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Start of
lecture 1 0 Introduction

Definition (Markov Chains). Markov chains are random processes (sequence of
random variables) that retain no memory of the past.

past ⊥
present

future

History

� Markov in 1906

� Poisson process, branching processes existed before.
Motivation: Extend the law of large numbers to the non IID setting.

� Koluogorov in 1930: continuous time Markov processes.

� Brownian motion: fundamental object in modern probability theory.

Why Study Markov Chains?

Simplest mathematical models for random phenomena evolving in time.

� Simple: amenable to analysis - tools from probability, analysis, combinatorics.

� Applications: population growth, mathematical genetics, queuing networks, Monte
Carlo simulation, . . .

0.1 Page-Rank algorithm

This is an example of a simple algorithm which was previously used by search engines
such as Google.

Model the web as a directed graph, G : (V,E). V is the set of websites (the vertices),
and (i, j) ∈ E if and only if i contains a link to page j. Let L(i) be the number of
outgoing edges from i. Define

p̂ij =

{
1

L(i) if L(i) > 0 and (i, j) ∈ E
1
n if L(i) = 0

(n = |V |)

Now also define for α ∈ (0, 1),

pij = αp̂ij + (1− α)
1

n
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A random surfer tosses a coin, with probability α and chooses to go to: either p̂ or
uniformly at random. We want to find the invariant distribution:

π = πp

where
πi = proportion of time spent at state i by the surfer

Once we solve for this, if πi > πj then i is more important than j and Google ranks it
higher.
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1 Markov Chains

We will always denote state space by I, and it will always be finite or countable. The
probability space will always be (Ω,F ,P). We will now more formally define a Markov
Chain:

Definition (Markov Chain). A stochastic process (Xn)n≥0 is called a Markov chain
(with values in I) if ∀n ≥ 0, ∀x0, . . . , xn+1 ∈ I,

P(Xn+1 = xn+1︸ ︷︷ ︸
future

| Xn = xn︸ ︷︷ ︸
present

, . . . , X0 = x0︸ ︷︷ ︸
past

) = P(Xn+1 = xn+1 | Xn = xn)

If P(Xn=1 = y | Xn = x) is independent of n ∀x, y, then X is called time-homogenous
(this is what we will focus on in this course). Otherwise time-inhomogeneous.

Define P (x, y) = P(X1 = y | X0 = x) for x, y ∈ I. P is called the transition matrix of
the Markov chain. ∑

y∈I
P (x, y) =

∑
y∈I

P(X1 = y | X0 = x) = 1

P is called a stochastic matrix.

Definition. (Xn)n≥0 with values in I is called Markov(λ, P ) if X0 ∼ λ and (Xn)n≥0

is a Markov chain with transition matrix P , i.e.

(1) P(X0 = x) = λ(x) for all x ∈ I

(2) P(Xn+1 = xn+1 | Xn = xn . . . X0 = x0) = P(xn, xn+1) for all n, x0, . . . , xn+1

Notation. P (x, y) = pxy = p(x, y)

Draw a diagram (directed graph), and put a directed edge between x and y (x → y) if
P (x, y) > 0, and write the probability on top of these arrows.

�

P =

[
α 1− α

1− β β

]
α, β ∈ (0, 1)
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�

P =

1
2

1
2 0

0 1
3

2
3

1 0 0



Theorem. X is Markov(λ, P ) if and only if for all n ≥ 0 and x0, . . . , xn ∈ I,

P(X0 = x0, . . . , Xn = xn) = λ(x0)P (x0, x1) · · ·P (xn−1, xn)

Proof. ⇒

P(Xn = xn, . . . , X0 = x0) = P(Xn = xn | Xn−1 = xn−1, . . . , X0 = x0)

× P(Xn−1 = xn−1, . . . , X0 = x0)

= P (xn−1, xn)P(Xn−1 = xn−1, . . . , X0 = x0)

= · · ·
= λ(x0)P (x0, x1) · · ·P (xn−1, xn)

⇐ for n = 0, P(X0 = x0) = λ(x0)

P(Xn = xn | Xn−1 = xn−1 · · ·X0 = x0) =
P(Xn = xn, Xn−1 = xn−1, . . . , X0 = x0

P(Xn−1 = xn−1, . . . , X0 = x0)

= P (xn−1, xn)

Definition. Let i ∈ I. The δi-mass at i is defined as

δij = 1(i = j) =

{
1 if i = j

0 otherwise
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Definition. Let X1, . . . , Xn be discrete random variables with values in I. They
are independent if for all x1, . . . , xn ∈ I

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

P(Xi = xi)

Let (Xn)n≥0 be a set of random variables in I. They are independent if for all i1 < i2 <
· · · < ik, for all k and for all x1, . . . , xk,

P(Xi1 = x1, . . . , Xik = xk) =
k∏

j=1

P (Xij = xj)

Let (Xn)n≥0 and (Yn)n≥0 be 2 sequences. X ⊥ Y if for all k,m ∈ N, and for all
i1 < · · · < ik, j1 < · · · < jm, x1, . . . , xk, y1, . . . , ym,

P(Xi1 = x1, . . . , Xik = xk, Yj1 = y1, . . . , Yjm = ym)

= P(Xi1 = x1, . . . , Xik = xk)× P(Yj1 = y1, . . . , Yjm = ym)

Start of
lecture 2 Theorem (Simple Markov property). Suppose X is Markov(λ, P ) with values in

I. Let m ∈ N and i ∈ I. Then conditional on Xm = i, the process (Xm+n)n≥0 is
Markov(δi, P ) and it is independent of X0, . . . , Xm.

Proof. Let x0, x1, . . . , xn ∈ I.

P(Xm = x0, Xm+1 = x1, . . . , Xm+n = xn | Xm = i)

= 1i=x0

P(Xm = x0, . . . , Xm+n = xn
P(Xm = i)

(∗)

P(Xm = x0, . . . , Xm+n = xn)

=
∑

y0,...,ym−1

P(X0 = y0, . . . , Xm−1 = ym−1, Xm = x0, . . . , Xm+n = xn)

=
∑

y0,...,ym−1

λ(y0)P (y0, y1) · · ·P (ym−2, ym−1)P (ym−1, x0) · · ·P (xn−1, xn)

= p(x0, x1) · · ·P (xn−1, xn)
∑

y0,...,ym−1

λ(y0)P (y0, y1) · · ·P (ym−1, λ0)︸ ︷︷ ︸
=P(Xm=i)

putting back into (∗) we get that

1i=x0P (x0, x1) · · ·P (xn−1, xn) =⇒ Markov(δi, P )
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(1i=x0 is another notation for δix0). Let m ≤ i1 < i2 < · · · < ik, y0 = i. Then

P(Xi1 = x1, . . . , Xik = xk, X0 = y0, . . . , Xm = ym | Xm = i)

=
P(Xi1 = x1, . . . , Xik = xk, X0 = y0, . . . , Xm = ym)

P(Xm = i)

=
λ(y0)P (y0, y1) · · ·P (ym−1, ym)

P(Xm = i)
P(Xi1 = x1, . . . , Xik = xk | Xm = i)

= P(Xi1 = x1, . . . , Xik = xk | Xm = i)P(X0 = y0, . . . , Xm = ym | Xm = i)

X ∼ Markov(λ, P )

P(Xn = x) =
∑

x0,...,xn−1

P(X0 = x0, . . . , Xn−1 = xn−1, Xn = x)

=
∑

x0,...,xn−1

λ(x0)P (x0, x1) · · ·P (xn−1, x)

= (λPn)x

By convention P 0 = I.
P(Xn+m = y | Xm = x)

Conditional on Xm = x, (Xm+n)n≥0 is Markov(δx, P ). So

P(Xn+m = y | Xm = x) = (δxP
n)y = (Pn)xy

We will write
pxy(n) = (Pn)xy

Let A be such an event. We will write

Pi(A) = P(A | X0 = i)

Examples for Pn

Consider

P =

(
1− α α
β 1− β

)
Pn+1 = Pn · P = P · Pn

So
p11(n+ 1) = (1− α)p11(n) + p12(n)

p11(n) + p12(n) = 1 p11(0) = 1

p11(n) =

{
α

α+β + α
α+β (1− α− β)n if α+ β > 0

1 if α+ β = 0
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In this simple case, it is easy to solve directly for Pn. However this is not generally the
case for large matrices.

Finding eigenvalues of P is another useful method. Let P be a k × k stochastic matrix.
Let λ1, . . . , λk be the eigenvalues of P .

� If λ1, . . . , λk are all distinct, then P is diagonalisable.

P = UDU−1 =⇒ Pn = UDnU−1

p11(n) = α1λ
n
1 + α2λ

n
2 + · · ·+ αkλ

n
k

p11(0) = 1. Plug in small values of n, then solve the system to find α1, . . . , αk.
If one of the eigenvalues is complex, say λk−1, then also its conjugate will be an
eigenvalue say λk = λk−1.

λk−1 = reiθ = r cos θ + ir sin θ

λk = r cos θ − ir sin θ

It becomes easier (calculations) to write the general form as

p11(n) = α1λ
n
1 + · · ·+ αk−2λ

n
k−2 + αk−1r

n cos(nθ) + αkr
n cos(nθ)

� If the eigenvalues are not all distinct then suppose λ appears with multiplicity 2.
Then we also include the term αn + β)λn in the expression for p11(n). (Jordan
normal form).

P =

0 1 0
0 1

2
1
2

1
2 0 1

2


eigenvalues : 1, i

2 ,−
i
2 .

p11(n) = α1 + α2

(
1

2

)n

cos
(nπ

2

)
+ α3

(
1

2

)n

sin
(nπ

2

)
p11(0) = 1 p11 = 0 p11(2) = 0

p11(n) =
1

5
+

(
1

2

)n(4

5
cos
(nπ

2

)
− 2

5
sin
(nπ

2

))
Start of
lecture 3
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Communicating classes

Definition (Communicating classes). Let X be a Markov Chain with matrix P on
I. Let x, y ∈ I. We say x → y (x leads to y) if

Px(Xm = y for some m ≥ 0) > 0.

We say that x and y communicate and x ↔ y if both x → y and y → x.

Theorem. The following are equivalent:

(1) x → y

(2) ∃ a sequence x = x0, x1, . . . , xk = y such that

P (x0, x1) · · ·P (xk−1, xk) > 0

(3) ∃n ≥ 0 such that pxy(n) > 0 (recall that pxy(n) is the (x, y) element of Pn, and
is also equal to Px(Xn = y))

Proof. First we prove (1) ⇐⇒ (3). We have:

{Xn = y for some n ≥ 0} =
⋃
n≥0

{Xn = y}

If x → y, then ∃n ≥ 0 such that Px(Xn = y) > 0. From the definition of →, we
immediately have (3) =⇒ (1).

Now we prove (2) ⇐⇒ (3):

Px(Xn = y) =
∑

x1,...,xn−1

p(x, x1) · · · p(xn−1, y)

so (2) ⇐⇒ (3).

Corollary. ↔ defines an equivalence relation on I.

Proof. x ↔ x, because pxx(0) = 1. Transitivity: suppose X ↔ y and y ↔ z. Then from
(2), x ↔ z.

Definition. The equivalence classes induced by ↔ on I are called communicating
classes. We say that a class C is closed if whenever x ∈ C and x → y, then y ∈ C.
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Definition. A matrix P (transition) is called irreducible if it has a single commu-
nicating class. In other words, x ↔ y for all x, y ∈ I.

Definition. A state x is called absorbing if {x} is a closed class. Equivalently if
the Markov chain started from x then it stays at x forever.

Definition. A ⊆ U . τA : Ω → N ∪ {∞}

τA = inf{n ≥ 0 : Xn(ω) ∈ A}

Convention: inf(∅) = ∞. τA is the first hitting time of A.

Denote hAi = Pi(τA < ∞), i ∈ I.
hA : I → [0, 1], (hAi : i ∈ I) is vector of hitting probability.

Also define kA : I → R+ ∪ {∞}, the mean hitting time. So

kAi = Ei[τA] =

∞∑
n=1

nPi(τA = n) +∞ · Pi(τA = ∞)︸ ︷︷ ︸
0·∞=0

P2(τ4 < ∞) = h
{4}
2 . τ4 = τ{4}.

h2 =
1

2
h3 +

1

2
h1

h3 =
1

2
+

1

2
h2

=⇒ h2 =
1

3

(h1 = 0, h4 = 1) k
{1,4}
2 = E2[τ{1,4}]

k2 = 1 +
1

2
· 0 + 1

2
k3

k3 = 1 +
1

2
· 0 + 1

2
k2

=⇒ k2 = 2

k1 = k4 = 0.
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Theorem. Let A ⊆ I. The vector (hAi : i ∈ I) is a solution to the linear system

hAi =

{
1 if i ∈ A∑

j P (i, j)hAj i ̸∈ A

The vector (hAi ) is the minimal non-negative solution to this system.
A solution (hAi ) is minimal if for any other non-negative solution (Xi), we have that
hAi ≤ Xi ∀i.

Proof. Clearly, if i ∈ A, then hAI = 1. Assume i ̸∈ A.

hAi = Pi(τA < ∞)

{τA < ∞} =

∞⋃
n=0

{τA = n} =

∞⋃
n=0

{X0 ̸∈ A,X1 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A}

Pi(τA < ∞) =
∞∑
n=1

Pi(X1 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A)

= Pi(X1 ∈ A) +
∞∑
n=2

Pi(X1 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A)

Now compute:

Pi(X1 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A) =
∑
j ̸∈A

Pi(X1 = j,X2 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A)

=
∑
j ̸∈A

Pi(X2 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A | X0 = i,X1 = j)P (i, j)

=
∑
j ̸∈A

P (i, j)Pj(X1 ̸∈ A, . . . ,Xn−2 ̸∈ A,Xn−1 ∈ A)

Now plus back in:

hAi = Pi(X1 ∈ A) +
∞∑
n=1

∑
j ̸∈A

P (i, j)Pj(X1 ̸∈ A, . . . ,Xn ∈ A)︸ ︷︷ ︸
hA
j

=
∑
j∈A

P (i, j) hAj︸︷︷︸
=1

+
∑
j ̸∈A

P (i, j)hAj

=⇒ hAi =
∑
j

P (i, j)hAj

So hAi is a solution as claimed.
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Now we prove minimality. Let (xi) be another non-negative solution. Need to show that
hAi ≤ xi for all i. If i ̸∈ A, then

xi =
∑
j

P (i, j)xj

=⇒ xi =
∑
j∈A

P (i, j) +
∑
j ̸∈A

P (i, j)xj

xi =
∑
j∈A

P (i, j) +
∑
j ̸∈A

∑
j∈A

P (i, j)P (j, k) +
∑
j ̸∈A

∑
k ̸∈A

P (i, j)P (j, k)xk

xi = Pi(X1 ∈ A) + Pi(X1 ̸∈ A,X2 ∈ A) +
∑
j ̸∈A

∑
k ̸∈A

P (i, j)P (j, k)xk

xi ≥ Pi(X1 ∈ A) + Pu(X1 ̸∈ A,X2 ̸∈ A) + · · ·+ Pi(X1 ̸∈ A, . . . ,Xn−1 ̸∈ A,Xn ∈ A)

(the inequality holds because the remaining terms are all non-negative since we assume
that the xi are non-negative). Rewriting:

xi ≥ Pi(τA ≤ n) ∀n ∈ N.

{τA ≤ n} ↗
⋃
n

{τA ≤ n} = {τA < ∞}

so Pi(τA ≤ n) ↗ Pi(τA < ∞) hence xi ≥ Pi(τA < ∞) = hAi .

Start of
lecture 4 Examples

Simple random walk on Z+.
P (0, 1) = 1

P (i, i+ 1) = p = 1− P (i, i− 1) i ≥ 1

Want to find hi = Pi(T0 < ∞).

h0 = 1 hi = phi+1 + qhi−1

� p ̸= q. Then

hi = a+ b

(
q

p

)i

= a+ (1− a)

(
q

p

)i

i = 0, a+ b = 1. Assume q > p: to get non-negative and minimal solution need to
take a = 1. So hi = 1 for all i ≥ 1. If instead we have q < p, then a = 0 implies

hi =
(
q
p

)i
for i ≥ 1.

� If p = q = 1
2 . General solution hi = a + bi, h0 = 1 implies a = 1. For minimality

need to take b = 0. So hi = 1 for all i ≥ 1.

13
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Birth and death chains.

P (0, 0) = 1, P (i, i+ 1) = pi, P (i, i− 1) = qi, pi + qi = 1

hi = Pi(T0 < ∞), h0 = 1

hi = pihi+1 + qihi−1

=⇒ pi(hi+1 − hi) = qi(hi − hi−1)

Set ui = hi − hi−1.

ui+1 =
qi
pi
ui = · · · =

i∏
k=1

qk
pk

u1 u1 = h1 − 1

hi =
i∑

j=1

(hj − hj−1) + 1

= 1 +
i∑

j=1

uj

= 1 + u1 +

i∑
j=2

u1

j−1∏
k=1

qk
pj

=⇒ hi = 1 + (h1 − 1) + (h1 − 1)
i∑

j=2

j−1∏
k=1

qk
pk

Set γj =
∏j

k=0
qk
pk
, γ0 = 1. Then

hi = 1− (1− h1)
i−1∑
j=0

γj

We want (hi) to be the minimal non-negative solution, implies:

(1− h1) ≤
1∑∞

j=0 γj

Minimality implies

h1 = 1− 1∑∞
j=0 γj

�

∑∞
j=0 γj < ∞, then

hi =

∑∞
j=1 γj∑∞
j=0 γj

�

∑∞
j=0 γj = ∞, then hi = 1 for all i ≥ 1.
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Mean hitting times

A ⊆ I, τA = inf{n ≥ 0 : Xn ∈ A}. kAi = Ei[τA].

Theorem. The vector (kAi : i ∈ I) is the minimal non-negative solution to the
system

kAi =

{
0 if i ∈ A

1 +
∑

j ̸∈A P (i, j)kAj i ̸∈ A

Proof. If i ∈ A, then kAi = 0. Assume i ̸∈ A. Then

kAi = Ei[τA]

=
∞∑
n=0

Pi(τA > n)

=

∞∑
n=0

Pi(X0 ̸∈ A, . . . ,Xn ̸∈ A)

= 1 +
∞∑
n=1

Pi(X1 ̸∈ A, . . . ,Xn ̸∈ A)

= 1 +

∞∑
n=1

∑
j

Pi(X1 = j,X2 ̸∈ A, . . . ,Xn ̸∈ A)

= 1 +
∞∑
n=1

∑
j

P (i, j)P(X1 ̸∈ A, . . . ,Xn ̸∈ A |����X0 = i,X1 = j)

= 1 +
∞∑
n=1

∑
j

P (i, j)Pj(X0 ̸∈ A, . . . ,Xn−1 ̸∈ A)

= 1 +
∑
j

P (i, j)
∞∑
n=0

Pj(X0 ̸∈ A, . . . ,Xn ̸∈ A)

= 1 +
∑
j

P (i, j)Ej [τA]

= 1 +
∑
j

P (i, j)kAj

= 1 +
∑
j ̸∈A

P (i, j)kAj

Minimality: Let (xi) be another non-negative solution. Then xi = 0, i ∈ A. If i ̸∈ A,
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then

xi = 1 +
∑
j ̸∈A

P (i, j)xj

= 1 +
∑
j ̸∈A

P (i, j) +
∑
j ̸∈A

∑
k ̸∈A

P (i, j)P (j, k)xk

xi = 1 +
∑
j1 ̸∈A

P (i, j1) + · · ·+
∑

j1,...,jn+1 ̸∈
P (i, j) · · ·P (jn−2, jn−1) +

∑
non-negative terms

xi ≥ 1 + Pi(τA > 1) + Pi(τA > 2) + · · ·+ Pi(τn)

So xi ≥
∑n

k=0 Pi(τA > k) for all n. So

xi ≥
∞∑
k=0

Pi(τk) = Ei[τA] = kAi

Simple Markov Property

Recall that the Simple Markov property states that if m ∈ N, i ∈ I, X ∼ Markov(λ, P )
then conditional onXm = i, (Xn+m)n≥0 is Markov(δi, P ) and is independent ofX0, . . . , Xm.
We would like to generalise this to a value of m that is randomly picked.

Definition. A random variable T : Ω → {0, 1, . . . } ∪ {∞} is called a stopping time
if the event {T = n} depends on X0, . . . , Xn for all n ∈ N.

Example. A ⊆ I, τA = inf{n ≥ 0 : Xn ∈ A}. Then {τA = n} = {X0 ̸∈
A, . . . ,Xn−1 ̸∈ A,Xn ∈ A} so first hitting times are always stopping times. What
about last hitting time:

LA = sup{n ≤ 10 : Xn ∈ A}

Then LA is not a stopping time, because for example {LA = 5} does not depend on
X0, . . . , X5 only.

Start of
lecture 5 Theorem (Strong Markov Property). Let X be Markov(λ, P ) and T be a stopping

time. Conditional on T < ∞ and XT = i, (XT+n)n≥0 is Markov(δi, P ) and it is
independent of X0, . . . , XT .

Proof. Let x0, . . . , xn ∈ I, ω ∈
⋃

k I
k. Need to show

P(XT = x0, . . . , XT+n, (x0, . . . , XT ) = ω | T < ∞, XT = i)

= δix0P (x0, x1) · · ·P (xn−1, xn)P((x0, . . . , XT ) = ω | T < ∞, XT = i)

16
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Let ω have length k. Then

P(Xk = x0, . . . , Xk+n = xn, (x0, . . . , Xk) = ω, T = k | T < ∞, XT = i)

P(T < ∞, XT = i)

= P(Xk = x0, . . . , Xk+n = xn | (X0, . . . , Xk) = ω, T = k,Xk = i)

× P((X0, . . . , Xk) = ω, T = k,Xk = i)

P(T < ∞, XT = i)
(∗)

The event {T = k} only depends on X0, . . . , Xk (T stopping time). So

P(Xk = x0, . . . , Xk+n | (X0, . . . , Xk) = ω, T = k,Xk = i)

= P(Xk = x0, . . . , Xk+n = xn | Xk = i)

by the Markov property. This is also equal to

δix0p(x0, x1) · · · p(xn−1, xn)

So the expression in (∗) is equal to

P((X0, . . . , Xk) = ω, T = k | T < ∞, XT = i) = P((X0, . . . , XT ) = ω | T < ∞, XT = i)

(ω has length k).

Example

Consider a Markov chain with P (0, 1) = 1, P (i, i+ 1) = P (i, i− 1) = 1
2 . (like a random

walk but restricted to X ≥ 0). Let

T0 = inf{n ≥ 0 : Xn = 0}

Let hi = P1(T0 < ∞), h0 = 1. What is h1 equal to?

h1 =
1

2
+

1

2
h2

h2 = P2(T0 < ∞)

= P2(T1 < ∞, T0 < ∞)

= P2(T0 < ∞ | T1 < ∞) · P2(T1 < ∞)

= P2(T0 < ∞ | T1 < ∞)h1

Conditional on T1 < ∞ (XT1 = 1), by the Markov property (XT1+n)n ≥ 0 is Markov(δ1, P ).
So (under the conditioning) we can express T0 = T1 + T̃0, where T̃0 is independent of T1

and has the same law as T0 under P1.

P2(T0 < ∞ | T1 < ∞) = P2(T̃0 + T̃1 < ∞ | T1 < ∞)

= P1(T0 < ∞)

= h1

so h2 = h21. So

h1 =
1

2
+

1

2
h21 =⇒ h1 = 1

17



Transience and recurrence

Definition. A state i is called recurrent if

Pi(Xn = i for infinitely many n) = 1

A state i is called transient if

Pi(Xn = i for infinitely many n) = 0

Let

Vi =
∞∑
l=0

1(Xl = i) = total number of visits to i

We will calculate Pi(Vi > r) for some values of r. Let T
(
i k) denote the k-th return time.

P(Vi > 0) = 1

Pi(Vi > 1) = Pi(T
(1)
i < ∞

Pi(Vi > 2) = Pi(T
(
i 1) < ∞)2

More formally: define T
(0)
i = 0 and for k ≥ 1:

T
(k)
i = inf{n > T

(k−1)
i : Xn = i}

(k-th return time to i). Then

T
(1)
i = inf{n > 0 : Xn = i}

Let fi = Pi(T
(1)
i < ∞).

Lemma. For all r ∈ N, Pi(Vi > r) = f r
i . So Vi has a geometric distribution.

Proof. True for r = 0. Suppose it is true for r ≤ k. We will prove it for k + 1.

Pi(Vi > k + 1) = Pi(T
(k+1)
i < ∞)

= Pi(T
(k+1)
i < ∞, T

(k)
i < ∞)

= Pi(T
(k+1)
i < ∞ | T (k)

i < ∞)Pi(T
(k)
i < ∞)

The successive return times to i are stopping times, so conditional on T
(k)
i < ∞ (and

hence X
T

(k)
i

= i) (X
T

(k)
i +n

)n≥0 is Markov(δi, P ) is independent of X0, . . . , XT
(k)
i

. So

Pi(T
(k+1)
i < ∞ | T (k)

i < ∞) = Pi(T
(1)
i < ∞) = fi

18



Theorem. (a) If fi = 1, then i is recurrent and∑
n≥0

pii(n) = ∞

(b) If fi < 1, then i is transient and∑
n≥0

pii(n) < ∞

Proof.

Ei[Vi] = Ei

[ ∞∑
l=0

1(Xl = i)

]
=

∞∑
l=0

pii(l)

(a) If fi = 1 then by the lemma, Pi(Vi = ∞) = 1, so i is recurrent, so Ei[Vi] = ∞ so∑
n pii(n) = ∞.

(b) If fi < 1 then by the lemma, Ei[Vi] =
1

1−fi
< ∞, so

∑
n pii(n) < ∞ so Pi(Vi < ∞) =

1, so i is transient.

Theorem. Let x and y communicate. Then they are either both recurrent or both
transient.

Proof. If x is recurrent, we will show y is also recurrent. x ↔ y implies that there exists
m, r ≥ 0 such that pxy(m) > 0, pyx(r) > 0. Then

pyy(n+m+ r) ≥ pyx(r)pxx(n)pxy(m)

so ∑
n≥0

pyy(n+m+ r) ≥ pyx(r)pxy(m)
∑
n≥0

pxx(n) = ∞

so y is also recurrent.

Start of
lecture 6 Corollary. All states in a communicating class are either all recurrent or all tran-

sient.

Theorem. If C is a recurrent communicating class, then C is closed.
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Proof. Let x ∈ C and x → y, but y ̸∈ C. Since x → y, ∃m ≥ 0 such that pxy(m) < 0, so

Px(Vx < ∞) ≥ pxy(m) > 0

SO this shows that x is transient, contradiction.

Theorem. A finite closed class is recurrent.

Proof. Let x ∈ C. Since X is finite, ∃y ∈ C such that

Px(Xn = y for infinitely many n) > 0

by the pigeonhole principle.

P(Xn = y for infinitely many n) ≥ Py(Xm = x,Xn = y for infinitely many n ≥ m

= Py(Xm = y for infinitely many n ≥ m | Xm = x)Py(Xm = x)

= Px(Xn = y for infinitely many n)pyx(m)

> 0

so Py(Xn = y for infinitely many n) > 0. So y is recurrent.

Theorem. Let P be irreducible and recurrent. Then for all x, y

Px(Ty < ∞) = 1

Proof.

Px(Xn = y infinitely many times) = PX(Ty < ∞, Xn = y for infinitely many n ≥ Ty)

= Px(Xn = y infiniteley many n ≥ Ty | Ty < ∞)

· Px(Ty < ∞)

= Py(Xn = y infinitely many n) · Px(Ty < ∞)

= Px(Ty < ∞)

Suppose Px(Ty < ∞) < 1. Then Px(Ty = ∞) > 0. Pick pyx(m) > 0, and define

T̃y = inf{n ≥ m : Xn = y}

Then

Py(Vy < ∞) ≥ Py(Xm = x, T̃y = ∞)

= Py(T̃y = ∞ | Xm = x)Py(Xm = x)

= Px(Ty = ∞)pyx(m)

> 0

so y is transient.
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2 Simple random walks on Zd

Definition. A simple random walk on Zd is a Markov chain with transition matrix

p(x, x+ ei) = p(x, x− ei) =
1

2d
∀x ∈ Zd, ∀i = 1, . . . , d

where ei is the standard basis of Rd.

Theorem (Pólya). A simple random walk is recurrent when d ≤ 2 and it is transient
when d ≥ 3.

Proof.d = 1 Need to show 0 is recurrent, i.e. we want to show∑
p00(n) = ∞

p00(n) = P0(Xn = 0)

P0(X2n = 0) =

(
2n

n

)
·
(
1

2

)2n

=
(2n)!

n!n!

1

22n

Recall Stirling’s formula: n! ∼ nne−n · e−n ·
√
2πn so

P0(X2n = 0) ∼ 1√
πn

so
∑

n p00(2n) = ∞. So simple random walk on Z is recurrent.

Now consider a random walk where we move right with probability p, and left with
probability q = 1− p, with p ̸= q. Then

P0(X2n = 0) =

(
2n

n

)
· pn · qn ∼ (4pq)n√

πn

Since p ̸= q, 4pq < 1, so ∑
n

(4pq)n√
πn

< ∞

d = 2 Consider projecting the random walk as follows:
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Define a function f : Z2 → R2

f(x, y) =

(
x+ y√

2
,
x− y√

2

)
(Xn) simple random walk on Z2, f(Xn) = (X+

n , X−
n ). We claim that (X+

n ) and
(X−

n ) are 2 independent simple random walks on Z
2 . Let (ξi) be an iid sequence

P(ξi = (0, 1)) = P(ξ2 = (1, 0)) = · · · = 1

4

So let Xn =
∑n

i=1 ξi and ξi = (ξ1i , ξ
2
i ).

f(Xn) =

(
n∑

i=1

ξ1i + ξ2i√
2

,

n∑
i=1

ξ1i − ξ2i√
2

)

So we want to show that ξ1i + ξ2i is independent of ξ1i − ξ2i . This can be done by
checking lots of calculations / cases. So (X+

n ) and (X−
n ) are independent. Now

P0(X2n = 0) = P0(X
+
2n = 0, X−

2n = 0)

= P0(X
+
2n = 0)P0(X

−
2n = 0)

∼
(

1√
n

)2

=
1

n

so
∑

n
1
n = ∞ so recurrent.

Start of
lecture 7

d = 3 We will prove that
∑

n p00(n) < ∞, which will imply it is transient. Let’s compute
p00(2n). In order to be back at 0 after 2n steps it must make i steps to the right,
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i to the left, j north and j south, k west and k east for some i, j, k ≥ 0 and
i+ j + k = n. So

p00(2n) =
∑

i,j,k≥0
i+j+k=n

(
2n

i, i, j, j, k, k

)(
1

6

)2n

=

(
2n

n

)(
1

2

)2n ∑
i,j,k≥0

i+j+k=n

(
n

i, j, k

)2(1

3

)2n

∑
i,j,k≥0

i+j+k=n

(
n

i, j, k

)(
1

3

)n

= 1

Let n = 3m. We claim that (
n

i, j, k

)
≤
(

n

m,m,m

)
To prove this, suppose the maximum over i, j, k is attained at some i, j, k with
i > j + 1. Then (

n

i, j, k

)
<

(
n

i− 1, j + 1, k

)
because i!j! > (i− 1)!(j + 1)!. So for n = 3m,

p00(2n) ≤
(
2n

n

)(
1

2

)2n(1

3

)n( n

m,m,m

)
= 1

Stirling’s formula gives

p00(2n) ≤
A

n3/2

for some A > 0. So
∑

m p00(6m) < ∞. But also p00(6m) ≥ p00(6m − 2)
(
1
6

)2
and

p00(6m) ≥ p00(6m− 4)
(
1
6

)4
. So

∑
n p00(2n) < ∞ so it’s transient.

Invariant distribution

Definition. I discrete (countable / finite) set. λ = (λi : i ∈ I) is a probability
distribution if λi ≥ 0 for all i and

∑
i∈I λi = 1.

Example.
Then p11(n) → 1

2 . So the Markov chain will converge to (12 ,
1
2).
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Want to find a distribution π such that if X0 ∼ π, then Xn ∼ π for all n.

P(X1 = j) =
∑
i

P(X0 = i,X1 = y)

=
∑
i

P(X1 = j | X0 = i)P(X0 = 1)

=
∑
i

P (i, j)π(i)

so π(j) =
∑

i π(i)P (i, j) for all j. π = πP . (π as a row vector).

Definition. A probability distribution π is called invariant / stationary / equilib-
rium if π = πP .

Theorem. Let π be invariant and X0 ∼ π. Then Xn ∼ π for all n.

Proof. n = 0 is done.

P(Xn+1 = j) =
∑
i

P(Xn+1 = j,Xn = i)

=
∑
i

P(Xn+1 = j | Xn = i)P(Xn = i)

=
∑
i

P (i, j)π(i)

= π(j) (π = πP )

Theorem. Let I be a finite set and ∃i ∈ I such that pij(n) → π(j) as n → ∞.
Then π = (πi : i ∈ I) is an invariant distribution.

Proof. ∑
j∈I

πj =
∑
j∈I

lim
n→∞

pij(n)

= lim
n→∞

∑
j∈I

pij(n)

= 1
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(we changed the order of sum and limit because the sum is finite). So π is a distribution.

πj = lim
n→∞

pij(n)

= lim
n→∞

∑
k∈I

pik(n− 1)P (k, j)

=
∑
k∈I

lim
n→∞

pik(n− 1)P (k, j)

=
∑
k∈I

πkP (k, j)

i.e. π = πP .

Remark. I finite is essential: Consider a simple random walk on Z. Then p00(2n) ∼
A√
n
→ 0. Similarly p0x(n) → ∞ as n → ∞.

Remark. P is a stochastic matrix, so 1 is always an eigenvalue. If P is irreducible,
on a finite state space, then the Perron-Frobenius theorem from linear algebra en-
sures the existence of the invariant distribution.

Definition. k ∈ I, Tk = inf{n ≥ 1 : Xn = k}. First return time to k. i ∈ I

νk(i) = Ek

[
Tk−1∑
l=0

1(Xl = i)

]

So νk(i) is the expected number of visits to i during an excursion from k. So νk is
a measure on I.

Start of
lecture 8
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Theorem. If P is irreducible and recurrent, then νk is an invariant measure (νk =
νkP ) satisfying

0 < νk(i) < ∞ ∀i

and
νk(k) = 1

Proof. Obviously νk(k) = 1. Let i ∈ I. We will prove

νk(i) =
∑
j

P (j, i)νk(j)

By recurrence we get τk < ∞ with probability 1 and XTk
= k. So

νk(i) = Ek

[
Tk∑
l=1

1(Xl = i)

]

= Ek

[ ∞∑
l=1

1(Xl = i)1(τk ≥ 1)

]

=
∞∑
l=1

Pk(Xl = i, τk ≥ l)

=
∞∑
l=1

∑
j

Pk(Xl = i,Xl−1 = j, τk ≥ l)

=
∞∑
l=1

∑
j

Pk(Xl = i | Xl−1 = j, τk ≥ l)Pk(Xl−1 > j, τk ≥ l)

{τk ≥ l} = {Tk ≤ l − 1}c

By the Markov property

Pk(Xl = i | Xl−1 = j, τk ≥ l) = Pk(τl = i | Xl−1 = j)

= P (j, i)

so

νk(i) =
∞∑
l=1

∑
j

P (j, i)Pk(Xl−1 = j, τk ≥ l)

=
∑
j

P (j, i)Ek

[ ∞∑
l=1

1(Xl−1 = j, τk ≥ l)

]

=
∑
j

P (j, i)Ek

[
τk−1∑
l=0

1(Xl = j)

]
=⇒ νk(i) =

∑
j

νk(j)P (j, i)
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for all i. So since νk(i) > 0:
νk = νkP

m

for all m
νk(i) ≥ νk(k)Pki(m) = Pki(m)

By irreducibility there exists m such that pki(m) > 0 so νk(i) > 0.

νk(k) =
∑
j

νk(j)pjk(m)

1 = νk(k) ≥ νk(i)pik(m)

Take n such that pik(n) > 0 (irreducibility of P ) then we get

νk(i) ≤
1

pik(n)
< ∞

Theorem. If P is irreducible and λ is an invariant measure satisfying λk = 1, then

λ ≥ νk (∀i λI ≥ νk(i))

If P is also recurrent, then λ = νk.

Proof. λi ≥ 0 for all i.

λi =
∑
j

λjP (j, i)

= P (k, i) +
∑
j1 ̸=k

P (j, i)λj1

= P (k, i) +
∑
j1 ̸=k

P (k, j1)P (j1, 1) +
∑
j1 ̸=k
j2 ̸=k

P (j2, j1)P (j1, i)λj2

= P (k, i) +
∑
j1 ̸=k

P (k, j1)P (j1, i) + · · ·+
∑

j1,...,jn−1 ̸=q

P (k, jn−1) · · ·P (j1, i)

+
∑

j1,...,jn ̸=k

P (jn, jn−1) · · ·P (j1, i)λjn

So

λi ≥ Pk(X1 = i, τk ≥ 2) + Pk(X2 = i, τk ≥ 3) + · · ·+ Pk(Xn = i, τk ≥ n+ 1)
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so

λi ≥ Ek

[
n∑

l=1

1(Xl = i, τk ≥ l + 1)

]

= E− k

[
n∑

l=0

1(Xl = i, l ≤ τk − 1)

]

=
n∑

l=0

Ek[1(Xl = i, l ≤ τk − 1)]

→
∞∑
l=0

Ek[1(Xl = i, l ≤ τk − 1)]

= νk(i)

λi ≥ νk(i) for all i.
If P is recurrent, then νk is an invariant measure with νk(k) = 1. So we also have that
µi = λi − νk(i) is an invariant measure, since we know λi ≥ νk(i), hence µi ≥ 0. Need
to show that µi = 0 for all i. Let i ∈ I.

0 = µk =
∑
j

µiP
m(j, k) ∀m

=⇒ µk ≥ µiP
m(i, k)

Take m such that pm(i, k) > 0. Then µi = 0.

Remark. If P is irreducible and recurrent, then all invariant measures are unique
up to multiplicative factors.

Question: When can we get an invariant distribution π = πP ,
∑

πi = 1?

Let P be irreducible and recurrent. By the uniqueness (up to multiplication) we can get
an invariant distribution (unique) if ∑

i∈I
νk(i) < ∞

Then

πI =
νk(i)∑
j νk(j)
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∑
i∈I

νk(i) =
∑
i∈I

Ek

[
τk−1∑
l=0

1(Xl = i)

]

= Ek

[
τk−1∑
l=0

∑
i∈I

1(Xl = i)

]
= Ek[τk]

If Ek[τk] < ∞, then we can normalise.

Definition. Let P be irreducible and recurrent, τk = inf{n ≥ 1 : Xn = k}, Pk(τk <
∞) = 1 for all k. We say k is positive recurrent if

Ek[τk] < ∞

We say k is null recurrent if
Ek[τk] = ∞

If k is positive recurrent, then

πk =
νk(k)

Ek[τk]
=

1

Ek[τk]

Start of
lecture 9

Recall that
τk = inf{n ≥ 1 : Xn = k}

k is recurrent if and only if Pk(τk < ∞) = 1. k is positive recurrent if Ek[τk] < ∞.
Otherwise k is null-recurrent.

Theorem. Let P be an irreducible matrix. Then the following are equivalent:

(1) All states are positive recurrent

(2) Some state is positive recurrent

(3) There exists an invariant distribution π.

If any of the above holds, then

πk =
1

Ek[τk]

Proof.

(1) =⇒ (2) Obvious.

(2) =⇒ (3) Let k be the positive recurrent state.

∀i νk(i) = Ek

[
τk−1∑
l=0

1(Xl = i)

]
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implies k is also recurrent so by theorem from last time, νkP = νk. νk: invariant
measure. ∑

i∈I
νk(i) = Ek

[
τk−1∑
l=0

∑
i∈I

1(Xl = i)

]
= Ek[τk]

Since k is positive recurrent, implies Ek[τk] < ∞. So we can define

πi =
νk(i)

Ek[τk]

invariant distribution.

(3) =⇒ (1) Let π be the invariant distribution. Let k be a state. Need to show k is positive
recurrent. First show πk > 0. Exists i ∈ I such that πi > 0. π = πP = πPn for
all n.

πk =
∑
k

πjP
n(j, k)

Take n such that Pn(i, k) > 0 (irreducibility of P ). Then

πk ≥ πiP
n(i, k) > 0

Define λi =
πi
πk
: invariant measure, with λk = 1. So since P is irreducible λ ≥ νk,

i.e. ∀i νk(i) ≤ λi.

EK [τk] =
∑
i∈I

νk(i) ≤
∑
i∈I

λi =
1

πk

So Ek[τk] ≤ 1
πk

< ∞. So k is positive recurrent.

Suppose (1), (2), (3) hold. Let k be a state. Then k is positive recurrent. Define λi =
πi
πk
:

invariant measure with λk = 1. Since P is recurrent, λ = νk (that is, λi = νk(i) for all
i). So ∑

i∈I
λi =

∑
i∈I

νk(i)

so
1

πk
= Ek[τk]

Corollary. P irreducible, π invariant distribution. Then for all x, y, νx(y) =
π(y)
π(x) .
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Example. Simple random walk on Z. P (x, x+1) = P (x, x−1) = 1
2 . P is recurrent

(d = 1). Does there exist an invariant distribution? π = πP . Need

πi =
1

2
πi−1 +

1

2
πi+1

Then π = 1 for all i satisfies π = πP . Since P is recurrent, all invariant measures
have to be multiples of πi = 1 for all i. So there does not exist invariant distribution,
so not positive recurrent.

Example. Z, P (x, x + 1) = p, P (x, x − 1) = q, p + q = 1, p > q. Need π = πP ,
need

πi = pπi−1 + qπi+1

Solve to get

π = a+ b

(
p

q

)i

is an invariant measure for any choice of a, b. So no uniqueness up to multiplicative
factors. Indeed, P is transient.

Example. Simple random walk on Z3 transient. πi = 1 for all i ∈ Z3 invariant
measure. This shows that the existence of an invariant measure does not imply
recurrence.

Example. Z+, P (x, x + 1) = p, P (x, x − 1) = q, p + q = 1, p < q. P (0, 1) = p,
P (0, 0) = q. Look for π such that π = πP .

πi = pπi−1 + qπi+1 i ≥ 1

π0 = qπ1 + π0q

π1 = π0
p

q
, πi =

(
p

q

)i

π0 ∀i ≥ 1

p < q, set π0 = 1− p
q , to get

πi =

(
p

q

)i(
1− p

q

)
, i ≥ 0

so there exists an invariant distribution, so positive recurrent.
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Time Reversibility

Proposition. P irreducible, π invariant distribution. Fix N ∈ N and X0 ∼ π.
Define Yn = XN−n, 0 ≤ n ≤ N . Then (Yn)0≤n≤N is a Markov chain with transition
matrix

P̂ (x, y) =
π(y)

π(x)
P (y, x)

and π is an invariant distribution. If P is irreducible, then P̂ is too.

Proof. P̂ is a transition matrix, since∑
y

P̂ (x, y) =
∑
y

π(y)

π(x)
P (y, x) =

π(x)

π(x)
= 1

Let y0, . . . , yN ∈ I. Then

P(Y0 = y0, . . . , YN = yN ) = P(Xn = y0, . . . , X0 = yN )

= P(X0 = yN , . . . , Xn = y0)

= π(yN )P (yN , yN−1) · P (y1, y0)

= π(yN−1)P̂ (yN−1, yN )P (yN−1, yN−2) · · ·P (y1, y0)

= · · ·
= π(y0)P̂ (y0, y1) · · · P̂ (yN−1, yN )

so Y is Markov(π, P̂ ). Check P̂ has invariant distribution π. Need to show πP̂ = π.∑
x

π(x)P̂ (x, y) =
∑
x

π(x)
π(y)

π(x)
P (y, x) = π(y)

so πP̂ = π.

Also, P̂ is irreducible.
Start of
lecture 10 Proof. Let x, y ∈ I. Need to show P̂n(y, x) > 0 for some n. P is irreducible, so there

exists n and x0 = x, . . . , xn = y such that

P (x0, x1) · · ·P (xn−1, xn) > 0

P̂ (xn, xn−1) · · · P̂ (x1, x0) = P̂ (xn, xn−1) · · ·P (x0, x1)
π(x0)

π(x1)

= · · ·

= P (x0, x1)P (x1, x2) · · ·P (xn−1, xn)
π(x0)

π(xn)
> 0
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Definition. A chain with matrix P and invariant distribution π is called (time)
reversible if

P̂ = P

That is, for all x, y,

P̂ (x, y) = P (x, y) ⇐⇒ π(y)P (y, x)

π(x)
= P (x, y)

X is reversible if for all x, y,

π(x)P (x, y) = π(y)P (y, x)

Detailed balance equation.

Equivalently, X is reversible if ∀N ∈ N, when X0 ∼ π, then

(X0, . . . , XN ) ∼ (Xn, . . . , X0)

P(X0 = x,X1 = y) = π(x)P (x, y).

33



Example.

P (i, (i+ 1) mod n) =
2

3
P (i, (i− 1) mod n) =

1

3

for all i ∈ Zn. Is P time reversible? Take πi =
1
n for all i, then P is not reversible,

because the Detailed Balance equation are not satisfied, for example

π(i)P (i, i+ 1) =
1

n

2

3

but

π(i+ 1)P (i+ 1, i) =
1

n

1

3

Example.
Is this time reversible? λi = 2i invariant measure. π(i) ∝ 2i, X0 ∼ π. Check π

satisfies Detailed Balance equation.

Lemma. Let µ be a distribution satisfying

µ(x)P (x, y) = µ(y)P (y, x) ∀x, y

Then µ is an invariant distribution.
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Proof.

µ(y) =
∑
x

µ(x)P (x, y) =
∑
x

µ(y)P (y, x) = (µP )(y)

So µ = µP .

When looking for an invariant distribution, first we should look for a solution to the
Detailed Balance equation. If a distribution that solves Detailed Balance equation exists,
then it is an invariant distribution. If no solution to Detailed Balance equation exists,
then if there exists an invariant distribution, it means the chain is not reversible.

Example. Simple random walk on a graph. G = (V,E), E is edge set, V is vertex
set. G is finite and connected.

P (x, y) =

{
1

d(x) (x, y) ∈ E

0 otherwise

d(x) is the degree of x. Then since G is connected, P is irreducible. To find π, let’s
look at Detailed Balance equation

(x, y) ∈ E π(x)P (x, y)︸ ︷︷ ︸
1

d(x)

= π(y)P (y, x)︸ ︷︷ ︸
1

d(y)

so π must satisfy

π(x)
1

d(x)
= π(y)

1

d(y)
∀(x, y) ∈ E

Taking ν(x) = d(x), then ν is an invariant measure. So

π(x) =
d(x)∑
y∈V d(y)

=
d(x)

2|E|

So simple random walk on G is reversible.

Convergence to equilibrium

Theorem. I finite, i ∈ I such that ∀j

pij(n) → π(j)

as n → ∞. Then π is invariant.

P has invariant distribution π. Question: Under what conditions do we have convergence
to π?

35



Example.
p+ q = 1, p = 2

3 , q = 1
3 Pn(0, 0). If n is odd, then

Pn(0, 0) = 0

Definition. P transition matrix, i ∈ I. The period of i is defined

di = gcd{n ≥ 1 : Pn(i, i) > 0}

i is called aperiodic if di = 1.

Lemma. Let P be a transition matrix and i ∈ I. Then di = 1 if and only if

Pn(i, i) > 0

for all n sufficiently large.

Proof. ⇐ Obvious.

⇒ If di = 1 then want to show Pn(i, i) > 0 for all n large enough.

D(i) = {n ≥ 1 : Pn(i, i) > 0}

Observation: if n,m ∈ D(i) then n + m ∈ D(i). So suffices to prove that D(i)
contains 2 consecutive integers. Say it contains m,m+1. Then by the observation
it will also contain am+ b(m+ 1) for all a, b ∈ N. One can check that

D(i) ⊃ {n : n ≥ m2}

Suppose min{x − y : x > y, x, y ∈ D(i)} = r ≥ 2. Let n,m ∈ D(i) such that
n = m+ r. Then there exists k = lr+ s with 0 < s < r, l ∈ N such that k ∈ D(i).
If there does not exist such k, then all elements of D(i) would be multiples of r,
and hence gcd D(i) would be r, contradiction.
Let a = (l + 1)n and b = (l + 1)m+ k. By observation, a, b ∈ D(i).

a− b = r − s < r

so r = 1, so D(i) contains 2 consecutive integers.
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Lemma. If P is irreducible and i ∈ I is aperiodic, then all states are aperiodic.

Proof. Let j ∈ I. There exists r, s ≥ 0 such that

P r(i, j) > 0 and P s(j, i) > 0

(by irreducibility)
Pn+r+s(j, j) ≥ P s(j, i)Pn(i, i)P r(i, j) > 0

for all n sufficiently large.

Start of
lecture 11 Theorem. Let P be irreducible and aperiodic with invariant distribution π. Let

X ∼ Markov(λ, P ). Then ∀y,

P(Xn = y) → π(y)

as n → ∞. In particular, for all x and y,

Pn(x, y) → π(y)

as n → ∞. (Taking λ = δx)

Proof. Coupling of Markov chains. Let (Yn)n≥0 ∼ Markov(π, P ) independent of X.

Consider ((Xn, Yn))n≥0 ∼ Markov(λ× π, P̃ ) where

P̃ ((x, y), (x′, y′)) = P (x, x′)P (y, y′)

We claim that P̃ is irreducible. So we want to show that there exist l,m such that

P l(x, x′) > 0 and Pm(y, y′) > 0

Then note
Pn(x, x′) ≥ P l(x, x′)Pn−l(x′, x′) > 0

for all N sufficiently large by aperiodicity of P . Similarly

Pn(y, y′) ≥ Pm(y, y′)Pn−m(y′, y′) > 0
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for sufficiently large N . So

P̃n((x, y), (x′, y′)) = Pn(x, x′)Pn(y, y′) > 0

for all n large enough. So P̃ is irreducible.
P̃ has invariant distribution π̃(x, y) = π(x)π(y). So P̃ is positive recurrent. Fix α ∈ I.
Define T = inf{n ≥ 1 : (Xn, Yn) = (a, a)}. T is a stopping time for (X,Y ). P̃ is positive
recurrent so P(T < ∞) = 1. Define

Zn =

{
Xn n < T

Yn n ≥ T

Now claim that Z ∼ Markov(λ, P ). Note that Z0 ∼ λ because

P(Z0 = x) = P(X0 = x) = λ(x).

Let A = {Zn−1 = zn−1, . . . , Z0 = z0}. Need to show

P(Zn+1 = y | Zn = x,A) = P (x, y)

So we calculate:

P(Zn+1 = y | Zn = x,A) = P(Zn+1 = y, T > n | Zn = x,A) + P(Zn+1 = y, T ≤ n | Zn = x,A)

P(Zn+1 = y, T > n | Zn = x,A) = P(Xn+1 = y | T > n,Zn = x,A)P(T > n | Zn = x,A)

Now note that {T > n} = {T ≤ n}c, but {T ≤ n}c only depends on (X0, Y0), (Xn, Yn)
so by Strong Markov Property,

= P (x, y)P(T > n | Zn = x,A)

Similarly

P(Zn+1 = y, T ≤ n | Zn = x,A) = P (x, y)P(T ≤ n | Zn = x,A)

So
P(Zn+1 = y | Zn = x,A) = P (x, y)

So Z ∼ Markov(λ, P ).
Now we want to show that |P(Xn = y) = π(y)| → 0 as n → ∞. But since Y ∼
Markov(π, P ) so P(Yn = y) = π(y) for all n. So

|P(Xn = y)− P(Yn = y)| = |P(Zn = y)− P(Yn = y)|
= |P(Zn = y, n < T ) + P(Zn = y, n ≥ T )− P(Yn = y)|
= |P(Xn = y, n < T ) + P(Yn = y, n ≥ T )− P(Yn = y)|
= |P(Xn = y, n < T )− P(Yn = y, n < T )|
≤ P(T > n)

Take n → ∞ we get P(T > n) → 0 because P(T < ∞) = 1. So P(Xn = y) → P(Yn =
y) = π(y).
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Theorem. Let P be irreducible and aperiodic. Suppose P is null recurrent. Then
for all x, y,

Pn(x, y) → 0

as n → ∞.

Proof. Consider P̃ ((x, y), (x′, y′)) = P (x, x′)P (y, y′). As before, P̃ is irreducible.

� If P̃ transient, then∑
n

P̃n((x, x), (y, y)) =
∑
n

(Pn(x, y))2 < ∞

so Pn(x, y) → 0 as n → ∞.

� If P̃ is recurrent then

νy(z) = Ey

τy−1∑
i=0

1(xi = z)


νy is invariant, i.e. νyP = νy. P is null-recurrent so Ey[τy] = ∞, so νy(I) = ∞.
Fix M ∈ N. Since νy(I) = ∞, we can find a finite set A such that νy(A) > M .
Define

µ(x) =
νy(x)

νy(A)
1(x ∈ A)

probability measure.

µPn(z) =
∑
x

µ(x)Pn(x, z)

≤
∑
x

νy(x)

νy(A)
Pn(x, z)

=
νy(x)

νy(A)

(νyP = νy) So

µPn(z) ≤ νy(z)

νy(z)

Consider (X,Y ) ∼ Markov(µ× δx, P̃ ). Define T = inf{n ≥ 0 : (Xn, Yn) = (x, x)}.
P(T < ∞) = 1, since P̃ is recurrent.

Zn =

{
Xn n < T

Yn n ≥ T
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Then Zn ∼ Markov(µ, P )

P(Zn = y) = µPn(y)

≤ νy(y)

νy(A)

=
1

νy(A)

<
1

M

Need to show: Pn(x, y) → ∞ as n → ∞.

Pn(x, y) = P(Yn = y)

= P(Yn = y, n < T ) + P(Yn = y, n ≥ T )

≤ P(T > n) + P(Zn = y)

Let n → ∞ then P(T > n) → 0 (P(T < ∞) = 1). So

lim
n→∞

Pn(x, y) <
1

M

Taking M → ∞ finishes that proof.

Start of
lecture 12 Theorem (Ergodic theorem). Let P be irreducible with an invariant distribution

π. Suppose X0 ∼ λ. Then with probability 1 we have ∀x ∈ I,

lim
n→∞

∑n−1
i=0 1(Xi = x)

n
→ π(x)

Proof. Since P has an invariant distribution, it follows that it is recurrent and so Tx < ∞
with probability 1. By the strong Markov property,

(XTx+n)n≥0 ∼ Markov(δx, P )

and is independent of X0, . . . , XTx . But since limn→∞

∑n−1
i=0
n is not affected by changing

the initial distribution, it suffices to consider λ = δx. Write

vn(x) =
n−1∑
i=0

1(Xi = x) = number of visits to x by time n− 1

Successive return times to x:
T (0)
x = 0

T (k+1)
x = inf{t ≥ T (k)

x + 1 : Xt = x}
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These are stopping times. Define

S(k)
x =

{
T
(k)
x − T

(k−1)
x if T

(k−1)
x < ∞

0 otherwise

By the strong Markov property, we see that (S
(k)
x )k are independent identical distribu-

tions and have expectation

E[S(1)
x ] = Ex[Tx] =

1

π(x)

Tx = T
(1)
x .

T (vn(x)−1)
x ≤ n− 1 (1)

T (vn(x))
x ≥ n (2)

(1) ⇐⇒ S
(1)
x + · · ·+ S

(vn(x)−1)
x ≤ n− 1 and (2) ⇐⇒ S

(1)
x + · · ·+ S

(vn(x))
x ≥ n. So

S(1)
x + · · ·+ S(vn(x)−1)

x ≤ n ≤ S(1)
x + · · ·+ S(vn(x))

x (∗)

Since (S
(k)
x ) are IID and E[S(1)

x ] < ∞ then by Strong Law of Large numbers:

S
(1)
x + · · ·+ S

(k)
x

k
→ E[S(1)

x ]

as k → ∞ with probability 1. By recurrence, vn(x) → ∞ as n → ∞ so dividing (∗)
through by vn(x) we get both the LHS and RHS converge to

E[S(1)
x ] =

1

π(x)

and hence

lim
n→∞

n

vn(x)
=

1

π(x)

so

lim
n→∞

vn(x)

n
= π(x)

Continuous time Markov Chains (non-examinable)

We defined Markov chain as “the past and future are independent if we are given the
present”. We only considered only discrete time Markov chains, but we could generalise:

� (Xt)t≥0, t ∈ R+
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� Sx = holding time at the state x

P(Sx > t+ s | Sx > s) = P(Xu = x,∀u ∈ [0, t+ s] | Xu = x,∀u ∈ [0, s])

= P(Xu = x,∀u ∈ [s, t+ s] | Xu = x,∀u ∈ [0, s])

= P(Xu = x,∀u ∈ [s, t+ s] | Xs = x) (Markov property)

= Px(Xu = x,∀u ∈ [0, t]) (time-homogeneity)

= P(Sx > t)

Sx has the property: P(Sx > t+ s | Sx > s) = P(Sx > t) for all s, t. So Sx has the
memoryless property. Recall from IA probability that Memoryless property for a
positive random variable S is equivalent to S having the exponential distribution
with some parameter.

So the simplest example of a continuous time Markov chain is:
Poisson process:

S1, S2, . . .

IID, ∼ Exp(λ)

Ji =
i∑

j=1

Sj

Xt = i if Ji ≤ t < Ji+1

42


	Introduction
	Page-Rank algorithm

	Markov Chains
	Simple random walks on Zd

