣
x=0

=
1

2c
(δ(c(t− τ)− |x− ξ|) + δ(c(t− τ)− |x+ ξ|)(−1))x=0 = 0
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