% vim: tw=50 % 03/11/2022 10AM \begin{hiddenflashcard} What does $\nu_k(i)$ represent? \[ \nu_k(i) = \cloze{\EE_k \left[ \sum_{l = 0}^{\tau_k - 1} \mathbbm{1}(X_l = i) \right]} \] \end{hiddenflashcard} \begin{flashcard}[nu-k-invariant-measure] \begin{theorem*} If $P$ is irreducible and recurrent, then $\nu_k$ is \cloze{an invariant measure\fcscrap{ ($\nu_k = \nu_k P$)} satisfying \[ 0 < \nu_k(i) < \infty ~\forall i \prompt{\qquad \text{and} \qquad \nu_k(k) = 1} \]}\fcscrap{and \[ \nu_k(k) = 1 \]} \prompt{\\[-2\baselineskip]} \end{theorem*} \end{flashcard} \begin{proof} Obviously $\nu_k(k) = 1$. Let $i \in I$. We will prove \[ \nu_k(i) = \sum_j P(j, i) \nu_k(j) \] By recurrence we get $\tau_k < \infty$ with probability 1 and $X_{T_k} = k$. So \begin{align*} \nu_k(i) &= \EE_k \left[ \sum_{l = 1}^{T_k} \mathbbm{1}(X_l = i) \right] \\ &= \EE_k \left[ \sum_{l = 1}^\infty \mathbbm{1}(X_l = i) \mathbbm{1}(\tau_k \ge 1) \right] \\ &= \sum_{l = 1}^\infty \PP_k(X_l = i, \tau_k \ge l) \\ &= \sum_{l = 1}^\infty \sum_j \PP_k (X_l = i, X_{l - 1} = j, \tau_k \ge l) \\ &= \sum_{l = 1}^\infty \sum_j \PP_k(X_l = i \mid X_{l - 1} = j, \tau_k \ge l) \PP_k(X_{l - 1} > j, \tau_k \ge l) \end{align*} \[ \{\tau_k \ge l\} = \{T_k \le l - 1\}^c \] By the Markov property \begin{align*} \PP_k(X_l = i \mid X_{l - 1} = j, \tau_k \ge l) &= \PP_k( \tau_l = i \mid X_{l - 1} = j) \\ &= P(j, i) \end{align*} so \begin{align*} \nu_k(i) &= \sum_{l = 1}^\infty \sum_j P(j, i) \PP_k(X_{l - 1} = j, \tau_k \ge l) \\ &= \sum_j P(j, i) \EE_k \left[ \sum_{l = 1}^\infty \mathbbm{1}(X_{l - 1} = j, \tau_k \ge l) \right] \\ &= \sum_j P(j, i) \EE_k \left[ \sum_{l = 0}^{\tau_k - 1} \mathbbm{1}(X_l = j) \right] \\ \implies \nu_k(i) &= \sum_j \nu_k(j) P(j, i) \end{align*} for all $i$. So since $\nu_k(i) > 0$: \[ \nu_k = \nu_k P^m \] for all $m$ \[ \nu_k(i) \ge \nu_k(k) P_{ki}(m) = P_{ki}(m) \] By irreducibility there exists $m$ such that $p_{ki}(m) > 0$ so $\nu_k(i) > 0$. \[ \nu_k(k) = \sum_j \nu_k(j) p_{jk}(m) \] \[ 1 = \nu_k(k) \ge \nu_k(i) p_{ik}(m) \] Take $n$ such that $p_{ik}(n) > 0$ (irreducibility of $P$) then we get \[ \nu_k(i) \le \frac{1}{p_{ik}(n)} < \infty \qedhere \] \end{proof} \begin{theorem*} If $P$ is irreducible and $\lambda$ is an invariant measure satisfying $\lambda_k = 1$, then \[ \lambda \ge \nu_k \quad (\forall i ~\lambda_I \ge \nu_k(i)) \] If $P$ is also recurrent, then $\lambda = \nu_k$. \end{theorem*} \begin{proof} $\lambda_i \ge 0$ for all $i$. \begin{align*} \lambda_i &= \sum_j \lambda_j P(j, i) \\ &= P(k, i) + \sum_{j_1 \neq k} P(j, i) \lambda_{j_1} \\ &= P(k, i) + \sum_{j_1 \neq k} P(k, j_1) P(j_1, 1) + \sum_{\substack{j_1 \neq k\\j_2 \neq k}} P(j_2, j_1)P(j_1, i) \lambda_{j_2} \\ &= P(k, i) + \sum_{j_1 \neq k} P(k, j_1) P(j_1, i) + \cdots + \sum_{j_1, \dots, j_{n - 1} \neq q} P(k, j_{n - 1}) \cdots P(j_1, i) \\ &~~~~~+ \sum_{j_1, \dots, j_n \neq k} P(j_n, j_{n - 1}) \cdots P(j_1, i) \lambda_{j_n} \end{align*} So \[ \lambda_i \ge \PP_k(X_1 = i, \tau_k \ge 2) + \PP_k(X_2 = i, \tau_k \ge 3) + \cdots + \PP_k(X_n = i, \tau_k \ge n + 1) \] so \begin{align*} \lambda_i &\ge \EE_k \left[ \sum_{l = 1}^n \mathbbm{1}(X_l = i, \tau_k \ge l + 1) \right] \\ &= \EE-k \left[ \sum_{l = 0}^n \mathbbm{1}(X_l = i, l \le \tau_k - 1) \right] \\ &= \sum_{l = 0}^n \EE_k [\mathbbm{1}(X_l = i, l \le \tau_k - 1)] \\ &\to \sum_{l = 0}^\infty \EE_k [\mathbbm{1}(X_l = i, l \le \tau_k - 1)] \\ &= \nu_k(i) \end{align*} $\lambda_i \ge \nu_k(i)$ for all $i$. \\ If $P$ is recurrent, then $\nu_k$ is an invariant measure with $\nu_k(k) = 1$. So we also have that $\mu_i = \lambda_i - \nu_k(i)$ is an invariant measure, since we know $\lambda_i \ge \nu_k(i)$, hence $\mu_i \ge 0$. Need to show that $\mu_i = 0$ for all $i$. Let $i \in I$. \[ 0 = \mu_k = \sum_j \mu_i P^m (j, k) \quad \forall m \] \[ \implies \mu_k \ge \mu_i P^m (i, k) \] Take $m$ such that $p_m(i, k) > 0$. Then $\mu_i = 0$. \end{proof} \begin{remark*} If $P$ is irreducible and recurrent, then all invariant measures are unique up to multiplicative factors. \end{remark*} \noindent Question: When can we get an invariant distribution $\pi = \pi P$, $\sum \pi_i = 1$? \myskip Let $P$ be irreducible and recurrent. By the uniqueness (up to multiplication) we can get an invariant distribution (unique) if \[ \sum_{i \in I} \nu_k(i) < \infty \] Then \[ \pi_I = \frac{\nu_k(i)}{\sum_j \nu_k(j)} \] \begin{align*} \sum_{i \in I} \nu_k(i) &= \sum_{i \in I} \EE_k \left[ \sum_{l = 0}^{\tau_k - 1} \mathbbm{1}(X_l = i) \right] \\ &= \EE_k \left[ \sum_{l = 0}^{\tau_k - 1} \sum_{i \in I} \mathbbm{1}(X_l = i) \right] \\ &= \EE_k[\tau_k] \end{align*} If $\EE_k[\tau_k] < \infty$, then we can normalise. \begin{flashcard}[positive-null-recurrent] \begin{definition*} Let $P$ be irreducible and recurrent\fcscrap{, $\tau_k = \inf\{n \ge 1 : X_n = k\}$, $\PP_k(\tau_k < \infty) = 1$ for all $k$}. We say $k$ is \emph{positive recurrent} if \[ \cloze{\EE_k[\tau_k] < \infty} \] We say $k$ is \emph{null recurrent} if \[ \cloze{\EE_k[\tau_k] = \infty} \] \fcscrap{If $k$ is positive recurrent, then \[ \pi_k = \frac{\nu_k(k)}{\EE_k [\tau_k]} = \frac{1}{\EE_k [\tau_k]} \]} \end{definition*} \end{flashcard}