% vim: tw=50 % 15/11/2022 10AM \begin{theorem*} Let $P$ be irreducible and aperiodic with invariant distribution $\pi$. Let $X \sim \Markov(\lambda, P)$. Then $\forall y$, \[ \PP(X_n = y) \to \pi(y) \] as $n \to \infty$. In particular, for all $x$ and $y$, \[ P^n(x, y) \to \pi(y) \] as $n \to \infty$. (Taking $\lambda = \delta_x$) \end{theorem*} \begin{proof} Coupling of Markov chains. Let $(Y_n)_{n \ge 0} \sim \Markov(\pi, P)$ independent of $X$. \begin{center} \includegraphics[width=0.6\linewidth] {images/73398f2e64ce11ed.png} \end{center} Consider $((X_n, Y_n))_{n \ge 0} \sim \Markov(\lambda \times \pi, \tilde{P})$ where \[ \tilde{P}((x, y), (x', y')) = P(x, x')P(y, y') \] We claim that $\tilde{P}$ is irreducible. So we want to show that there exist $l, m$ such that \[ P^l(x, x') > 0 \quad \text{ and } \quad P^m(y, y') > 0 \] Then note \[ P^n(x, x') \ge P^l(x, x') P^{n - l}(x', x') > 0 \] for all $N$ sufficiently large by aperiodicity of $P$. Similarly \[ P^n(y, y') \ge P^m(y, y') P^{n - m}(y', y') > 0 \] for sufficiently large $N$. So \[ \tilde{P}^n((x, y), (x', y')) = P^n(x, x') P^n(y, y') > 0 \] for all $n$ large enough. So $\tilde{P}$ is irreducible. \\ $\tilde{P}$ has invariant distribution $\tilde{\pi}(x, y) = \pi(x)\pi(y)$. So $\tilde{P}$ is positive recurrent. Fix $\alpha \in I$. Define $T = \inf\{n \ge 1 : (X_n, Y_n) = (a, a)\}$. $T$ is a stopping time for $(X, Y)$. $\tilde{P}$ is positive recurrent so $\PP(T < \infty) = 1$. Define \[ Z_n = \begin{cases} X_n & n < T \\ Y_n & n \ge T \end{cases} \] Now claim that $Z \sim \Markov(\lambda, P)$. Note that $Z_0 \sim \lambda$ because \[ \PP(Z_0 = x) = \PP(X_0 = x) = \lambda(x) .\] Let $A = \{Z_{n - 1} = z_{n - 1}, \dots, Z_0 = z_0\}$. Need to show \[ \PP(Z_{n + 1} = y \mid Z_n = x, A) = P(x, y) \] So we calculate: \begin{align*} \PP(Z_{n + 1} = y \mid Z_n = x, A) &= \PP(Z_{n + 1} = y, T > n \mid Z_n = x, A) + \PP(Z_{n + 1} = y, T \le n \mid Z_n = x, A) \\ \PP(Z_{n + 1} = y, T > n \mid Z_n = x, A) &= \PP(X_{n + 1} = y \mid T > n, Z_n = x, A)\PP(T > n \mid Z_n = x, A) \end{align*} Now note that $\{T > n\} = \{T \le n\}^c$, but $\{T \le n\}^c$ only depends on $(X_0, Y_0), (X_n, Y_n)$ so by Strong Markov Property, \[ = P(x, y) \PP(T > n \mid Z_n = x, A) \] Similarly \[ \PP(Z_{n + 1} = y, T \le n \mid Z_n = x, A) = P(x, y) \PP(T \le n \mid Z_n = x, A) \] So \[ \PP(Z_{n + 1} = y \mid Z_n = x, A) = P(x, y) \] So $Z \sim \Markov(\lambda, P)$. \\ Now we want to show that $|\PP(X_n = y) = \pi(y)| \to 0$ as $n \to \infty$. But since $Y \sim \Markov(\pi, P)$ so $\PP(Y_n = y) = \pi(y)$ for all $n$. So \begin{align*} |\PP(X_n = y) - \PP(Y_n = y)| &= |\PP(Z_n = y) - \PP(Y_n = y)| \\ &= |\PP(Z_n = y, n < T) + \PP(Z_n = y, n \ge T) - \PP(Y_n = y)| \\ &= |\PP(X_n = y, n < T) + \PP(Y_n = y, n \ge T) - \PP(Y_n = y)| \\ &= |\PP(X_n = y, n < T) - \PP(Y_n = y, n < T)| \\ &\le \PP(T > n) \end{align*} Take $n \to \infty$ we get $\PP(T > n) \to 0$ because $\PP(T < \infty) = 1$. So $\PP(X_n = y) \to \PP(Y_n = y) = \pi(y)$. \end{proof} \begin{theorem*} Let $P$ be irreducible and aperiodic. Suppose $P$ is null recurrent. Then for all $x, y$, \[ P^n(x, y) \to 0 \] as $n \to \infty$. \end{theorem*} \begin{proof} Consider $\tilde{P}((x, y), (x', y')) = P(x, x') P(y, y')$. As before, $\tilde{P}$ is irreducible. \begin{itemize} \item If $\tilde{P}$ transient, then \[ \sum_n \tilde{P}^n((x, x), (y, y)) = \sum_n (P^n(x, y))^2 < \infty \] so $P^n(x, y) \to 0$ as $n \to \infty$. \item If $\tilde{P}$ is recurrent then \[ \nu_y(z) = \EE_y \left[ \sum_{i = 0}^{\tau_y - 1} \mathbbm{1}(x_i = z)\right] \] $\nu_y$ is invariant, i.e. $\nu_y P = \nu_y$. $P$ is null-recurrent so $\EE_y[\tau_y] = \infty$, so $\nu_y(I) = \infty$. Fix $M \in \NN$. Since $\nu_y(I) = \infty$, we can find a finite set $A$ such that $\nu_y(A) > M$. Define \[ \mu(x) = \frac{\nu_y(x)}{\nu_y(A)} \mathbbm{1}(x \in A) \] probability measure. \begin{align*} \mu P^n(z) &= \sum_x \mu(x) P^n(x, z) \\ &\le \sum_x \frac{\nu_y(x)}{\nu_y(A)} P^n(x, z) \\ &= \frac{\nu_y(x)}{\nu_y(A)} \end{align*} ($\nu_y P = \nu_y$) So \[ \boxed{\mu P^n(z) \le \frac{\nu_y(z)}{\nu_y(z)}} \] Consider $(X, Y) \sim \Markov(\mu \times \delta_x, \tilde{P})$. Define $T = \inf\{n \ge 0: (X_n, Y_n) = (x, x)\}$. $\PP(T < \infty) = 1$, since $\tilde{P}$ is recurrent. \[ Z_n = \begin{cases} X_n & n < T \\ Y_n & n \ge T \end{cases} \] Then $Z_n \sim \Markov(\mu, P)$ \begin{align*} \PP(Z_n = y) &= \mu P^n(y) \\ &\le \frac{\nu_y(y)}{\nu_y(A)} \\ &= \frac{1}{\nu_y(A)} \\ &< \frac{1}{M} \end{align*} Need to show: $P^n(x, y) \to \infty$ as $n \to \infty$. \begin{align*} P^n(x, y) &= \PP(Y_n = y) \\ &= \PP(Y_n = y, n < T) + \PP(Y_n = y, n \ge T) \\ &\le \PP(T > n) + \PP(Z_n = y) \end{align*} Let $n \to \infty$ then $\PP(T > n) \to 0$ ($\PP(T < \infty) = 1$). So \[ \lim_{n \to \infty} P^n(x, y) < \frac{1}{M} \] Taking $M \to \infty$ finishes that proof. \qedhere \end{itemize} \end{proof}