% vim: tw=50 % 13/10/2022 10AM \begin{flashcard} \begin{theorem*}[Simple Markov property] Suppose $X$ is $\Markov(\lambda, P)$ with values in $I$. Let \cloze{$m \in \NN$ and $i \in I$.} Then \cloze{conditional on $X_m = i$, the process $(X_{m + n})_{n \ge 0}$ is $\Markov(\delta_i, P)$ and it is independent of $X_0, \dots, X_m$.} \end{theorem*} \end{flashcard} \begin{proof} Let $x_0, x_1, \dots, x_n \in I$. \begin{align*} &\phantom{{}={}} \PP(X_m = x_0, X_{m + 1} = x_1, \dots, X_{m + n} = x_n \mid X_m = i) \\ &= \mathbbm{1}_{i = x_0} \frac{\PP(X_m = x_0, \dots, X_{m + n} = x_n}{\PP(X_m = i)} \tag{$*$} \end{align*} \begin{align*} &\phantom{{}={}} \PP(X_m = x_0, \dots, X_{m + n} = x_n) \\ &= \sum_{y_0, \dots, y_{m - 1}} \PP(X_0 = y_0, \dots, X_{m - 1} = y_{m - 1}, X_m = x_0, \dots, X_{m + n} = x_n) \\ &= \sum_{y_0, \dots, y_{m - 1}} \lambda(y_0) P(y_0, y_1) \cdots P(y_{m - 2}, y_{m - 1})P(y_{m - 1}, x_0) \cdots P(x_{n - 1}, x_n) \\ &= p(x_0, x_1) \cdots P(x_{n - 1}, x_n) \ub{\sum_{y_0, \dots, y_{m - 1}} \lambda(y_0) P(y_0, y_1) \cdots P(y_{m - 1}, \lambda_0)}_{= \PP(X_m = i)} \end{align*} putting back into ($*$) we get that \[ \mathbbm{1}_{i = x_0} P(x_0, x_1) \cdots P(x_{n - 1}, x_n) \implies \Markov(\delta_i, P) \] ($\mathbbm{1}_{i = x_0}$ is another notation for $\delta_{ix_0}$). Let $m \le i_1 < i_2 < \cdots < i_k$, $y_0 = i$. Then \begin{align*} &\phantom{{}={}} \PP(X_{i_1} = x_1, \dots, X_{i_k} = x_k, X_0 = y_0, \dots, X_m = y_m \mid X_m = i) \\ &= \frac{\PP(X_{i_1} = x_1, \dots, X_{i_k} = x_k, X_0 = y_0, \dots, X_m = y_m)}{\PP(X_m = i)} \\ &= \frac{\lambda(y_0) P(y_0, y_1) \cdots P(y_{m - 1}, y_m)}{\PP(X_m = i)} \PP(X_{i_1} = x_1, \dots, X_{i_k} = x_k \mid X_m = i) \\ &= \PP(X_{i_1} = x_1, \dots, X_{i_k} = x_k \mid X_m = i) \PP(X_0 = y_0, \dots, X_m = y_m \mid X_m = i) \end{align*} \end{proof} \myskip $X \sim \Markov(\lambda, P)$ \begin{align*} \PP(X_n = x) &= \sum_{x_0, \dots, x_{n - 1}} \PP(X_0 = x_0, \dots, X_{n - 1} = x_{n - 1}, X_n = x) \\ &= \sum_{x_0, \dots, x_{n - 1}} \lambda(x_0) P(x_0, x_1) \cdots P(x_{n - 1}, x) \\ &= (\lambda P^n)_x \end{align*} By convention $P^0 = I$. \[ \PP(X_{n + m} = y \mid X_m = x) \] Conditional on $X_m = x$, $(X_{m + n})_{n \ge 0}$ is $\Markov(\delta_x, P)$. So \[ \PP(X_{n + m} = y \mid X_m = x) = (\delta_x P^n)_y = (P^n)_{xy} \] We will write \[ p_{xy}(n) = (P^n)_{xy} \] Let $A$ be such an event. We will write \[ \PP_i(A) = \PP(A \mid X_0 = i) \] \subsubsection*{Examples for $P^n$} Consider \[ P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \] \[ P^{n + 1} = P^n \cdot P = P \cdot P^n \] So \[ p_{11}(n + 1) = (1 - \alpha) p_{11}(n) + p_{12}(n) \] \[ p_{11}(n) + p_{12}(n) = 1 \qquad p_{11}(0) = 1 \] \[ p_{11}(n) = \begin{cases} \frac{\alpha}{\alpha + \beta} + \frac{\alpha}{\alpha + \beta} (1 - \alpha - \beta)^n & \text{if $\alpha + \beta > 0$} \\ 1 & \text{if $\alpha + \beta = 0$} \end{cases} \] In this simple case, it is easy to solve directly for $P^n$. However this is not generally the case for large matrices. \myskip Finding eigenvalues of $P$ is another useful method. Let $P$ be a $k \times k$ stochastic matrix. Let $\lambda_1, \dots, \lambda_k$ be the eigenvalues of $P$. \begin{itemize} \item If $\lambda_1, \dots, \lambda_k$ are all distinct, then $P$ is diagonalisable. \[ P = UDU^{-1} \implies P^n = UD^n U^{-1} \] \[ p_{11}(n) = \alpha_1 \lambda_1^n + \alpha_2 \lambda_2^n + \cdots + \alpha_k \lambda_k^n \] $p_{11}(0) = 1$. Plug in small values of $n$, then solve the system to find $\alpha_1, \dots, \alpha_k$. If one of the eigenvalues is complex, say $\lambda_{k - 1}$, then also its conjugate will be an eigenvalue say $\lambda_k = \ol{\lambda_{k - 1}}$. \[ \lambda_{k - 1} = re^{i\theta} = r\cos\theta + ir\sin\theta \] \[ \lambda_k = r\cos\theta - ir\sin\theta \] It becomes easier (calculations) to write the general form as \[ p_{11}(n) = \alpha_1 \lambda_1^n + \cdots + \alpha_{k - 2} \lambda_{k - 2}^n + \alpha_{k - 1} r^n \cos(n\theta) + \alpha_k r^n \cos(n\theta) \] \item If the eigenvalues are not all distinct then suppose $\lambda$ appears with multiplicity 2. Then we also include the term $\alpha n + \beta) \lambda^n$ in the expression for $p_{11}(n)$. (Jordan normal form). \end{itemize} \[ P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & \half & \half \\ \half & 0 & \half \end{pmatrix} \] eigenvalues : $1, \frac{i}{2}, -\frac{i}{2}$. \[ p_{11}(n) = \alpha_1 + \alpha_2 \left( \half \right)^n \cos \left( \frac{n\pi}{2} \right) + \alpha_3 \left( \half \right)^n \sin \left( \frac{n\pi}{2} \right) \] \[ p_{11}(0) = 1 \qquad p_{11} = 0 \qquad p_{11}(2) = 0 \] \[ p_{11}(n) = \frac{1}{5} + \left( \half \right)^n \left( \frac{4}{5} \cos \left( \frac{n\pi}{2} \right) - \frac{2}{5} \sin \left( \frac{n\pi}{2} \right) \right) \]