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1. Fourier Series

1.1. Periodic Functions

A function f(z) is periodic if
fatT)=fl@) Ve

where T is the period.

e

Example. Simple harmonic motion
y = Asinwt

where A is amplitude and period T' = %’r with angular frequency w (frequency = %)
Properties of sin and cosine functions

Consider the set of functions

gn(x) = cos n—zx, hp(z) = sin sz

which are periodic on the interval 0 <n > 00, 0 < z < 2L). (Note: Period T' = 2L).
Recall the identities:

cos Acos B = %(COS(A — B) 4 cos(A + B))

sin Asin B = %(COS(A — B) — cos(A+ B))
1

sin Acos B = i(sin(A — B) +sin(A + B))

Define an inner product for two periodic functions f, g on the interval 0 < x < 2L by:

2L

(f.9) = ; f(x)g(x)dx (%)



For n # m,
2L
(hpy hom) = /0 sin Tx sin m;rxdx
2L
1 _
= 2 (COS ((n z’z)waz) —co <(n—|—£n)7rx)> dx
=0
ittt
STUFF —
For n = m,
2L
nmx
(hpy hy) = /0 sin de
1 2k 2
:2/0 (1—005 Tr;x)dx
=L (n#0)
Hence,

(1.1)

Similarly (exercise)

2L
nww mnx Lénm Vn,m#0
, = COS —— COS dz = 1.2
(G gm) /0 L L {QLéon m=0 (12)
2L
(hny Gm) = / sin 7% cos "4 =0 v n,m (1.3)
0 L L
1.2. Definition of Fourier Series
We can express any ‘well-behaved’ periodic function f(z) with period 2L as
1 > nmwT > nwe
flz) = 2a0+;ancosL +;bnsinL (1.4)

where a,, b, are constants such that the right hand side is convergent for all x where f
is continuous. At a discontinuity z, the Fourier Series approaches the midpoint (replace
left hand side)

S + f)



Fourier coefficients

Consider
mnx

2L
(o). @) = [ sin ™ (o)
= Lb,,

by orthogonal relation (1.1-1.3). Hence we find

1 [2L
by, = / f(x)sin LU
L/ L
ol (1.5)
1 F(x) cos nTe o
a, = — xT —dadx
" LJ L
p
Note. (i) a, includes n = 0, since 1ag is the average (f(z)) = 5+ 02L f(z)dx
(ii) Range of integration is one period, so
2L I
0 —
(iii) Think of Fourier series (1.4) as a decomposition into harmonics. Simplest
Fourier series are sine and cosine functions: for example pure mode sin %Tx,
has b3 =1, b, = 0 for all n # 3.




Example (Sawtooth). Consider f(x) =z for —L < z < L and periodic elsewhere:

16

Here, we have

1 L
an = / xcos—nﬂxdxzo
L L

for all n, since the resulting function is odd. However:

) L
b, = / T sin @dx
0

L L
nrx1Ll 2 15 nwT
= —— [a: cos —] — cos —dz
nmw 2 lo nm)jy L
2L 2L .
= ———cosnm + sin nmw
nm (nm)?
2L
S — 1 n+1
m( )
So the sawtooth Fourier series is
2L S (=)™ | nax
f(z) = — Z ——sin—
n=1
2L Tr 1 2rx o\ 1 3rx
= —|(sin— — —sin — + —sin — —
P A R A ey )

which is slowly convergent.

P
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1.3. The Dirichlet Conditions (Fourier’s theorem)
Sufficiency conditions for a “well-behaved” function to have a unique Fourier Series (1.4):

If f(x) is a bounded periodic function (period 2L) with a finite number of minima,
maxima and discontinuities in 0 < x < 2L, then the Fourier Series (1.4-5) converges to
f(x) at all points where f is continuous; at discontinuities the series converges to the

midpoint 3(f(z4) + f(z-)).

( I
Note. e Weak conditions (in contrast to Taylor series) but pathological func-
1

T

tions are excluded, such as %, sin

fz) =

0 rational
1 irrational

e Converse is not true (consider sin% which has a Fourier series)

e Proof is difficult (see Jeffrey’s & Jeffrey’s)

Theorem (Convergence of Fourier series). If f(z) has continuous derivatives up
to the p-th derivative which is discontinuous, then the Fourier series coefficients
converge as 6(n~®*+D) as n — co.

Example (p = 0). “Square wave” (Example sheet 1, Q5)

1 0<r<l1
€T pr
1(@) {—1 -1<z<0
then Fourier series
2. sin(2m — 1)z
fa)=43 (L.7)

10
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Example (p = 1). General “see-saw” wave. If

T

m

) 0<w<¢
) (<zxz<1

Iy

8

(1-
_Jed-
J@) =920
(-

x €) —£<x<0
E(-1—z) —-1<z<¢
Show that the Fourier series is
sin nwé sinnmx
=%) _ 1.8
f(a Zl ()2 (1.8)

For & = % show

o0
_ 5 Z Py sin(2m — 1)mx
— ((2m — 1)m)?

Example (p = 2). Take

sr(l—2z) 0<z<l1

sx(l+z) —-1<z<0

(g
—~
S

I

——

Ol D[

Show Fourier series is

sin(2m — 1 )X
) =4 1.9
Z 2m—1 ( )

Example (p = 3). f(z) = (1 — 2%)? with Fourier series a,, = 0 (#)

Integration of Fourier Series

It is always valid to integrate the Fourier series (1.4) of f(z) term-by-term to obtain

= /_xL f(x)dz

because F'(z) satisfies Dirichlet conditions if f(z) does. (for example discontinuities in
f become continuous in F(z)).

Differentiation of Fourier Series

Take care with term-by-term differentiation.

11



Example (Counter example). Take “square wave” Fourier series (1.7) and find

I () Ly Z cos(2m — 1)z
m=1

which is unbounded!

Theorem. If f(x) is continuous and satisfies Dirichlet conditions and f’(x) satisfies
Dirichlet conditions, then f’(z) can be found by term-by-term differentiation of
Fourier series (1.4) of f(x).

Exercise: Differentiate “see-saw” (1.8) with £ = 1, to get offset “square-wave” (1.7) (i.e.
T+ 3).

1.4. Parseval’s Theorem

Relation between integral of the square of a function and the sum of the squares of the
Fourier coefficients:

/ )P = / e
_ /OQL "

by orthogonal relations (1.1-3).

2
1 nmwx . nrx
§ao —i—%:ancosL + En:bnsle

1 nmwx . o NTX
Za% + Zai cos? I + Zb% sin? <
n n

2L
/0 [f(2)]*dz = L (1.10)

1 [e.9]
500+ D (an +b7)
n=1

Also called the completeness relation because LHS > RH S if any basis coefficients are
missing.

Example. “Sawtooth” wave f(x) = x on —L < x < L with Fourier series (1.6)

L 2
LHS = / 22dr = 213
s 3

o0 [e.@]
AL? AP 1
RHSZLZn%z_ 2 n2
n=1 n=1
(note that we can combine these to notice that > 7, 7712 = 7%2!). See Example sheet

1, Q3

12



Remark. Parseval’s theorem for functions (f, f) = ||f||? is the same as Pythagoras
for vectors (v,v) = |[v|? = 22 + % + 22 (the norm).

Start of
lecture 3 1.5. Alternative Fourier Series

Half-range series

Consider f(z) defined only on 0 < 2 < L. Then we can extend its range over —L < x < L
in two simple ways:

(i) Require it to be odd (f(—xz) = —f(x)), with period 2L, Then a,, = 0 because cos
is even, and

9 (L
= L/o f(z)sin ?dx (1.11)
This is a Fourier sine series, for example the saw tooth (1.6).

(ii) Require it to be even f(—x) = f(x). Then b, = 0 and
9 [L
- L/o £(z) cos”%””dm (1.12)
for example f(z) = (1 — 2?)? (Example sheet 1 question 1).

Complex Representation

Recall: .
cos % = 5(@Z'”W/L + e—inm/L)
onmx 1 P—
S = gl ¢ )

So Fourier series (1.4) becomes:

1 s >
:§a0+ZanCOS?+ansin$
,ao_}_ Z —Zb znwz/L+ Zn_ 100(an+b ) —inmx/L

Z eme ™/ L (1.13)

m=—0Q

Form >0, m=n, ¢, = %(an—ibn). For m = 0, ¢ = %ao. For m < 0, m = —n,
Cm = %(a,m + ib_,). Equivalently

= LL /_LL f(x)e ™2/ Ly (1.14)

13
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Our inner product is upgraded to

)= [ g

using complex conjugate f*. Orthogonal:

L
/ e—zmwz/Lemﬁx/L = 2L6mn (115)
_L

Parseval’s:

/ C@kdr =2 S el
L

- m=—00

1.6. Some Fourier Series Motivations
Self-adjoint matrices
Suppose u, v are complex IN-vectors, with inner product
(u,v) =u'v (1.16)

(u' means complex conjugate and transpose, i.e. ul = (u*)"). Let A be an N x N
matrix which is self adjoint (or Hermitian). Note that by simple algebra, this property
means that (Au,v) = (u, Av) for all u,v.

The eigenvalues of A are A\, and satisfy
Av, = \, v, (1.17)
(where v,, are eigenvectors). The eigenvalues have the following properties:

(i) The eigenvalues are real (A = \,).

(ii) If Ay, # Ay, then the eigenvectors are orthogonal

(Vi, Vin) =0
(iii) If we rescale our eigenvectors to be unit length then {vi,vy,..., vy} are an or-
thonormal basis.

Given b we can solve for x given

Ax=b (1.18)

Express

14



where b,, are knowns. Seek a solution

N
X = E CnVn
n=1

where ¢, are unknowns. Substitute into (1.18):

N N
Ax = E Ac, vy, = E CnAnVn
n=1 n=1

N
b= Z bV,
n=1

equate and use orthogonality

bn,
CpAp =b, =— ¢ = —
So the solution is
b
P
Solving inhomogeneous ODE with Fourier series
We wish to find y(z) given f(z) for
_ &y
Ly = a2 f(x)

(the minus sign is by convention, and f(z) is the driving force / source).

conditions:

The related eigenvalue problem is

Lyn = MYn

with the same boundary conditions. Has eigenfunctions and eigenvalues

= ("2) au= (2

(verify this, also self adjoins ODE with orthogonal eigenfunctions).

Seek solution as half range sine series. Try

(o9}
. nmx
y(x) = nZ:l Cn SI0 —

15

(1.19)

(1.20)

Boundary

(1.21)



where ¢, are unknowns. Expand

[e.e]
f(z) = ansm?
n=1
where b, are knowns. Using (1.11)
9 rL
bn/ f(x)sin L
L Jo

Substitute into (1.20):

[oe)
nmwT NnT\2 . NTL want . nmx
=42 <E cnsm> = g Cn (T) SIHT = E bnsmT

By orthogonality (1.1) we have

c (E)Q =b, — ¢, = bn
and solution is
@)= (::)2 sin ? =y i—"yn (1.22)
n I n M

Example (“square wave” source). L = 1. Define f(x) = 1,0 < x < 1, odd function.
This has Fourier series (1.7)

stm—lﬂ'm
) =4
Z mel

So the solution (1.22) should be
bn sin(2m — 1 Nug
=y 2y, =4
0= 2 5 =4 Gm —
n
(n =2m — 1). But this is the Fourier series (1.9) for

y(x) = %x(l — ) (1.23)

Start of
lecture 4
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2. Sturm-Liouville Theory

2.1. Review of second-order linear ODEs

We wish to solve general inhomogeneous ODE

Ly = a(x)y” + B(x)y +(y)y = f(x) (2.1)

22

has two independent solutions y;(x), ya(z) (besides trivial y = 0), with the com-
plementary function y.(z) the general solution of (2.2):

e The homogeneous equation

Ye(x) = Ay1(x) + Bya(x) (2.3)
where A, B are arbitrary constants.

e The inhomogeneous equation
Ly = f() (2.4)

(i.e. the driving force or source term f(z)) has a special solution called the partic-
ular integral y,. The general solution of (2.4) is then

y(@) = yp(x) + Ay (x) + Byz(z) (2.5)

e Two boundary or initial data are required to determine A, B.

(a) Boundary conditions (BC) Solve (2.4) on a < z < b given y at x = a,b
(Dirichlet) or specify ¢’ at © = a,b (Neumann) or mixed y + ky" etc. Homo-
geneous boundary conditions are often assumed, y(a) = y(b) = 0 to admit the
trivial solution y = 0. Can be achieved by adding complementary function
(2.3).

y=y+ Ay1+ By
such that g(a) = g(b) = 0.

(b) Alternatively we may be given initial conditions Solve (2.4) for > a, given
/
Y,y at x = a.

General eigenvalue problem

To solve (2.1) employing eigenfunction expansions (like Fourier series (1.22)) we must
solve the related eigenvalue problem

a(z)y” + B(x)y +~(x)y = —Ap(x)y (2.6)

with specified boundary conditions. This form often occurs in higher dimensions after
seperation of variables.

17



2.2. Self-adjoint operators

N
Definition (Inner product). For two (complex-valued) functions f,g on a < x <b
define

b
(f,g) = / 1*(@)g()dz

(later f,g assumed to be real so we will drop the complex conjugate part). The

norm of fis |[f[ = v/(f, f)-

The Sturm-Liouville equation

The eigenvalue problem (2.6) greatly simplifies if £ is self-adjoint, i.e. it can be expressed
in Sturm-Liouville form

Ly=—(py) +qy= Iy (2.7)

where w(z) is non-negative.where the weight function w(z) is non-negative w(x) > 0 for
all z.

Converting to Sturm-Liouville form: Multiply (2.6) by an integrating factor F'(x) to find
Fay" + Fpy' + Fyy = —AFpy

d
o Fay) = Flay = Fa'y/ + FBy' + Fyy = =AFpy

We want to eliminate the ¢’ term, so we want

Fa=FB-d) = Z:B;O/
S0
F(x)—exp(/ B;ad) (2.8)

and (Fay')' + Fyy = —AFpy, so p(z) = F(z)a(z), ¢(z) = —F(z)y(z) and w(z) =
F(x)p(x) (note F(z) > 0).

Example. The Hermite equation for simple harmonic motion:
y" — 22y’ +2ny =0

We want to put into Sturm-Liouville form (2.7). Comparing to (2.6) we have a = 1,
B =—2x,v=0, A\p =2n. By (2.8),

T _2 _
F =exp (/ 1‘1de) — e

Ly=—(ey) =2ne™y (2.9)

Hence

18



Definition (Self-adjoint differential operator). L is self-adjoint on a < x < b for all
pairs of functions y1, yo satisfying appropriate boundary conditions if

(Y1, Ly2) = (Ly1,y2)

or

b b
/yT(w)EyQ(fE)de:/ (Ly1(2))" y2(x)dx (2.10)

Boundary conditions: substitute Sturm-Liouville form (2.7) in (2.10) to find
b

(1, Ly2) — (Lyr, y2) = / [~y1(pya)" + yrayz + y2(pyh)’ — yeqyilde
a

b
=/a [=(py135)" + (py1y2)|dz
= [=py1vh + py1vels
and we want this to be 0 for given boundary conditions at x = a = b.
Self-adjoint compatible boundary conditions include:

e Homogeneous y(a) = y(b) = 0 or y/(a) = y/(b) = 0 or mixed y + ky' = 0 (note
regular Sturm-Liouville = homogeneous boundary conditions)

e Periodic y(a) = y(b)
e Singular points of ODE p(a) = p(b) =0

e Combinations of the above.

2.3. Properties of self-adjoint operators

(1) Eigenvalues A, are real.
(2) Eigenfunctions y,, are orthogonal.

(3) Eigenfunctions y, form a complete set.

Start of
lecture 5 Real eigenvalues

Given
LYn = \pWin (2.12)

take complex conjugate (note both £ and w are real):

Ly, = AWy,

19
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Consider
b b
/wm%—w%mm:uwmw/W%wm
=0

(the equals zero comes from the fact that we know that the original expression was zero,
because L is self-adjoint)
But the right hand side is

/w\ynPdw >0

SO A\p, = A} so Ay, is real. We will assume that y,, are real.

Orthogonal eigenfunctions

Consider (2.12) with a second eigenvalue A, # \y,.
LYm = AMnwim
then from (2.10)

b
0= / (ym»cyn - yn['ym)dx

b
=(An— )\m)/ WYnYmdx

But since An, # An,

b
/ WYynymdr =0 Vn #m (2.13)

SO Yn, Ym are orthogonal with respect to w(z) on the interval a < x < b.
Define the inner product with respect to weight function w(z) on a < x <b as

b
()= [ wla)f*(@gla)de = (wh.g) = {f.w9) (214)
so orthogonal relation (2.13) becomes

(YnsYm)w =0 Vn#m (2.15)

Eigenfunction expansions

Completeness (not proven here) implies we can approximate any “well-behaved” function
f(x) on a < x < b by the series

f@) =" anyn(z) (2.16)
n=1

20



To find expansion coefficients consider

b oo b
[ s (@) =3 an [ s
a n=1 a
b
:am/ wy? dx

b
o @@ (@) _

[P w(x)y2(z)de

Figenfunctions normalized for convenience. Unit norm has

by orthogonality. Hence

Yo(a)= — @
(fab wy%dx)

0 (Y, i) = Opm (2.18) are orthogonal with f(z) = > "7 | A,Y,(z) and A4, = f: wY, fdx.

D=

Exemplar 1: Recall Fourier series (1.4) in Sturm Liouville form

Ly, = — 2= AnYn (1.21)
with A\, = (%)2 and orthogonality relations (1.1-3).

2.4. Completeness and Parseval’s identity

Consider

. 2
/b [f(:r:) — Z anyn] wdz = /b [fQ —2f Z nln + Z a%yi] wdz  (by orthogonality)
a n=1
= / wfide — Z / wyn

because by (2.17) fab fynwdx = anf wy2dx. If the eigenfunctions are complete then
series converges

/a w e = Z /wyn (2.19)
= Z A?
n=1

for unit norm Y,,.

21



Theorem (Bessel’s inequality). If some eigenfunctions are missing, then

b 00
/ wf2dx > ZA,%
@ n=1

Definition (Mean square error).

b
EN = / w[f(z) — Sy(z)]?dz —= 0

Define partial sum
N
SN(£) = Z anYn (2.20)
n=1

with f(z) = limy_00 Sn(x). The error in the partial sum (2.20) is minimised by a,
defined in (2.19) for the N = oo expansion:

[ el - X onas]

a

Oay, _f%

88]\7 0 [

b N
= _2/ ynw[f - Z anyndx
a n=1

b
. / (@f g — anwy?)da
=0

if a,, given by (2.17). So a,, is the “best possible choice” (assuming you care about the
mean square error).

2.5. Exemplar 2: Legendre polynomials

Consider Legendre’s equation arising from spherical polars = cos @
(1—22)y" — 22y +  \y=0 (2.21)

sop=1-22 ¢=0,w=1l.on the interval —1 < 2 < 1 with y finite at = 1 (regular
singular point of ODE). Equation (2.21) is in Sturm Liouville form (2.7) with

p=1—-22% ¢=0, w=1

How to solve? Seek a power series about x = 0:

Y= Z cnx”
n

22
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Substitute

(1—2?) Zn(n — 1)z — Qchnxn_l + )\chx” =0
n

Equate powers of x":
(n+2)(n+1)cpp2 —n(n — 1), — 2ne, + Aep, =0
nn+1)—A
(n+Dn+2)™"

so specifying ¢, ¢1 gives 2 independent solutions (near z = 0).
A 6—N)(=X
(=X) 5, (6= >x4+,,,]

— Cpio = (2.22)

Yeven = C0 |:1 + 91 T+ 41

2—-A
Yodd = €1 [x-k( 3l )x3+~l

But as n — oo, “421 so there is a radius of convergence |z| < 1 (geometric series), i.e.
divergent at x = £1. What can be done? Finiteness. ..

Take A = [(I + 1) with [ integer, then one or other series terminates, i.e. ¢, = 0 for all
n > 1+ 2. These Legendre polynomials Pj(x) are coefficients of (2.21) on —1 <z <1
with normalisation convention P;(1) = 1.

everl.

{ Note. Pj(x) has [ zeros and Fj(z) is odd if [ is odd, and if [ is even then Pj(z) is }

Orthogonality:
1
/ P,Ppdz=0 Vm#n
—1
Normalization: .
2
/ Pldz = (2.24)
1 2n+1

Prove with Rodriques formula:

(Example sheet 2, Q5)
Generating function (see later):

= 1
P(o)t" = ———— 2.23a
nz;) O = (2:23)
1 2 3 2\2

=14 5 (20t — %) + (20t = £9)7 4 -

_ 1 2 2

=1+ =z t+§(3x -t 4

PO P1 N——

Py
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Exercise: Verify P3 and find P;. (binomial expansion).
Recursion relations:

(I+ 1) Pya(z) = 20+ DaP(z) — P (z)

21+ D)P() = (P (@)~ P (@)

Eigenfunction expansions: Any function f(x) on —1 < z <1 can be expressed as

r) =Y aP() (2.25)
=0

where

2z+1/ F2)Pie (2.26)

Exercise: verify f(z) = $2% — 3 = Py(z) + 5P (z) using (2.26).

2.6. Sturm Liouville theory and inhomogeneous ODEs

Consider the inhomogeneous (with homogeneous boundary conditions) on a < z < b:
Ly = f(z) =w(z)F(x) (2.27)
Given eigenfunctions y, (x) satisfying

'Cyn = Anwyn

= Z Cnyn(x)
= Z anyn(x)

where a, are known and ¢,, are unknown. We use

fb wFy,dz
[P arids

Ay =

Substituting into (2.27):
Ly=L Z CnlYn = Z CnAnWYn = W Z nlYn
n n n

By orthogonality (2.13), ¢y A, = ay, or ¢, = )\” so solution is

Z r” (2.28)

24



(assuming A, # 0 for all n). Recall Fourier series (1.22) )
Generalisation: driving forces often induce a linear response term Awy.

L oy = f(z) (2.29)

where X is fixed. The solution (2.28) becomes

() = ) (2.30)
y T; Y

(again X # A, for all n).

Integral solution and Green’s function

Recall (2.28)

[e.9]

y(x) =" %:yn(w)

n=1

G(z,8)

b
- / G, €) () (2.31)

where

G(l’,g) — Z yn()?’)i/}?(ﬁ)
n=1 Ll

is eigenfunction expansion of the Green’s function.
G(z,€) depends only on £ and boundary conditions and not forcing term f(x) - it acts
like an inverse operator

L= / déG(z, €)

(recall matrix Ax =b = x = A"'b)
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3. The Wave Equation

3.1. Waves on an elastic string

Consider small displacements on a stretched string with fixed ends at x =0 and x = L,
with boundary conditions

1y(0,) = y(L,t) =0 (3.1)
and initial conditions
dy
y(2,0) = p(z) and —=-(x,0) = q(2) (3.2)

Derive equation of motion: Balance forces on segment (z,z + dz) and take dz — 0.

Assume ‘g—g‘ < 1 for all z, so 01,0, are small.

e Resolve in z direction:
Ty cos 1 = T cos 0o

but cosf =1— %92+- -+ 8017 ~ Ty =T. Hence, tension T is constant independent
2
of x up to 0 (‘gg‘ )

e Resolve in y direction

FT = T2 sin 92 — T2 sin 91

zT(ay —@ >
0z |, 5. O],
0%y

27
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Thus

F=ma
0%y
= (N&E)@
=Fr+F,
0%y
= T@&U — gudx
where p is the mass per unit length (linear mass density). Define the wave speed

- /T
c= \/: (constant) and we find

0%y B T 0%y _ 282y

— = — - — — 3.3
o2 p Ox? I=C 9,279 (3:3)
Assume gravity is negligible then we have the 1 dimensional wave equation (3 =
CQy”):
10% 6?
-9y _9Y (3.4)
2 ot2  Ox?

3.2. Separation of variables

We wish to solve wave equation (3.4) subject to boundary conditions (3.1) and initial
conditions (3.2).
Consider possible solution of separable form (ansatz):

y(z,t) = X (2)T(t) (3.5)
Substitute in (3.4) C%y‘ ="

1

—XT=X"T
(&

17 X"

AT X
But % depends only on ¢, and XTH depends only on x!
So both sides must be equal to a constant, say —A, so

X" 4+AX =0 (3.6)

T+XT=0 (3.7)

28
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3.3. Boundary conditions and normal modes
Three possibilities for A (+, 0, -) in spatial ODE (3.6) but restricted by (3.1)

(i) A <0. Take x> = — X then

X (z) = AeX" + Be™X* = Acosh xz + Bsinh yz

but boundary conditions imply X(0) = X(L) =0 = A = B = 0 (only trivial
solution works).

(ii) A =0 then X(x) = Az + B but then by boundary conditions A = B = 0.

(iii) A > 0, then X (z) = AcosvAx + BsinvAz. Here, the boundary conditions (3.1)
imply A =0 and Bsin VAL =0, so VAL = nw. So

. NTT nm\ 2
Xn(z) = By sin < Ap = (—) (3.8)

i.e. eigenfunctions and eigenvalues of the system.

These are normal modes because spatial shape in 2 does not change in time (amplitude
may vary).

e Fundamental mode (n = 1): A\ = ™. Lowest frequency vibration or first har-

monic.

~

O (-

2 .
e Second mode (n =2): Ay = % second harmonic or overtone.

\‘/\

O L

e Third mode n = 3 etc

29
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3.4. Initial conditions and temporal solution

Substitute eigenvalues \,, = (’%)2 into time ODE (3.7)

2.2 2
. nAmTec
T+ 72 T=0
which has solutions ; ;
nme nwe
T,.(t) = Cy, cos T + D,, sin T (3.9)

L
Thus a specific solution to (3.4) satisfying boundary conditions (3.1) is

Yn(2,t) = Tp,(t) Xn(z)

nmct nmct nmwx
= <Cn cos > i

+ D, sin sin 7

(absorbing B,, into C), and D,,). Exercise: verify that this is a solution.

Since the wave equation (3.4) is linear (and boundary conditions (3.1) are homogeneous)
we can add the solutions together to find general string solution

o
nmct . nmct\ . nmw
y(x,t) = ; <C’n cos — + D,, sin 7 > sin —— (3.10)

By construction (3.10) satisfies boundary conditions (3.1), so now impose initial condi-
tions (3.2):
For t = 0 we have

nwx

y(z,0) = p(z) = ZCn SinT
n=1

by (3.10) and also by (3.10):

oy > nme . nrx
a(x,o) = q(.:U) = nz:l TDTL SII’IT

So the coefficients are those for Fourier sine series given by (1.12):

nnx

L
Cp = /0 p(z) sin de

o
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2 L . nmx
Dnzz—7rc ; q(:n)sdex (3.11)

Hence (3.10-11) is the solution to (3.4) satisfying (3.1-2).

Example. Pluck string at x = 3, drawing it back as

B _Jx(1-¢) 0<Z 13
0
S (@,0) = g(z) = 0
Then with Fourier series (1.8)
_ 2sinnmf B
Y%=y ¢ PP

so we have solution

oo

2

y(z,t) = Z ()2 sin nm€ sin nwa cos nwet
n=1

2(=1)m+!

Take & = % then Cop, = 0, Copp1 = @m—1)m)2"

violin, & = %

For a guitar, i < €< %, for a

Separation of Variables Methodology

(1) Obtain linear PDE for system (with boundary conditions and initial conditions)

(2) Separate variables to tield decoupled ODEs

(3) Impose homogeneous boundary conditions to find eigenvalues and eigenfunctions

(4) Use these eigenvalues (constants of separation) to find eigenfunctions in the other
variables.

Aside: Solution in characteristic coordinates

Recall sine / cosine summation identities which means our general solution (3.10) be-
comes
(x,t) ! [C in " (z —ct) — (@ —ct)
x,t) = E sin x — ct) + Dy, cos xr—c
y Y — n L n L

. nm nm
+ Cpsin f(x + ct) + Dy, cos T(x + ct)]
= f(x —ct) + g(z + ct) (3.12)
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The standing wave solution (3.10) is made up of a right-moving wave (along the charac-
teristic x — ¢t = 7, constant) and a left-moving wave (x + ¢t = &, constant) i.e. a general
solution with arbitrary f, g (see later).

Special case: g(z) =0 in (3.1), then f = g = 3p at t = 0.

3.5. Oscillation energy

A vibrating string has kinetic energy due to its motion (for example particle %mUQ)

1 L roy\?

and potential energy due to stretching Ax

PE =TAx
L 2
= T/ 1+ <8y> —1|dz
0 81’
1 L roy\?
~ =T - f
5 /0 (83;) dx or

The total summed energy becomes (02 = %)

EZ;M/OL [(Z)QHQ (gi)zl da (3.13)

Substitute (3.10) and use orthogonality (1.1)
1 & [F nme . nmct  nme nwct\? |, nrw
E:2,u§/0 [(— i3 C), sin 17 + 5 D, cos 17 > stT

2 2 2
t t
+c? <C’n cos m;c + D, sin nre ) nr cos? mr:n] dx

<1

L L L

C? + D2) (3.14)

= [energy in n-th mode]

normal modes

This is constant, so energy is conserved in time (no dissipation).
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3.6. Wave reflection and transmission

Recall travelling wave solution (3.12). A simple harmonic travelling wave is
y = Re[Ae—w(t—x/C)] = | A| cos (w (t — f) + ¢>
c
. _ . 2
where the phase is ¢ = arg A and wavelength is =7¢.

Consider a density discontinuity on a string at z = 0, with

p—  for x <0 hence c_ =,/

ILI/:
py  for > 0 hence ¢ = /-

assuming constant tension. Incident wave on junction

Aéiw(t-x/c_}

W
M=, (- My, (o
< S e
(o 6 Do (E373>
R ecked vva W Transmithed wove

Boundary (or junction) conditions at x = ¢:

e String does not break, i.e. y is continuous for all ¢.

= A+B=D (%)
e Forces balance T % . =T % . i.e. % is continuous for all ¢
rz=0_ =04
iwA  iwB iwD
- =— (1)
c_ c_ cp

() (h) = 24=D+DT = Z(es 4

w +  Cy
So given A, we have the solution:
2 —c_
D=—"% 4 pB=S"%4 (3.16)
c— +cy C+ +c—

where D is the transmitted amplitude and B is the reflected amplitude. In general,
different phase shift ¢ is possible.

Limiting cases:
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Continuity c. =c; = D =A,B=0.

Dirichlet boundary conditions ££ — oo (fixed end y = 0 at 2 = 0) then 7+ — 0 =
D =0,B = —A i.e. total reflection with opposite phase (¢ = 7)

Neumann boundary conditions £+ — 0 (free end of string - very light string z > 0)

7
then & — oo = D =2A, B = A (boundary condition g—g ). Total reflection

with same phase (¢ = 0).

3.7. Wave equation in 2D plane polars

The 2D wave equation for u(r, 6,t) becomes

1 9%u

2

with boundary conditions at 7 = 1 on a unit disc (drum)

u(1,0,t) =0Vt (3.18)

(fixed rim) and initial conditions for ¢t =0

ou

u(r,0,0) = ¢(r,0), E(T,@,O) = (r, ) (3.19)
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Temporal separation

Substitute
u(r,0,t) =T )V (r,0) (3.20)
into (3.17) to get )
TH+AT =0 (3.21)
VAV + AV =0 (3.22)

which in polars is

0’V 10V 1 0*V
a2 oo g TAV O

Spatial separation

Now try
V(r,0) = R(r)H(0)
in (3.22):
H" +uH =0 (3.23)
R’ +rR + (M2 — ) R=0 (3.24)

where A, 4 are separation constants.

Polar solution: Configuration implies periodic boundary conditions

H(0) = H(2n)

2

with g > 0, so the eigenvalue 1 = m* (m integer) with solution

H,,(0) = Ay, cosmb + By, sinmf (3.25)

Radial equation: divide (3.24) by r to bring it into Sturm Liouville form (2.7) with

p=m?

d m?

—((rR)——R=-MR (0<r<1 3.26

SRy -"R= MR (0<r<1) (3.26)
where p(r) =r, q(r) = ’"72 and weight w(r) = r, with self-adjoint boundary conditions

with R(1) = 0 and bounded at R(0), since p(0) = 0 a regular singular point.

Bessel’s equation

Substitute z = V' Ar in (3.26) to find

d’R dR
2 2 2\ _
zdz2+zdz—|—(z —m“)R=0 (3.27)

which is Bessel’s equation
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Frobenius solution: substitute power series

oo
R=277 Z anz"
n=0
to obtain

Z an[(n+p)(n+p—1)2"P + (n + p)2"TP + 2P — 2" P) =
n

Equate powers of z: considering coefficient of 2P,

p2—m2:() = p=m,—m

Regular solution p = m, has recursion solution

(n+m)2a, + an_o — m?a, =0

-1
= anp = man—Q
n(n m
Put n — 2n’ )
— )= -

so stepping up from ay we have (dropping primes)

) (1)
22rpl(n+m)(n+m—1)---(m+1

a2n, ) agp

Take ag = 57— (convention) to find the Bessel function of the first kind:

2mm!
100 ()" it () 6

Exercise: Use y = /zR in Bessel equation (3.27) to find

1 2
y”+y<1+—m,,> =0

4z  z
So as z — 0o, Yy’ = —y so we have solutions
1 .
R = —(Acosz+ Bsinz).

NE;

Also works for m = « (non-integer) if (n +m)! — I'(n + m + 1). Second solution with
p = —m (integer) is the Neumann function (Bessel function of the second kind)
Jy(2) cos(ym) = J 1 (2)

Yu(2) = lim =2 _
ym sinym
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Exercise*: Use (3.28) to show that

and hence

d

dz

Tnl2) + = T(2)

Repeat with z7™ to find recursion relations.

Asymptotic behaviour Jy,,(2), Y (2):

Im-1(2) + Imt1(2)

(2" Im(2)) = 2" Im—1(2)

Jm_l(z)

2m
iy S
™ Jn(2)

T (2) = T (2) = 270, (2)

e Small z — 0, Jo(2) = 1, Jn(2) = 2 ()™, m > 0.

(Yy, is divergent as z — 0)

1
m!

e Large z — oo: oscillatory solutions:

Zeros of Bessel function J,,,(z)

Define j,, to be n-th zero,

2
Im(z) = — cos
2
Y (2) =/ —si
(2) — sin
Im(jmn) =0

From (3.32) this occurs when (approximately)

mi
COS |2 — — —

mm
ZRNT A+ —/— — —

2

2

(modal point). So zero at

(m—1)!
v

e -5)
e -5)
(z>0)
-
U ~
4E]mn

. Jmn=—] 0.1 m? :
(Accuracy: me=tmn < 2= for n > "5~ (non-examinable))

mn

For Jy(z) actual values are

(precision ~

1%
W)

jo1 = 2.405,

jo2 = 5.520,
. T
Jon = NT — Z

37
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3.8. 2D Wave equation (continued): Vibrating drum

From section 3.8, radial solutions to (3.26) become
Rin(2) = Rn (VA1) = Adpy (VAr) + BY;(VAr)
Impose boundary conditions:
e Regularity at r =0 = B =0 by (3.31)
e Unit disk 7 = 1 with R = 0 implies
Jm(VA) =0

But these zeros occur at
. ( ~ + mm 7T)
~~ =nr+ — — —
so our eigenvalues must be

Amn = ]TQrm (3.34)

With the polar mode (3.26) the spatial solution is

Vi (1,0) = Hp(0) Ry (V/ Amn) = (Amn cos mb + By, sSin m) Jp, (Gimn) (3.35)

The temporal solution to (3.21) T = —AT are Tpn(t) = cos(jmnct) and sin(jpnct).
For our linear homogeneous PDE (3.17)we can sum together to obtain general solution
(noting the special case for m = 0):

u(r,0,t) =Y Jo(jmnr)(Aon cos(jonct) + Con sin(jonct))
n=1

+ Z Z Im (GmnT) (Apm cos ml + By, sinmf) cos(Jpnct)

m=1n=1

+ Z Z I (Fmn7) (Crn, cos mb + Dy, sin m@) sin(fpmct) (3.36)

m=1n=1
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Now impose initial conditions (3.19) at t =0

u(r,0,0) Z Z Im (JmnT) X (Appn cosmb + By, sinmf) (3.37)
m=0n=1
ou .
T —(r,0,0) Z Z]mncJ JmnT) X (Cpn cosmb + Dy, sinmé)
m=0n=1

Orthogonality: Find coefficients by multiplying by .J,,,, cos, sin and exploit orthogonality
(1.1-3) and Example sheet 1, Q8.

1
: . 1 .
/ Jm(]mnr)Jm(]ka)TdT = §[J7In(3mn)]25nk (3.28)
0
1
= §[Jm+1(jmn)]25nk by recursion (3.29)

Now integrate to obtain A,

2
/ d@cospﬁ/ rdrJpg(Jpgr) @ (r, 0) = [Jp+1(Jpq)]2qu

0

N |

Exercises: Find B, C, D.

Example. Initial radial profile.
u(r,0,0) = ¢(r) =1 — 2
= m=0, Bu=0,A4,,,=0m#n
%(r, 6,0)=0
= Cmn = D =0
We need to find:

1
Ay, = Jl(j{)n)2/0 Jo(Gonr)(1 — T2)rd7"
o 2 J2(j0n)
N Jl(jOn)2 ](2)11
- J2(jon)
n

as n — oo. (Exercise* using (3.29-30)).
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4. The Diffusion Equation

4.1. Physical origin of heat equation

Applies to processes that “diffuse” due to spatial gradients. An early example was Fick’s
law with flux J = —DVe¢ with concentration ¢ and diffusion coefficient D. For heat flow

we have Fourier’s law
q=—-kVo (4.1)

(q is heat flux, k is thermal conductivity, € is temperature) In a volume V', the overall
heat energy @ is

Q= / cy pddV’ (4.2)
so rate of change due to heat flow
d@ 00
E = Cvpadv (*)

7S

Now integrate (4.1) over surface S enclosing V'

4@

— — -ad
T Sq ndS

—/(—kve)-ﬁds
S
~ vy (1

Equating () and (T) we find

/ (ng — kV26> dV =0
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True for all V', so integrand must vanish, so

so if we set D = % we have
v

— =DV?% (4.3)

Brownian motion (random walk)

Gas particles are diffusing by scattering every At with probability PDF p(§) of moving
distance £ with

(&) = / p(€)Ede =0

Suppose the PDF after NAt steps is Pya¢(z), then for the (N + 1)At step:

Pingna(r) = /_OO p(&)Pnat(z — &)dE
o 2
~ /_ p(&) [PNAt(:C) + Pya() (=€) + P]’\’,At(;p)% 4 --- | de
2
— Pyarla) — Phau(e)() + Pae) S+

Note that (£) is the mean of £ which is 0. Denote Pya¢(x) = P(x, NAt), then we have
0 ()

Assuming % = DAt then At — 0. We find

opP 9*P

4.2. Similarity solution

The characteristic relation between variance and time, suggest seeking solutions with

dimensionless parameter
x

7 2V Dt
Can we find solutions 0(x,t) = 6(n)? Change variables in (4.3):

(4.5)

.@_877%_ Iz 9 — 1770/

LHS: —=2-1"2=_°2 __nh
S o T a on 2 \/Dt3/2 2t
0%0 a9 (0n oo 0 1, D, 1.,



Equatin,
! ° 0" = —2n0’ (4.6)

Take ¢ = ¢/, 1%:—277 = In®y = —n? + const

= =0 = (const)«s’_"2

Integrate to find

:cgzwémfﬁdu:cwﬁ<2é%n> (4.7)

where the error function is 5 ;
erf(Z) = / e " du
VT Jo

This describes discontinuous initial conditions that spread over time (D = 1):

4.3. Heat conduction in a finite bar

Suppose we have a bar of length wlL with —L < x < L and initial temperature:

1 0<z<L
0(x,0) = H(zx) = - 4.8
(+,0) <>{0_L§x<0 (43)
with boundary conditions
O(h,t) =1, 6O(—h,t)=0 (4.9)

Transforming boundary conditions: The boundary conditions (4.9) are not homoge-
neous. Can we identify steady state solution (time independent) that reflects late-time
behaviour? Try

Os(x) = Az + B
satisfies g—;g = 0. To satisfy (4.9), A= 5+, B= 1.
L
fs = 2T (4.10)
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Transform and solve for

with homogeneous boundary conditions
0(—L,t) = 6(L,t) =0

and initial conditions i,
N T
0 = H(z) —
(2,0) = H(z) — -

Separation of variables: try

~

O(x,t) = X(x)T'(t)
= X" =-)\X,T=-D\T (4.12)
Boundary conditions imply A > 0 with

X (z) = Acos V Az + Bsin vz

For cos(vVAL) =0

:>1/)\m:m m=1,3,5,...
2L
sin(ﬁL)zO
e )\n:nfﬂ- n:172,3,...

but initial conditions are odd (A, = 0) so take

nnxr TL27T2

Xn:BnSinT )\n:7

Put A, into (4.12) T'= —DAT to find

D 2.2
T,(t) = Cpexp (— nr t>

L2

General solution:
A~ 0 nmwIT Dn2nq2 t
O(z,t) = Z by, sin Te_ L2 (4.13)
n=1

Now impose initial conditions (4.11) at ¢ =0

1 [E . nmx
bn—L/_L ¢(x,0) sdex

H(x)= 5
2 [F 1 2 [F
:L/o (H(m)—g)smﬂ; x—L/O %sin?dm
2 1)n+1
:—(nodd)—( )
nm nm
1
Conw
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Solution

Plot with L =1 and D = 1.

(the dotted lines are the fundamental solutions). Approximate solution (4.7) (3 erf (

are excellent for ¢t < 0.1.

44
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5. The Laplace Equation

Laplace’s equation

V26 =0

has wide application in math physics & applications:
e Steady state heat flow
e Potential theory F = —V¢ (also V2¢ = p(x))

e Incompressible fluid flow v = V¢ etc.

We solve (5.1) in a domain D subject to boundary conditions either:

e Dirichlet: ¢ given on boundary surface 9D

e Neumann: n- V¢ given on boundary surface 0D.

5.1. 3D Cartesian coordinates

Equation (5.1) becomes
¢ 0% %9 0
ox? = Oy 022
Seek separable solution ¢(z,y,2) = X ()Y (y)Z(2)

X'"YZ+XY"Z+XYZ"=0

X// Y// Z//
7 = *7 — 7 = 7>\l(COHStant)
and -
v = —Am (constant)
SO Z//
7 = *>\n = )\l + )\m

General solution from eigenmodes

$(2,9,2) = > i X1(2) Y (y) Zn(2)

l,m,n
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Example (Steady heat conduction). ((4.3) with % =0 = (5.1)) Consider a
semi-infinite rectangular bar

with boundary conditions ¢ =0 at t =0,a and y =0,b. ¢ =1 at 2 =0, ¢ — 0 as
z — 00. Solve for eigenmodes successively:

e X" =—-NX with X(0) = X(a) =0
AN=—, Xj=sin— [=1,2,...
a a

o V' =-\,Y
m2m mmy

Ap = —=— Y, =sin m >0

o 7" = -MZ=(N+In)z =72 (é—z 9F %2) Z with boundary conditions Z — 0
as z — 00

1
l2 2\ 2
Zim = €xXp [— < + 7;;) ﬂz]

So our general solution (5.4) becomes

2

1
g 2
o(z,y, z Z Aim s1n sm m;ry exp [— <a2 ate T;;) 772]

Now fix ag,, using ¢(x,y, z) = 1 using Fourier sine b, (1.12)

2 P9 e l
== / dy— / dz 1sin oy sin ey
b 0 a 0 a b P

square wave FS (1.7)

da 4b

= (l m, odd)
1

= l6 (I,m odd)

so the heat flow solution is

1
1 2 2\ 3
d(z,y,2) = E 6 Sinlﬂ—x sin m;;y exp [ <c112 + m) WZ]




5.2. 2D Plane Polar coordinates
Recall

= o Uar ) o =0 (5:6)
and try ¢(r,0) = R(r)H(6) to find

V2_1a<a¢> 10%

H"+uH =0 and r(rR) —pR=0

e Polar equation periodic boundary conditions == pu = m?2. (as before (3.25),
H,,(0) = cosmf and sin m#)

e Radial equation r(rR') —m?R =0 (5.7). Tty R=ar® = p2-m?=0,8=+m
R, =r"andr™ ™
Ifm=0,(rR) =0 = rR =const = R =1logr.

Ry = const and logr.
General solution:

0(r,0) = % + cologr + Z (aym cos ml + by, sinm@)r™

m=1

+ Z (¢m cosml + dy, sinm@)r—™ (5.8)

m=1
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Example. Soap film on unit disk. Solve (5.6) with a distorted circular disk (wire)
radius r = 1 with given boundary conditions:

¢(1,0) = £(0)

to find ¢(r,0) on r < 1. Regularity at r = 0 implies ¢, = d,,, = 0 for all n, so (5.8)
becomes

1 oo
0(r,0) = 540 + Z (arr cos ml + by, sinm@)r™

m=1

At r =1, ¢(1,0) = f(0) = 3a0 + >_,,(am cosmb + by, sinmf) so the Fourier series
coefficients (1.5) are

27 1 27
am=—=[ f(0)cosmbdl, bn=— [ f(6)sinmbdo
™ Jo ™ Jo

Note high harmonics are confined near r = 0 edge becomes r" term

N\

5.3. 3D Cylindrical Polar Coordinates

Here

AN R R 9

Substitute ¢(r,0,2) = R(r)H(0)Z(z) to find

2 2

H'=-pH, Z"=)\Z
r(rR) + (A\r? — )R =0
2

e Polar (as before) u,, = m?*,

H,, = cosmb and sinm#b
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e Radial (Bessel’s equation (3.26))
r(rR) + (A —=m*)R =0

with solutions R = Jp,(kr) and Y, = (kr). Setting boundary conditions R = 0 at
r = 1 means

Im(ka) = k= ‘7%

where j,y, is the n-th zero (see (3.32)). Radial eigenfunction

Ron = Jim <‘7"mr> (3.10)

a

(eliminate Y, since Y;, — —oc as r — 0)

e 7 equation: Z"” = k?Z implies Z = e7** and z = €* (usually eliminate e** with
z—0as z— 00.)
So general solution is
o o . )
o(r,0,z) = Z Z(amn cos Ml + by, sinmf) x Jm(mr)e_Jm"z/a (5.11)
m=0n=1 a

Exercise: Describe steady-state heat flow in a semi-infinite circular wire with boundary
conditions ¢ =0 at r =a, ¢ =Ty at z =0 and ¢ — 0 as z — oo (see section 3.9 and
5.9). Show that the solution is

e}

o(r,0,2) = Z

' 2Tc JO <]0TLT> efj()nz/a
= JonJ1(jon)

a
5.4. 3D Spherical Polar Coordinates

Recall that
z = rsinfcosf

y = rsinfsinf
z =rcost

and dV = r2sinfdrdfde, 0 <r <00, 0< 0 < 0< ¢ < 27.
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Laplace’s equation (5.1) becomes

10 [ ,00 1 9 0P 1 0%®
2 (2= 2 (sinS )+ ——— 2 = 5.12
r2 or <T 8r> T 2 sin0 06 (sm 89) T 2 sino 0¢? 0 (5.12)
Axisymmetric case (no ¢ dependence)
Seek separable ®(r,0) = R(r)H(0).
(sinfH") + AsindH =0
(r*RY =AR=0 (5.13)
Polar (Legendre’s) equation: Substitute x = cos# with
da inff = d sianH
— — —SIn - = -
o~ ° dé dz
H
—s&rrﬁi — sin? Od— + AsirfH =0
dx dx
d dH
— (1 =2®)=— ) +XH =0
dx (( ) dz ) *
which is Legendre’s equation (2.21) with eigenvalues \; = I(I 4+ 1) and eigenfunctions
(2.23)
H(0) = P(z) = P/(cos®) (5.14)

(see section 2.5)

e Radial equation:
(r’R"Y —1(1+1)R=0

Seek solutions R = ar”.

BB+1) —11+1) =0 = <5+;)2: <z+)2

o1



with two solutions =1 and = -] — 1.

R, = rtand r—t1

General axisymmetric solution:
O(r,0) = Z(alrl + b~ Py(cos 0) (5.15)
=0

where a;, b; determined by boundary conditions, usually at fixed r = rg. Use orthogo-
nality conditions for P)’s, see (2.24).

Unit sphere solution: Solve V2® = 0 for 7 < 1 given axisymmetric boundary conditions
at r =1, ®(1,0) = f(0). Regularity implies that b; = 0, so we have

£(6) = @Pi(cos)
1=0
or with f(0) = F(cosf) = F(z),
F(z) =Y aP(z)
1=0

so by (2.25) so

20+1 [*
a; = T+ F(z)P/(x)dx
-1

Exercise: Show f(f) = sin? § yields solution
2 2
O(r,0) = g(l — Py(cos0)r?)

Generating function for P;(z) (2.23a)

Consider a charge on z-axis at z = 1, rg = (0,0, 1) then the potential P becomes

_ 1
|r — ro|

O(r)

1
@yt (-1
1
(r2sin? @ + 12 cos2 @ — 2r cos 6 + 1)%
1
Vr2 —2rcosf + 1
1

V2 —2rr +1
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(T = cosb)
Exercise: verify ® = ﬁ satisfies V2® = 0 whenever r # rg.
We can represent any axisymmetric solution (5.12) as a sum (5.15) (with b, = 0) for

r < 1:

SEN S Y
—2re+1 =

with norm at z =1, F(1) = 1, we get

o0
-

=0

so a; = 1 (for a geometric series). Thus generating function for Pj(x) is

Py( 5.16
N Zl (5:16)

Expand LHS with binomial theorem to find Pj(z) (coefficient of the r! term) Use to
obtain norm condition (2.24). (Example sheet 2, Q5)

Example (Electric multipole).

m=1
q MzAmeo/e

Start of
lecture 13
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6. The Dirac Delta Function
6.1. Definition of §(x)

Define a generalised function §(z — £) with the following properties:

)=0, Vax#¢

WA o

5 (7(~§) '/\C A\Le/ I”’\,,\
: A L\ A;P,ée K

) >
'X,:i’

This acts as a linear operator [dzd(z — &) on an arbitrary function f(z) to produce a
number f(§), that is,

| awste -5 = 5@ (6.2)

—0o0

provided f(z) is ‘well-behaved’ at z = £ and +oo.

Notes

e The delta function d(x) is classified as a distribution (not a function). See lecture
notes of Jozsa and Skinner section 6.1 (optional).

e 0(x) always appears in an integrand as a linear operator where it is well-defined.

e Represents a unit point source (for example mass, charge) or an impulse.

Some limiting approximations

Discrete:
0 x> %
i —Jn 1
Jim o,(z) =15 |2l <5
0 z<-1

n
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Continuous:

. _ 1 —x2/e?
il—% Oc() = 5ﬁe

(6.3)

verify (6.2):

| wian = [~ e e

1
= lim —e_y2f(sy)dy
€20 J_o /T
[o.¢]

= tim [ Ay (1) +eus (0)+ )

= £(0)

Vf. ‘well-behaved’ at z = 0 so that we can take the Taylor expansion, and also need
well behaved at £0o so that it doesn’t grow faster than 1/67‘7:2/52

3 <)

Further examples: (limn — oo)
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on(x) = gsechan (6.5)

6.2. Properties of d(x)
Heaviside function H ()

The unit step function,

H(z) = {[1) z i 8 (6.6)
HG
4
E 7
is the integral of 6(x). N
H(x) :/ 0(z)dx (6.7)

and we can identify H'(z) = §(x).

Example. Verify using (6.5) §(2) = lim,,_oc Zsech’nz. (You will find 3 (tanhnz+1)
is the approximate step function. - also H(0) = 3 (alternate definition).)

Derivative of J(z)

Define ¢’(z) using integration by parts:

| 8- 5@ = - or@m - [ s -or@ar
— (o) (6.8)

for all f(x) smooth at x = &.
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Example. Consider Gaussian approximation (6.3)

e :_27‘7:67362/52
55( ) 83ﬁ

S ()
7,

D X

/7

Sampling property

0 otherwise

b a
L/f@ﬁ@—foz{“@ <e<h

Even property

/wf@w««r—QMx:/mf@wm—<Mm (6.10)

LHS:/‘wﬂg—maw«dw
= [ s6 - witwaa
— £(9)

=RHS

Scaling property
| r@state - e = (6 (6.11)

Exercise: Show this using u = ax (noting integral limit order with a < 0).
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Advanced scaling

Suppose g(z) has n isolated zeros at x1,x9,...,x, then (with ¢'(z;) # 0):

3(g(x)) = 2 W (6.12)

(Exercise: Show for g has 1 root at x = x;).

Example.

= /_ T H(@)d(a? — 1)z

22 — 1 has roots x = +1 with ¢’(z) = 2z. So

B 1+e 5($—1) —14e¢ 5(x+1)
1= [ @ [ @ s
= S+ F(-D)

Isolation property
If g(x) is continuous at z = 0 then
9(x)d(x) = g(0)o(z) (6.13)

Exercise: evaluate and show
e 1
/ §(x? — Dade = —=
0 4

using u = 22 — 1 and note (6.8) and (6.12).
Start of
lecture 14 6.3. Eigenfunction expansions of §(x)

Fourier series (complex)

For —1 <z < L, represent

d(z) = i cpe ek

n=—oo

Fourier series coefficient (1.15):

1 [F L
cnzzL/_L(S(x)e dx:ﬁ

SO
1 3] ‘
— inmwa/L
0(x) 5T E e (6.14)

n=—oo
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Take f(x) =3.°° __ d,e™ /L then (using section 2.2)

n=—oo

L 1 L ) )
* _ —inmz/L jintx/L
/Lf (2)d(z)dx 2L;dn/Le e dz
= Zd"
= f(0)

The Diract count comes from extending periodically to all R:

oS 1 ) '
S S —2mL)= & 3 et
m=0c0 2L n=-—o00
- ' e
' T
- L st
S3L

oo 0

General eigenfunctions

Suppose 0(z — &) = Y o7 anyn(x), a < x < b with coefficients (2.17):

_ f;w(x)yn(x)(s(l' — f)dib
' S wy2de
_ w(&yn()
J) wy2da
- W(f)Yn(f)

for unit norm Y, (2.18). Then

n=1
= w(@) ) Yal(&)Ya()
n=1
since @ o )
-9 =09
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by (6.13). Hence

5z —€) :w@)z%%%@)
n=1 n

where N,, = f: wylda.

Example. Consider Fourier series y(0) = y(1) = 0 with y,(x) = sinnnz.

from (1.11) we have

o(x—&) =2 Z sin nw sinnwx
n=1

Exercise:

(i) Integrate both sides to show

S
om—1 4

m=1

when £ = %

(ii) Integrate twice and compare with G(x,&) (1.25) or (2.31).
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7. Green’s Function

7.1. Physical motivation: Static forces on a string

Consider a massive static string (tension T', density p) with fixed ends

y(0) =y(1) =0 (7.1)

1

S>C
| -
\Y
— /\/\SDC ﬁ
By resolving forces, we have (3.3)
0%y
T— —pug=0
(time independent). So solve inhomogeneous ODE subject to (7.1) with f(x) = —£¢.
d?y
a2 f(=) (7.2)
Solution 1: Direct integration for uniform mass density ODE (7.2) implies:
-y = —%@2 + kix + ko

Boundary conditions (7.1) implies

y(w) = (-4 Lo~ a) (7.3)

Solution 2: Superposition of point masses on light string i — 0. Consider point mass
dm (= pdz) suspended at x = &:

—>>C
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Resolve in y dimension to find y;(&;):

0 =T (sinf; + sinfy) — dmg

+((2)- ()

= —T(yi(1 - &) +y&) = omg&i(1 - &)

SO
omg

yi(&i) = ( T >&(1 = &)

Hence solution

o Comg\ (1 -&) :E<£¢: Gl
) ( T>{5i<1—x> s T

where f; is the source (here, (—MTg) and G(z,§) is the solution for unit point mass

(Green’s function). Now sum N point masses om at = {§;} by linearity

Il
/I\
=
Q

[l
ah
SIE RIS N

Il
/l'\

I
N
|
H‘z:
)
~_
N | =
S
~—~
—

|

)
S~—

so it matches (7.3).
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7.2. Definition of Green’s function

We wish to solve inhomogeneous ODE (section 2.1) on a < z < b.

Ly = a(x)y” + B(x)y +~(x)y = f(x) (7.6)

f(x) is a source. With a # 0, 3,~ continuous and bounded. Homogeneous boundary
conditions y(a) = y(b) = 0. The Green’s function for the operator L is the solution for
a unit point source (or impulse) at z = &.

LG(x,8) = d(x =) (7.7)

which satisfies G(a, &) = G(b,€) = 0 (or similar). By linearity, we construct solutions by
integrating over source f(x) with G:

b
y(z) = / Gl €)f(€)de (7.8)

Formally verify this:
Ly = [ £@G9f©) = [ 3 - 5O = (@)
so the solution (7.8) is given by the inverse operator £L~! = [ dzG(x,&).

Defining properties (summary)

The Green’s function splits into two parts:

cwo= (g (5
such that:
(1) Homogeneous solutions: G solves homogeneous equation for all z # £. So
LG =0, LG2=0 (7.10)

(2) Homogeneous boundary conditions: G satisfies homogeneous boundary conditions
SO

Gi(a,§) =0, Ga(b,§) =0 (2.11)
(3) Continuity condition: G is continuous at x = £ so

G1 (5) 5) = G2 (67 5)

(4) Jump condition: Derivative discontinuous at = £ with

e _ dG2 _ 4Gy
&~ dx dx

- L (7.13)

[G ] r=£_ O‘(f)

r=Et
where a(z) is defined in (7.6).
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7.3. Constructing G(z,¢): Boundary Value Problems

Solve

£G(2,€) = 6z —€)
on a <z <bwith G(a,§) = G(b,§) = 0.

1 & 2 Solves homogeneous equation with homogeneous boundary conditions

Assume 2 independent homogeneous solutions 1 (z), y2(z) known.
For a <z <& Gi(z,§) = Ayi(x) + Byz(x) such that Ay;(a) + Byz(a) =0 (i.e. choose
suitable A, B). This defines a complementary function (2.3) y_(x) such that y_(a) =0

‘Gl = Cy_(x) with y_(a) = 0‘ (7.14)

For £ < o < b: Similarly find

|Gy = Dy, () with y (b) = 0| (7.15)

where y4 (z) is a complementary function (2.3).

3. Why is G continuous at z = £7?

Suppose G were discontinuous locally, so G o< H(z,&) + -+ (6.7)

Then we would have G’ & §(z,§) and G” x ¢'(z — £). So LHS
LG o o) (x — &) + B(x)d(x — &) +y(x)H (,¢)

there is no term o ¢'(z — §). So G isn’t discontinuous. Hence we have [G]g =0, so

[Cy_(&) = Dy (9)| (7.16)
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4. Why the jump condition for G’ at z = £?
Integrate LG = §(z,§) across = = &:

£+
LHS + LGdx = / (aG" + BG" +~G)dz
[
nET / ¢t & / "
—aQ + (-G + [ (-8 + a6
——— -
=0by continuity (7.16) —Oby comtinuity
et
RHS = d(z —§&)dx
[
So [G’}gj = ﬁ SO
1
Dy (&) — Cy_(8) @ (7.17)

Wronskian W ()
Solving (7.16) and (7.17) we find
_ (8 _ oy
“O=dowe PV aewe
where W (&) = y— (v (&) — y+(&)y_ (&) # 0 if y4,y_ are linearly independent. Hence

ui )y () (7.20)
a@wE (<asb

y=(@)y+(&) < 4 <¢
G(x, &) = { a(EW(E) =

So the solution to (7.6) with y(a) = y(b) =0
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b
y(z) = / G, €)f(€)de

- b
:/ Gz(x,g)f(g)d£+/ Gi(z, &) f(€)dE

T b
v [ [H o

Notes:

(1) If £ is in Sturm Liouville form (2.7) i.e. 8 = o’ then denominator «a(§)W(€) is a
constant and G is symmetric, G(z,£) = G(§, z). Exercise: show £ (a(z)W(z)) =0
if o/ = f and using (2.10) (self-adjoint form).

(2) Often take a =1 (but Sturm Liouville form a < 0).
(3) Indefinite integrals [ in (7.21) are particular integral in general solution (2.5).

Exercise: For —y” = f(z), y(0) = y(1) = 0 directly construct the Green’s function (7.4)
(i.e. with y; = z, yo = constant).
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Example. Solve y’ —y = f(z) with y(0) = y(1) = 0. Construct G(z,§):

1&2 Homogeneous solutions y; = ¢* and y2 = e~ * so with homogeneous boundary
conditions (by inspection):

) Csinhx 0<xr <€
" | Dsinh(1—z) £<z<1
3 Continuity at £ implies C'sinh{ = D sinh(1 — &)

_ Dsinh(1 —¢)

N sinh &

4 [G'] =1 implies
—Dcosh(1 —&) — Ccosh{ =1

(a=1) so
—DJ[cosh(1 — &) sinh & + sinh(1 — £) cosh {] = sinh £ (%)
—DJ[sinh 1] = sinh ¢
_ sinh¢ _ sinh(1 —¢)
" sinh1’ " sinhl
so the solution is
inh(1 — v inhz (!
y=-Toe g [Csmesee - ST [sinh(1- 56 (722

Inhomogeneous Boundary conditions

Find y, solution to Ly = 0 satisfying boundary conditions (y(a) # 0, y(b) # 0). Find
Green’s function for Ly, = f with y,(a) = y4(b) = 0 where y, = y — yp,. For example

y' —y = f(z)
with y(0) = 0 and y(1) = 1.

yp = Asinhx + Bcoshz

yp(0) = 0 implies B = 0, y,(1) = 1 implies A = ﬁ Solve for y, = y — yp with

homogeneous boundary conditions. Solution is

sinh x

y(r) = Soh 1 + yg(z)

(i.e. equation (7.22))

68



Start of
lecture 16

Higher-order ODEs (BVP)

If Ly = f(z) to n-th order (coefficient a(x)g:c—%) with homogeneous boundary conditions
then we generalize Green’s function £(z,§) = d(x — £) with properties:

1&2 G4, G homogeneous solutions satisfying homogeneous boundary conditions.
3 Continuity: Gy = Ga, G =G, ..., G\ =GV at z = ¢.
4 Jump in (n — 1) derivative:

1

G(n 1)1€F Gn 1) _G(n 1

i =

Eigenfunction expansion of G(x,¢)

Suppose L is in Sturm Liouville form (2.7) with eigenfunctions y,(x) and eigenvalues

An, then seek
n=1
satisfying LG = §(z — &).
LG =) AnLyn(w)

- Z An)\nw(x)yn(li)
=z~ ¢)

= w(z) Z yn(%n(x)

with NV, = [wy2dz. So A,(¢) = %}: by orthogonality (2.13). Thus

Zl yn(& =5 el Yal€ (7.23)

n=1

which obtained without 6(z — &) in (2.31): refer to section 2.6 Sturm Liouville theory.

7.4. Constructing G(t,7): Initial Value Problem

Solve Ly = f(t) for t > a with y(a) = y/(a) = 0 using G(t, ¢) satisfying LG = 6(t — 7)
with same boundary conditions.
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e For t <7, Gy = Ay (t) + Bya(t) with W(a) # a, y1,y2 independent.
Ayi(a) + Bya(a) =0
and
Ayy(a) + Bys(a) =0
implies
y1ys — Y21 =0

unless A = B =0. So G1(t,7) =0, a <t < 7, i.e. no change until impulse at
t=r.

e For t > 7, by G continuity (7.12), Ga(7,7) = 0 so choose Gy = Dy, (t), y+(t) =
Ayi(t) + Bys(t) such that y4 (7) = 0.

But by discontinuity in G’ (7.13):

- 1
[G/]Tj = Gl2(7—7 T) - Gll(Ta T) = Dy;(T) = Oé(T)
iLe. Ayy(7) + Byh(1) = a(lT) S0
1
D(r) =
TETAG
or solve for A, B. Hence, we have
Gt 7) {0 e (7.25)
' T) = y+(t) :
sy LT
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The initial value problem is

y(t) = / G(t.7)f(r)dr
_[ont,
. (

a(r)yy (1)

Causality is “built in”, as only forces acting prior to ¢ affect the solution at ¢.

Example. Solve
y' —y=f(t)
with y(0) = ¢/(0) = 0.

1&2 Homogeneous solutions and initial conditions
s t<T7, G =0,
o t>7, Gy = Aet + Be™?

3 Continuity implies Go(7,7) =0 = G2 = Dsinh(t — 7)
1. [(|=1=1 = G}(r,7) = Dcosh(0) =D = 1.

Hence, solution (7.26) is

y(t) = /0 £(7) sinh(t — 7)dt
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8. Fourier Transforms

8.1. Introduction

Definition. The Fourier transform (FT) of a function f(z) is

fk) = F(f)(k)
= /_ f(x)e*edz (8.1)

and the inverse Fourier transform is

f(k)e*=dk (8.2)

Beware there are several conventions.

The Fourier inversion theorem states that

FHF)(@) = f(z) (8.3)
with a sufficient condition that f and f are absolutely integrable. That is,

/00 |f(z)|de = M < oo

—00
so f—0asx— foo.
Gaussian example
Find the Fourier transform of

f(@) = ——e /" (8.4)

F(k) = 0\1/% /_OO YRS

1 /OO —22/02 fad
= —F e COS Rxdx
oV J_oo

ep Af.
Consider T

_ 1 oo
fl(k)=——~ ze /%" sin kzdz
ovT J_o
1 2 S 1 o] 2
= | e inka - ko” e™2°/%% cos kadx
oym | 2 oo VT J_o \ 2
ko? -
a7
2
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Integrate f?/ = —kéﬁ to find

flk) = Ce ¥/
But put k = 0 into (8.4), f(0)=1 = C=1

Fk) = e Ko/ (8.5)

Exercise: Show that ]-"*1(67"”2‘72/4) = f(x).

Exponential exercise:

Show that f(z) = e~%*l @ > 0 has Fourier Transform

~ 2a
k)= ———= 8.6
f) = 2 (5.
in two ways:
(i) Integrate 2 [~ e~ cos kzdx by parts twice.
(i) Integrate [;° e(a=k)zdy 4 ffoo eletik)zdg directly.
Note if
e x>0
xTr) =
O
(a > 0) then
~ 1
k) = 8.6
fb) = o (8.60)
8.2. Fourier Transform relation to Fourier series
We can write Fourier series (1.13) as
o0 .
fla)= ) cpen® (%)
n=-—o0o

where k, = 7, so write k, = nAk with Ak = 7, then

Cn = 1/L f(x)e #n®dyg
"ol | .

A L :
= Ak / f(x)e Hnzdyg
27 L
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Then the Fourier series () becomes

flx) = i e / C e 4
e oo 27T —_L
But >0 Akg(kn) — [*2 g(k)dk with g(ky,) = el;;;x ffL f(2e *"dz’. So take

limit as L — oo and we have

fa) =5 [ avet | [ pane e ar| = @)

(i.e. equation (8.3))
resolution F (decomposition) — synthesis (reconstruction)

Note when f(x) is discontinuous at z (like Fourier series) the Fourier Transform gives
FUFD@) = 5 () + 1) (87)
8.3. Fourier Transform Properties
= [ fwe

(1) Linearity:

h(x) = A (@) + pgla) < h(k) = Af(k) + ug(k) (8.8)

(2) Translation: ) -
h(z) = flz =) <= hk)=e " f(k) (8.9)

(k) = / f(x — NeHedg = / F(y)e FONdy = ¢ (k)

(3) Frequency: | -
h(z) = e f(z) < h(k) = f(k—\) (8.10)
(4) Scaling:
h@) = FOr) = hk) = — F (i) (8.11)
(]A| because = — — changes limits)

(5) Multiplication by x:
h(z) = zf(x) < h(k)=if'(k) (8.12)

because
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(6) Derivative:

because
A(k) = / Z F(@)e *da
= [f(z)e ™%, + ik / h flz)e ™ dg
— k() h
(7) General duality: Consider (8.2) with z — —
f(=z) = % /_Z f(k)e *=dk

so k<< e
= f(—k) = 277/ f(z)e**dx

Thus

g(z) = f(z) <= §z) =2nf(-k)

(8.13)

(8.14)

We have f(—z) = %}"(f)(x) = %.7—"2(]")(:6), so repeating, F4(f)(x) = 4m2f(x).

Exercise: Verify 1-7.

“Top hat” example:

L (D
N
a
L —>2>(C
— AL J o
Find Fourier Transform for
1 |z|<a
:L' =
i) {O |z| > a
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(a>0)

:/ f(z)e *2dg
:/ cos kxdzx

in k
S i (8.15)

a

Fourier inversion, then (8.3) implies

1 /°° Z-k,ggsinkadk 1 Jz|<a
J— e =
T J_ oo k 0 |z|>a

Now set x = 0, then take kK — x to obtain Dirchlet discontinuous formula:

o 5 a>0
in
/ ST g = o a=0=2 sgn(a) (8.16)
0 T 2
-5 a<0
Here, we allow a < 0, so sin(—az) = —sinax. (See RJ notes for direct inverse Fourier

transform of (8.15))

8.4. Convolution and Parseval’s Theorem

We want to multiply Fourier Transforms in frequency domain h(k) = f(k)j(k) so con-
sider the inverse:

() = % / FR)gR)e™ i

< / ”“ydy) g(k)e™ dk
(5 [

ol -

g(k ZMﬂ“”dk) dy see (8.9)

/ FWgle - y)dy

= fx*g(x) (8.17)

(convlution definition). By duality (8.14) we also have

ha) = f(ag(o) = h(k) =5 [ F)ah - piap (818)
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Parseval’s Theorem

Consider h(z) = g*(—x), then

= { g(—x)e“‘“dx}
—oc )
= [ g(y)e_““ydy]
=g (k
Substitute into (8.17) g(x) — g*(—=x),
1 < = ~% ikx
| twew-aay= o [ iwawetar
Take x = 0, then dummy variable y — z on LHS:
[e9) . 1 oo »
| t@g@de= - [ fog (5.19)
Or equivalently,
1 -
T
see section (2.1). Now g = f*:
o 1 oo -
R = IO (8.20)

which is Parseval’s theorem.

8.4a Fourier Transform of Generalised Functions

(See discussion in section 8.3 of R Jorsa notes (or D Skinner))

Dirac delta function §(z)

Consider the inversion then (8.3):

flz) = FHF()(=)

_ / Z f(u) [;ﬁ / Z e“f@“)dk] du

so identify

0 1 [ .
0z —u)=— / e*(z —u)dk = — e~ kugihe g

—0o0 —00
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o If f(z) = d(x — a), then f(k) = e~ (8.21).
o If f(z) =0(x) then .
fk) = /_ §(z)e*dr =1

o If f(x) =1, then

o0

f(k) = / e Ay = 216 (k)

—00

by duality (8.14).

Trig Functions
f(x) = coswz <= f(k)=n(6(k+w)+dk—w))
f(z) =sinwzr < f(k) =in(6(k+w) —6(k —w))

Exercise: Find F~! for sinwk, coswk using (8.14).

Heaviside function

(8.22)

(8.23)

(8.24)

Subtle derivation requiring central value H(0) = &; then H(z) + H(—x) = 1 for all z

and continuous at x = 0. By (8.8) and (8.23)

H(k)+ H(—k) = 276(k)
Recall (6.7) H'(x) = 6(x) which implies
ikH (k) =1
by (8.13) and (8.22). But k&(k) = 0, so (x) and (f) are consistent if

~ 1
H(k) =mo(k) + —
(k) = o (k) + =
Dirichlet discontinuous formula (8.16): Rewrite as

1 1 o] eik:v
- - d
p o) = o /_ ik

fx) = 5sen(z) < f(k) = —
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8.5. Applications of Fourier Transforms
Motivation I: ODE for BVP

Consider y"” — y = f(x) with homogeneous boundary conditions y — 0 as x — +oo.
Take the Fourier Transform:

(ik)’g—g= (k" -1)j=f

by (8.13). SO the solution is

R | () I
g =~ = fwaen
where g(k) = —ﬁ but this is the Fourier Transform of g(z) = —%e*m (see (8.6)).

Thus convolution theorem (8.17) implies
o0
vw) = [ gl ~ wdu
1 oo
= —2/_00 f(w)e = dy
1 * u—=x 1 > r—u
= —2/ flu)e"*du — 2/ f(u)e* “du

which is in the form of a BVP Green’s function.
FExercise: Verify by constructing Green’s function.

Motivation Il: Signal processing (IVP)

Suppose (given) input J(t) acting on by linear operator L, to yield output 6(¢).
0(t) = LinJ (t)

The Fourier Transform J (w) is denoted the resolution
J(w) = / J(t)e ™tdt (8.27)

In frequency domain L;,J (t) means J(w) is multiplied by a transfer function R(w) to
yield output

1 [ - ~ ,
0(t) = 5 / R(w)J (w)e™*dw (8.28)
™ — 0o
with response function given by
1 [ - A
R(t) = - / Rw)e™! duw (8.29)
2 J_ s
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By the convolution theorem (8.17), output is

/ J(u)R(t — u)du

We assume no input J(¢) = 0 for ¢ < 0 and by causality, zero output for R(t) = 0 for
t <0 (i.e. R(t—u) has source 6(t — u)), so we require 0 < u < t:

/ T(W)R(t — u)du (8.30)
i.e. the same form as IVP Green’s function.

General transfer functions for ODEs

Suppose input / output relation given by linear ODE (n-th order)

(Z ai dtl) = J(t) (8.31)

where a; are constant and here set £;,, = 1. Take the Fourier Transform:
(a0 + a1(iw) + az(iw)® + - - - + an(iw)")0(w) = T (w)
so the transfer function (8.28) is

~ 1
Rw) = ag + a1 (iw) + - + ap (iw)" (8:32)

Factorise n-th degree polynomial into product of n roots (iw — cj)ki with j =1,2,...,J
(with repeated roots k; > 1) i.e. E;]:l kj = n. Then

~ 1
R(w) = (iw — cl)kl + o+ (iw —cg)ks
J K
=> (8.33)
j=1m=1 w N CJ)

since it can be expanded in partial fractions (constant I'j,,). For repeated roots (1 <
m < kj):
(iw — cj)ki (iw—cj)  (iw—cj)

Lk
k.

A g 121

To solve we must invert 5= 1 —y7> m = 1. We know (8.6a)
71 ( 1 ) B e t>0
w—a 0 t<0
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for Re(a) < 0, so we assume Re(c;) < 0, Vj (eliminate exponential growing modes).

For m = 2 note i% <iw1_a) = (iwia)g and recall (8.12) F(tf(t)) = if'(w), so
]__1< 1 )_ te® >0
(iw—a)2) o t<0
By induction,
1 et >0
F ( | ) _ ey 8.34
(lw —a)™ 0 t<0 (834
Thus the response function takes the form
et
j m '

We can solve (8.31) in Green’s function form (8.30) or directly invert R(w)J(w) for
polynomial J(w).

Example (Damped oscillator). Solve
Ly=y"+2py + (0* +¢*)y = £(t)

with damping p > 0 and homogeneous initial conditions y(0) = y'(0) = 0. Fourier
Transform is )
(iw)*y + 2ipwy + (* + 4" = f

/
_w2 + 2pr + p2 + q2

Inverting with convolution theorem (8.17)

Y=

u(t) = /0 n(t — 7)f(r)dr

with response

1 00 tw(t—T)
R(t—71)= / c dw

21 ) oo P + 2 + 2ipw — w2

Exercise: Show LR(t —7) = 0(t — 7) using (8.23). That is, the response function for
R(t — 7) is the Green’s function (see Example sheet 3, Q4).

8.6. Discrete Fourier Transforms

Discrete sampling & the Nyquist frequency

Sample a signal h(t) at equal times ¢, = nA with time-sampling A, and values

hp = h(nA), n=...,—-2,1,0,1,2,... (8.36)
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i.e. with sampling frequency % (ws =27fs = %7‘)

The Nyquist frequency f. = i (8.37) is the highest frequency actually sampled at A.
Suppose we have a signal with given frequency f.

gy(t) = Acos(2m ft + ¢)
— Re(AGQWift-‘rd))

— %(Ae"‘z’ez”f Pt AemiPem2mift) (8.38)

(i.e. for real complex Fourier Series, the sum of positive frequencies f and negative

frequency —f modes).
What happens if we sample at Nyquist f = f.?

9y (tn) = Acos(2m (21AnA + ¢>

= Acosmncos ¢ + Asinnmsin ¢
= A’ cos(2m foty) (8.39)

with A’ = Acos¢. So phase / amplitude information is lost (no distinction) and we can
identify f. <> —f. i.e. (8.38) and (8.39) are aliased together.

What happens if we sample above f > f.? Exercise: Take f = f. +df > f. and show
that (0f < f¢)

gf(tn) = Acos(2m(fe +6f)tn + @)
= Acos(2n(fe—0f)tn — @) (8.40)

So the effect is to alias a “ghost signal” to frequency f. — 0 f (actually - —(f. — 0 f)).

Sampling Theorem

A signal g(t) is bandwidth limited if it contains no frequencies above wmax = 27 fiax, 1.€.

g(w) =0 for |w| > wWmax. So

ot) = - / " (@) tdw

1 Wmax .
=5 g(w)e™tdw (8.41)
—Wmax

Set sampling to satisfy Nyquist condition

1

A =
2fmax

then

1 Wmax ~ -
m=gl) =g [ g

Wmax
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which is complex Fourier series coefficient (1.13) ¢, x “22x (2 — w). The Fourier Series
represents a periodic function (period 2wpax)

~ ™ - —TNW /Wmax
Jper(w) = Z gne / (8.42)

Wmax
n=—oo

The actual Fourier Transform §(w) is found by multiplying by a “top hat”

7 1 < max
h(w) = { o] < w

0 otherwise

N () = e (@)A(w) (8.43)

which is an ezact relation. Inverting with (8.42):

27 J_
1 o0 Wmax
= Z gn/ exp(iw <t— nr ))dw
2Wmax < o Wimax Wmax
o .
sin(wmaxt — ™
-3 g (Wma ) (8.44)

w t—1mn
n——o00 max

So g(t) can be exactly represented after sampling at discrete times ¢, (sampling theo-
rem).
Discrete Fourier Transform

Suppose we have a finite number N of samples
him = h(tm), tm=mA, m=0,1,...,N—1 (8.45)

We want to approximate the Fourier Transform for IV frequencies using equally spaced
frequencies A :NNLA in the range —f. < f < fo. We could take f, = nAy = %

with n = —%,—7 + 1,...,—1,0,1,...,%. But this has N + 1 frequencies, with f,
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and — f, aliased (8.39). Instead, note that (% +m) Ay = f.+6f is aliased back to
(% —m) Ay = —(f.—df) from (8.40) so we choose
N N N

n
—— with 0,1,2,..., ——1, 1,...,N—-1
fn NAWI n=4u1,sz, 72 2 2+

The discrete Fourier Transform at frequency f, becomes (8.46)

() = [ e

N-1
~ A Z hye~ 2 fntm

m=0
N-1
- A Z hm€727rzmn/N

m=0

= Ahg(fn) (8.47)

Recalling section 8.2 Fourier series — Fourier transform Riemann integral. Here hd( fn) =
h,, is the discrete Fourier Transform. So the matrix [DFT ]mn — e~ 2mmn/n defines the
discrete Fourier Transform for h = {h,,} (data vector) as hy = [DFT]h.

The inverse is its adjoint [DFT]~! = +[DFT]" and it’s built from roots of unity w =
e=2m/N _ For example N =4, w = —i,

1 1 1 1
1 — -1
DFT = 1 -1 1 -1
1 ¢ -1 —i
The inverse DFT is
hm = h(ty)
1 [ )
= — h(w)e™ '™ dw
27 J_ o
m ~ .
:/ h(f) 27rzftmdf
N—
Z 27rimn/N
m=0
L V-
N Z 27mmn/N (848)
or interpolating Fourier series is h(t) = & S0 hy,e?™m /N,
Exercise: Establish Parseval’s theorem
N-1 1 N-1
i * = = Y || (8.49)
N
= m=0
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The convolution theorem for g, Ay, is

N-1
k=Y gmhk-m = & = Grhu (8.50)

m=0

85



Chapter IV

PDEs on Unbounded Domains

Contents
9. Characteristics| 87
9.1. Well-posed Cauchy Problems| . . . . . ... ... ... ....... 87
9.2 Method of Characteristicsl . . . . . . . . . . ... .. ... ... .. 87
9.3. Characteristics of a Ist order PDE] . . . . . . . . . ... ... ... 88
9.4. Second-order PDE classificationl . . . . . . . . . ... ..o 90
[9.5. General solution for Wave Equation (D’Alembert)l . . . . . . .. .. 92
[10. Solving PDEs with Green’s Functions 94
10.1. Diffusion equation and Fourier transform| . . . . . . . . . . . .. .. 94
10.2. Forced heat (diffusion) equation|. . . . . . . . . . . . ... ... .. 95
10.3. Forced wave equation| . . . . . . . . . . ... oL 97
10.4. Poisson’s Equation| . . . . . . . .. ... .. oL 98
[[0.5. Method of images| . . . . . . . . . . . . . . i 101

86



9. Characteristics

9.1. Well-posed Cauchy Problems

Solving PDEs depends on the nature of the equations in combination with the boundary
and / or initial data. A Cauchy problem is the PDE for ¢ together with this auxillary
data (i.e. ¢ and its derivatives) specified on a surface (or curve in 2D), which is called
Cauchy data.

A Cauchy problem is well-posed if:

(i) a solution exists

(ii) the solution is unique item the solution depends continuously on auxillary data.

9.2. Method of Characteristics

Consider a parametrised curve C given by (z(S), y(s)) with tangent vector v = <g—§ (s), % (s)) .

YN

> X
For a function ¢(z,y) we can define a directional derivative along C'

do| _ du()09 _ dy(s) 96 _

_ v . 1
ds |- ds Oz ds 0Oy v Vol (9.1)
If v-V¢ =0, then % = 0 and ¢ = constant along C.
Now suppose we have a vector field
u = (a(z,y), B(z,y)) (9.2)

with its family of integral curves C' non-intersecting and filling R? (i.e. at a point (z,y)
the integral curve has tangent u).
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da(t) dy(t)

dt > dt

is nowhere parallel to u. Label each integral curve C of u using ¢ at the intersection
point with B, then use s to parametrise along the curve (i.e. take s =0 at B).

Our integral curves (x(s,t),y(s,t)) satisfy:

Define a curve B by ((x(t), y(t)) transverse to u, such that its tangent w = (

dz

Cmatwy, L=y 93)

Solve these to find a family of characteristic curves along which ¢ remains constant (i.e.
new coordinates (s,1)).

9.3. Characteristics of a 1st order PDE

Consider 1st order linear PDE

a(w,y)gi + B(z,y)

99 _

5y =" (9.4)

with specified Cauchy data on an initial curve B (z(t), y(t)):

Note from (9.1) and (9.2) that

d
age + 6y =u- Vo= 3
C

is the directional derivative along integral curves C of u = («, 3), called the characteristic

curves of the PDE. Since % = a¢y + fo, = 0 from (9.4), the function ¢(z,y) will be

constant along the curves C, i.e. the Cauchy data f(¢) defined on B at s = 0 will be
propagated constantly along the curve C to give solution

¢(s,t) = ¢(x(s,1), y(s,t)) = f(t) (9.6)
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To obtain ¢(z,y) transform coordinates from ¢(t, s) using s = s(x,y), t = t(z,y) (pro-
vided Jacobian J = xys — xsy; # 0) to finally obtain

¢(z,y) = f(t(z,y)) (9.7)
Prescription: To solve (9.4) with (9.5)

(1) Find characteristic equation (9.3) % = q, % = 5.

(2) Parametrise initial conditions on B (x(t),y(t)) (9.8)

(3) Solve characteristic equation (9.3) to find x(s,t) and y(s,t) subject to (9.8) at s = 0,
2(0,t) = z(t), y(0,t) = y(?).

(4) Solve (9.4) with (9.1)
do

ds :Oéd)m‘f'ﬁﬁbyzo
(9.6) ¢(s,t) = f(t) [or y(s,t) on RHS].
(5) Invert relations s = s(x,y), t = t(z,y).

(6) Change coordinates to obtain (9.7), ¢(z,y).

Example. Solve ¢, + ¢, = 0 with ¢(x,0) = coshz.

(1) Characteristic equations
dz - dy
p— _— = 1
ds ds ()

(2) Initial conditions z(t) = t, y(t) = 0 on the z axis (7).

(3) From (x), g—f =ds, e®*=s+c,y=58+d Ats=0,2 =0, —et =g,
y=0=d.
(characteristics).

(4) % =0 = ¢(s,t) = cosht.

(5) s=y,et=y+e? = t=—log(y+e%).

(6) So
¢(x,y) = cosh[—log(y + e~ ")]

Inhomogeneous 1st order PDE

Want to solve
a(z,y)pz + B(z,y)dy = v(z,y) (9.9)
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with Cauchy data ¢(x(t),y(t)) = f(t) on curve B. The characteristic curves C' are
identical to homogeneous case (9.4) but now (9.1) implies

do| B
&s|, =W V=) (9-10)

with ¢ = f(t) at s = 0 on B, i.e. no longer propagating constantly and we must solve
an ODE (9.10). So upgrade point 4 in prescription to integrate ¢(s,t) before reverting

to ¢(z,y).
Example. Solve ¢, + 2¢, = ye* with ¢ =sinz on y = =.
(1) Characteristic equation
(2) So ony =z, take (2(t),y(t)) = (t,¢) ().
(3) From (%), x =s+c¢, y=2s+d. So because of (1), s =0,z =t=c,y=1t=d.
T =s+1, y=2s+t
(4) Solve 3¢ = 4 = ye® = (25 + t)e*t! with ¢ = sint at s = 0. Note & (2se®) =

2e% + 2se® so
o(s,t) = (25 — 2+ t)e*t" + const

But at using s = 0 condition we have ¢(0,t) = sint = (t — 2)e! + const so

B(s,t) = (25 — 2+ )’ 4 sint + (2 — t)e’

(5) Invert s =y —z, t = 2x — y.

(6) So
$(a,y) = (y — 2)e” + (y — 22 +2)e 7Y +sin(2z — y)

9.4. Second-order PDE classification

In two dimensions, the general 2nd order linear PDE is

0? 0? 0? 0 0
£ = ala ) 55 + 20w 0) g o) 5+ dlo ) G+ ) 50+ Fla o) =0

Ox? 0y? Ox oy
The principal part is given by

op(x,y, ke, ky) = KTAK

=) (5000 20 ()
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The PDE is classified by the eigenvalues of A:
e b2 —ac < 0 elliptic (A1, Ay same sign)
e b2 —ac > 0 hyperbolic (A1, A2 opposite sign)
e b2 — ac parabolic (A1 or Ao = 0)

Exercise: show this from det(4 — AI), i.e. Ay = 5(Tr4+/Tr* —4det).

Examples

e Wave equation (3.4)
10% 9%
o2 922
a=-%,b=0, c=—1is hyperbolic.

C

e Heat equation (4.3) a =0, b =0, ¢ = —D is parabolic.

e Laplace equation (5.1) a =1, b =0, ¢ =1 is elliptic.

Characteristic curves

A curve defined by f(z,y) = 0 will be a characteristic curve if

(fz fy) <Z ﬁ) @3) =0 (9.12)

(generalisation 1st order Vf-u =0, u= («a, 3)). The curve can be written as y = y(z)
where

of  Ofdy fo _dy
Ox + Oy dx fy dx ( )
Substituting into (9.12) we obtain a quadratic with solution
+ /b2 —
dy _b=vh —ac (9.14)

dr a
(exercise).
e Hyperbolic if > — ac > 0, then 2 solutions
e Parabolic if b — ac = 0, then 1 solution

e Elliptic if b — ac < 0, no real solutions

Transforming to characteristic coordinates (u,v) would set @ = ¢ = 0 in (9.11) so the
PDE takes canonical form
0%
+ ..
Oudv
where the dots would be lower-order terms ¢y, ¢, » (Refer to section 9.4 in R Josza
lecture notes).

=0 (9.15)
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Example. Consider
—YPrz + bey =0

(%)

With a = —y, b =0, c =1, b* — ac = y. So hyperbolic for y > 0 (elliptic for y < 0,

parabolic for y = 0). Find characteristics for y > 0 satisfying (9.14)

d b+ Vb2 — 1
dy_bxvPoec, 1 _, oo e

der a VY

2
— L0

:I::
3 T =cyt

so characteristic curves are

_ 2 3 _ 2 3
u = 3y +z, v = 3y T
Derivatives are u; = 1, uy, = y1/2, Ve = —1, vy = y1/2. Hence

Gz = Gully + PuVz = Py — Dy

¢y = 4"/ (du + 60)
d):m: = ¢uu - 2¢uv + ¢vv

¢yy = y(¢uu + 2040 + ¢vv) + (ﬁbu + ?bv)

1
2y1/2
From (x)

1
_y¢xx + Qbyy = y(4¢uv T W((ﬁu + ¢v) =0

Now using u 4+ v = 2¢%/2 and y > 0, the canonical form is
3Y Y

¢uv+6 (¢y+¢v)zo

(u+v)

9.5. General solution for Wave Equation (D’Alembert)
Solve (3.4)

L0 _&¢ _

2otz Ox?

with initial conditions

<f>($a0) = f(IL’), ¢t(x70) = g(a:)

With a = C%, b =0, ¢ = —1 the characteristic equation
dz —0£,/0+2%
T S

c
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so choose u = x — ¢t and v = z 4+ C't, which yields simple canonical form:

0%¢ B
oudv

Integrate with respect to u, % = F(v) and then with respect to u

6=+ [ Fl)dy=Glu) + HE)
Impose our initial conditions at t = 0 when u = v = x,
¢(z,0) = G(z) + H(z) = f(x)

$1(2,0) = —cG'(x) + cH'(z) = g()

Differentiating (x):
G'(z) + H'(x) = f'(2)

So () and (1)

— H/(r) = 5(f'(@) + ~g(x))
Integrate )
() = 5(@) = 10) + 5 [ sty
and from (x) ' o
Gla) = 5(7() = 10) = 5 [ oty

Putting together:
¢(z,t) = G(x — ct) + H(z + ct)

x+ct
- %(f(x —ct) + f(w+et)) + o /“t 9(y)dy
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10. Solving PDEs with Green’s Functions

10.1. Diffusion equation and Fourier transform

Recall heat equation (4.3) for a conducting wire

o0 020
— - D— = 10.1

with initial conditions 6(z,0) = h(zx) with § — 0 as * — £oo. Take the Fourier
Transform with respect to = using (8.13)

o
0k, t) = —Dk*0(k, )

Integrate 0(k,t) = Ce Pt with initial conditions 8(k,0) = h(k), we have
O(k,t) = h(k)e PFt
Now invert

R Y A DK% ik
9(:5,75)_%/ h(k)G o dk

—0o0

1 o0 —(x — u)2> .
= h(u)exp | ————— ) du by convolution theorem (8.17
s | mwes (U5, y (5.17)

= /_OO h(u)Sq(z — u,t)du (10.2)

where the fundamental solution is

1 2
Sy(z,t) = ————e /4Dt 10.3
0= Vi 103
(Fourier transform is Sy(k, t) = e P¥*t). Also known as diffusion kernel or source.

( N
Note. With localised initial conditions (z,0) = 6pd(x) then

0o 2
e 10.4
VAam Dt ( )

where n = —% is the similarity parameter. Initial condition ¢ > 0 spreads smoothl
= 3D Y Y

as a Gaussian.
. J

«9(.%,75) = QQSd(ZL‘,t) =
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Example (Gaussian pulse). Suppose initially

flz) = \/Zeoeax2

O(z,1) fov/a exp [—auZ—W] du

B VAr2Dt 4Dt
_ Oov/a [ exp (14 4aDt)u? — 2zu + 2 du
Vam2Dt J - 4Dt
6 o 1+ 4aDt 2 —ax?
/I S B O Y b 56 v |
VAT2Dt J— o 4Dt 1+4Dt 1+ 4aDt

a —(Z.'E2
— 0./ 10.
0\ 71 + 4Dt) P [1 +4aDJ (105)

Here, width spreads as standard deviation o< v/t with area constant (i.e. heat energy
conserved).

Start of
lecture 23 10.2. Forced heat (diffusion) equation

Consider
0 a1~ DL, t) = (1) (10.6)
5 x, 502 xz,t) = f(x, .

with homogeneous boundary conditions #(x,0) = 0. Construct a 2D Green’s function
G(x,t;€,7) such that

oG 0*G

— —-D— =9 ot — 10.7

DY = b, )5(t ) (10.7)
with G(z,0;§,7) = 0. Take Fourier Transform with respect to z using (8.23)

8;; + DE*G = e7™*5(t — 1)

Using multiplicative factor eP**t

gt[eDthé] — 6ik§+Dk2t5(t - 7_)

Integrate with respect to t using G =0, at t =0

~ . t ’
PG = e_mé/ Pkt St —r)dt’ by (6.7)
0

= e DR T (4 — )
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G(z,t;¢,7) = H(t — T)e_"kge_Dk%_T)

So inverting we get Green’s function

Gz, t;¢,7) = Hii-1) / T e ha DR g,

2T
H t/ o0 . ! /

B ()/ e e= DR g t'=t-—ra' =x-¢

27 J_ o

H(t /
- #6*12/41% see section 8.1

47 Dt/
=H(t —7)8(x — §),t =) (10.8)

where Sy is the fundamental solution (10.3). General solution is

0z t) //Gmg, Vf(€,7)dédr
_/0 /Oof(u,T)Sd(x—u,t—T)dudT (10.9)

This is an example of Duhamel’s principle relating (i) solution of forced PDE with
homogeneous boundary conditions (10.6) to (ii) solutions of homogeneous PDE with
inhomogeneous boundary conditions (10.1).

Recall solutions of (10.1) with initial conditions at ¢t = 7

0(s,1) = /_Oo F)Sa(z —u,t —7)du (¢ > 7)

So forcing term f(x,t) at ¢ = 7 acts as an initial condition for subsequential evolution.
The integral (10.9) is a superposition of all these initial condition effects for 0 < 7 < ¢.
Duhamel’s principle

Let £ be a linear differential operator involving no time derivatives, and D a spatial
domain D in R™. Let P®f denote the solution to the homogeneous problem:

up— Lu=0 (x,t) € D x (s,00)
u=20 on 0D
u(z,s) = f(x,s) x€D

Then the solution to the forced problem:

—Lu=0 (x,t) €D x(0,00)
u=20 on 0D
w(z,0)=0 z€D

is given by

u(a:,t):/o (P°f)(z,t)ds
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10.3. Forced wave equation

Consider

o _ 200 _

52 ¢ 9.2 f(x,t) (10.10)
with ¢(x,0) =0, ¢¢(x,0) = 0. Construct Green’s function
G 0

a2~ 9x2
with G =0, G¢ =0 at t = 0. Take Fourier transform with respect to x
e - .
a2 T Ak2G = e 5t — 1)

Recall section 7.4 for IVP Green’s function (7.26)
é:{O t<T:eiikainkc(t_T)H(t—T)

6_ik§ sin kzit—’r) t> 7 Le

=0(z—&)o(t —7)

Invert Fourier Transform
N B
' —— ~
o< ik (T —§) sinkc(t —7)
_H(t—r).Q/ cosk:Asmk:Bdk
27TC 0 k
_ H(t—r1) /°° sink(A + B) —sin(A — B)
B k
0

dk

dk

2me

= H(ilcT)[sgn(A + B) —sgn(A — B)]
_H{-7)
= — 4 [2H(B -~ |4])]
Now with H(t—7) = B = ¢(t—7) > 0so only non-zero if |A| < B, i.e. |[z—&| < c(t—7).

So Green’s function or causal fundamental solution is

Gla,t:€,7) = %CH(c(t Cr) =l —g)) (10.11)
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The solution is
o) = [ [ renc e nicr

1 t  pxtc(t—r)
= / / f(&, m)dedr (10.12)
2c 0 Jax—c(t—7)
Exercise: relation (10.12) to D’Alembert’s solution with initial conditions (9.18) at ¢t = 0,
¢ =0, ¢ = g(x) as an example of Duhamel’s principle.
10.4. Poisson’s Equation
V2 = —p(x) (10.13)

on domain D with Dirichlet boundary conditions ¢ = 0 on 9D.
Fundamental solution: The 6(x) function in R? has the following properties:

S(x—x)=0, Vx#x

/ §(z — x')dx = {1 x €D (10.14)
oD

0 otherwise
Sampling property
| F0030x = x)x = fx)
D
The free-sapce Green’s function is defined to be
V3G (x;x') = §(x — x) (10.15)

with homogeneous boundary conditions on R, G — 0 as x — 0o.

This is spherically symmetric about x’, so the fundamental solution can only depend on
the scalar distance G(x;x’) = G(|x —x'|) = G(r). WLOG x’ = 0. Integrate (10.15) over
ball B radius r around x’ = 0.
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= by (10.14)

So

dr  4mr2 - Adwr ¢

But G — 0 as r — o0, so ¢ = 0. Free-space Green’s function:

G(x;x') = (10.16)

1
4r|x — x/|

6(x) 1 /°° PX)

T o x|

General solution in R?

Exercise: Similarly in R? derive
/ ]‘ /
Gop(x;x') = o log(|x — x'|) + ¢2

Green'’s ldentities

Consider two scalar functions ¢, ¢ twice differentiable on D.

/ V- (pVi)dx = / (626 + Vo - Vip)dx
D D

= [ ¢V -hdS (10.17)
oD

This is Green’s first identity ¢ < 1 and subtract from (10.17), then Green’s second
identity

o 09 _
/8 ) <¢6n _ 8n> ds = /D (6V2) — V2 ¢)dx (10.18)

Now consider a small spherical ball B, (radius ¢) about x (WLOG x’ = 0) Take ¢ in
(10.18) such that V2¢ = —p(x) and ¢ = G(x;x) (V3G = §(x — x'))
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RHS = (p V3G -G V3¢p)dx

D-B. \/:p

= / Gpdx
D—B.

B oG 09 oG _ 99
b= [ (626 60Yas [ (20 62)as

(%)

Second integral on small sphere S., € — 0 (outward normal on S, points in — direction)

/E(*)dS = <¢ <—4771€2> - 47352(2% dme? = —¢(0)

(¢ denotes the average value, because we are on S.) Combining (with arbitrary x’ now)
we get Green’s third identity

N = X'X/ —pX X XaEX'XI — X'Xlaﬁx
o) = [ Goxx)popax+ [ (0605 (ix) - Glxx) 5000 ) s (1019

Dirichlet Green’s function:
Solve V2¢ = —p on D with inhomogeneous boundary conditions ¢(x) = h(x) on 9D.
Dirichlet Green’s function satisfies

(i) V2G(x;x') =0, Vx #x/
(ii) G(x;x’) =0 on 9D.

(iii) G(x;x') = Gps(x;x') + H(x;x') with V2H(x;x') =0 Vx € D.
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Green’s second identity (10.18) with V2¢ = —p, VZH =0

OH 98\ .
/w <¢8n - H8n> ds = /Ddex (1)

Now we use Gps = G — H in Green’s third identity (10.19)

o) = (G- mpaxs [ (62EH oo mgl)as

Subtract H terms above in (1) (G =0, ¢ = h on 9D)

qb(x’):/DG(X;X’)(—p(x))dx—i—/a h(x)gg(x;x’)ds (10.20)

D

Exercise: Use (10.18) to show that GF is symmetric (third identity), G(x;x') = G(x'; zbf),
Vx #£ X/

For Neumann BCs specifying
99
on 0D we have
o(x) = [ Gxx)(—p(x))dx+ | G(x;x)(—K(x))dS
oD oD

(see RJ lecture notes)

10.5. Method of images

For symmetric domains D we can construct Green’s functions with G = 0 on 9D by
cancelling the Boundary non-zero values by placing “an image” of Green’s function
outside D.

Laplace’s equation on half-space

Solve V¢ = 0 on D = {(z,y,2) : 2 > 0} with ¢(z,y,2 = 0) = h(z,y) and ¢ — 0 as x —
oo. Now fundamental solution G(x;x’) — 0 as [x — oo, but G # 0 at z = 0. So for G at

x' = (2/,y, Z') subtract “image” G at x”" = (2/,¢/, —2'). G(x;x') = L <4ﬂ|x1_x,,|>

T dn|—x']
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& ) 1 1
X;X;) =
RUNIE -yl -7 i/ (y—y)?+(z—2)?
=0if 2 =0, i.e. satlsﬁes the Dirichlet BCs on all 9D. Contrlbutlon from the Boundary
0G| _ oG
on z=0 a 0z z=0
1 < z—2 2+ 2 >
dr \|x=x'|>  |x=x"]3)|,_,
/
= =2+ (y—y)? + %) (10.22)
™

Solution is then from (10.20) (no sources)
sy ) = = / / (x— 2+ (y— )2 + 22 2h(e,y)dedy  (10.23)

Wave equation for x > 0

¢ ,0%

o012 c 2 :f(:n,t)

BCs ¢(0,t) = 0 Dirichlet BCs. Create matching Green’s function from (10.11) with
opposite sign centred at x = —¢

Gla,t:6,7) = 5 H(e(t = 7) |2 = €]) = - Hle(t =) ~ | +€)

Similarly, for a homogeneous Neumann BC at x = 0 %} |o—0 = 0 for all ¢ the appropriate
Green’s function is

Hc(t—7) o —¢) | Hlc(t—7) — |z +£])

Gz, t;¢,7) = on 5%
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[ Note. Image has the same sign.

For small z >0, | = ¢{|=¢&—x, |t +{ =2 +&. Forall t

aﬁ
on

1

= 5Ol =)~ =€)+ 8elt = 7) ~ |+ €D (1)a—0 = 0
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