% vim: tw=50 % 27/10/2022 10AM \begin{corollary*} All states in a communicating class are either all recurrent or all transient. \end{corollary*} \begin{theorem*} If $C$ is a recurrent communicating class, then $C$ is closed. \end{theorem*} \begin{proof} Let $x \in C$ and $x \to y$, but $y \not\in C$. Since $x \to y$, $\exists m \ge 0$ such that $p_{xy}(m) < 0$, so \[ \PP_x(V_x < \infty) \ge p_{xy}(m) > 0 \] SO this shows that $x$ is transient, contradiction. \end{proof} \begin{theorem*} A \emph{finite} closed class is recurrent. \end{theorem*} \begin{proof} Let $x \in C$. Since $X$ is finite, $\exists y \in C$ such that \[ \PP_x(X_n = y \text{ for infinitely many $n$}) > 0 \] by the pigeonhole principle. \begin{align*} \PP(X_n = y \text{ for infinitely many $n$}) &\ge \PP_y(X_m = x, X_n = y \text{ for infinitely many $n \ge m$} \\ &= \PP_y(X_m = y \text{ for infinitely many $n \ge m$} \mid X_m = x) \PP_y(X_m = x) \\ &= \PP_x(X_n = y \text{ for infinitely many $n$}) p_{yx}(m) \\ &> 0 \end{align*} so $\PP_y(X_n = y \text{ for infinitely many $n$}) > 0$. So $y$ is recurrent. \end{proof} \begin{theorem*} Let $P$ be irreducible and recurrent. Then for all $x, y$ \[ \PP_x(T_y < \infty) = 1 \] \end{theorem*} \begin{proof} \begin{align*} \PP_x(X_n = y \text{ infinitely many times}) &= \PP_X(T_y < \infty, X_n = y \text{ for infinitely many $n \ge T_y$}) \\ &= \PP_x(X_n = y \text{ infiniteley many } n \ge T_y \mid T_y < \infty) \\ &~~~\cdot \PP_x(T_y < \infty) \\ &= \PP_y(X_n = y \text{ infinitely many $n$}) \cdot \PP_x(T_y < \infty) \\ &= \PP_x(T_y < \infty) \end{align*} Suppose $\PP_x(T_y < \infty) < 1$. Then $\PP_x(T_y = \infty) > 0$. Pick $p_{yx}(m) > 0$, and define \[ \tilde{T}_y = \inf\{n \ge m : X_n = y\} \] Then \begin{align*} \PP_y(V_y < \infty) &\ge \PP_y(X_m = x, \tilde{T}_y = \infty) \\ &= \PP_y(\tilde{T}_y = \infty \mid X_m = x) \PP_y(X_m = x) \\ &= \PP_x(T_y = \infty) p_{yx}(m) \\ &> 0 \end{align*} so $y$ is transient. \end{proof} \newpage \section{Simple random walks on $\ZZ^d$} \begin{definition*} A simple random walk on $\ZZ^d$ is a Markov chain with transition matrix \[ p(x, x + e_i) = p(x, x - e_i) = \frac{1}{2d} \quad \forall x \in \ZZ^d, ~ \forall i = 1, \dots, d \] where $e_i$ is the standard basis of $\RR^d$. \end{definition*} \begin{theorem*}[P\'olya] A simple random walk is recurrent when $d \le 2$ and it is transient when $d \ge 3$. \end{theorem*} \begin{proof} \renewcommand\qedsymbol{} \begin{enumerate} \item[$d = 1$] Need to show 0 is recurrent, i.e. we want to show \[ \sum p_{00}(n) = \infty \] \[ p_{00}(n) = \PP_0(X_n = 0) \] \[ \PP_0(X_{2n} = 0) = {2n \choose n} \cdot \left( \half \right)^{2n} = \frac{(2n)!}{n!n!} \frac{1}{2^{2n}} \] Recall Stirling's formula: $n! \sim n^n e^{-n} \cdot e^{-n} \cdot \sqrt{2\pi n}$ so \[ \PP_0(X_{2n} = 0) \sim \frac{1}{\sqrt{\pi n}} \] so $\sum_n p_{00}(2n) = \infty$. So simple random walk on $\ZZ$ is recurrent. \myskip Now consider a random walk where we move right with probability $p$, and left with probability $q = 1 - p$, with $p \neq q$. Then \[ \PP_0(X_{2n} = 0) = {2n \choose n} \cdot p^n \cdot q^n \sim \frac{(4pq)^n}{\sqrt{\pi n}} \] Since $p \neq q$, $4pq < 1$, so \[ \sum_n \frac{(4pq)^n}{\sqrt{\pi n}} < \infty \] \item[$d = 2$] Consider projecting the random walk as follows: \begin{center} \includegraphics[width=0.6\linewidth] {images/ed2f194055db11ed.png} \end{center} Define a function $f : \ZZ^2 \to \RR^2$ \[ f(x, y) = \left( \frac{x + y}{\sqrt{2}}, \frac{x - y}{\sqrt{2}} \right) \] $(X_n)$ simple random walk on $\ZZ^2$, $f(X_n) = (X_n^+, X_n^-)$. We claim that $(X_n^+)$ and $(X_n^-)$ are 2 independent simple random walks on $\frac{\ZZ}{2}$. Let $(\xi_i)$ be an iid sequence \[ \PP(\xi_i = (0, 1)) = \PP(\xi_2 = (1,0)) = \cdots = \frac{1}{4} \] So let $X_n = \sum_{i = 1}^n \xi_i$ and $\xi_i = (\xi_i^1, \xi_i^2)$. \[ f(X_n) = \left( \sum_{i = 1}^n \frac{\xi_i^1 + \xi_i^2}{\sqrt{2}}, \sum_{i = 1}^n \frac{\xi_i^1 - \xi_i^2}{\sqrt{2}} \right) \] So we want to show that $\xi_i^1 + \xi_i^2$ is independent of $\xi_i^1 - \xi_i^2$. This can be done by checking lots of calculations / cases. So $(X_n^+)$ and $(X_n^-)$ are independent. Now \begin{align*} \PP_0(X_{2n} = 0) &= \PP_0(X_{2n}^+ = 0, X_{2n}^- = 0) \\ &= \PP_0(X_{2n}^+ = 0) \PP_0(X_{2n}^- = 0) \\ &\sim \left( \frac{1}{\sqrt{n}} \right)^2 \\ &= \frac{1}{n} \end{align*} so $\sum_n \frac{1}{n} = \infty$ so recurrent. \end{enumerate} \end{proof}