Markov Chains

February 28, 2023

Contents

[0__Introductionl
(0.1 Page-Rank algorithm|. . . . . ... ... ... .. ... .. ........

1__Markov Chains|

2 Simple random walks on 79




Lectures

E

i

D
D
0

D D
D D

O
g S

E

Lecture 12)



Start of
lecture 1

0 Introduction

Definition (Markov Chains). Markov chains are random processes (sequence of
random variables) that retain no memory of the past.

past L future

present

History
e Markov in 1906

e Poisson process, branching processes existed before.
Motivation: Extend the law of large numbers to the non IID setting.

e Koluogorov in 1930: continuous time Markov processes.

e Brownian motion: fundamental object in modern probability theory.

Why Study Markov Chains?

Simplest mathematical models for random phenomena evolving in time.

e Simple: amenable to analysis - tools from probability, analysis, combinatorics.

e Applications: population growth, mathematical genetics, queuing networks, Monte
Carlo simulation, ...

0.1 Page-Rank algorithm

This is an example of a simple algorithm which was previously used by search engines
such as Google.

Model the web as a directed graph, G : (V, E). V is the set of websites (the vertices),
and (i,j) € E if and only if ¢ contains a link to page j. Let L(i) be the number of
outgoing edges from i. Define

(n=1V1])

o b) if L(i) >0 and (i,j) € F
P = if L(i) =0

3=

Now also define for a € (0,1),

. 1
pij = apij + (1 —a)—
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A random surfer tosses a coin, with probability « and chooses to go to: either p or
uniformly at random. We want to find the invariant distribution:

T =T7p

where
m; = proportion of time spent at state ¢ by the surfer

Once we solve for this, if m; > 7; then 4 is more important than j and Google ranks it
higher.



1 Markov Chains

We will always denote state space by I, and it will always be finite or countable. The
probability space will always be (2, F,[P). We will now more formally define a Markov
Chain:

Definition (Markov Chain). A stochastic process (Xy)n>0 is called a Markov chain
(with values in 1) if Yn > 0,Vzo,...,zn41 € I,

]P)(Xn—l—l = Tnit1 ’ Xp = Ty 7X0 = ‘TO) = ]P)(Xn—i-l = Tn+t1 ’ Xp = xn)

future present past

J

If P(X,=1 =y | X;, = z) is independent of n Vz,y, then X is called time-homogenous
(this is what we will focus on in this course). Otherwise time-inhomogeneous.

Define P(z,y) =P(X1 =y | Xo =x) for z,y € I. P is called the transition matrix of
the Markov chain.

Y Py =) PXi=y|Xo=2)=1

yel yel

P is called a stochastic matriz.

Definition. (X,,),>0 with values in I is called Markov(A, P) if X ~ A and (X}, )n>0
is a Markov chain with transition matrix P, i.e.

(1) P(Xo=2) =A(z) forallz € T

(2) P(Xp+1=Tpt1 | Xn =2xn ... Xo = 29) = P(xp, Tpy1) for all n,xo, ..., Tn41

Notation. P(z,y) = pyy = p(z,9)

Draw a diagram (directed graph), and put a directed edge between z and y (x — y) if
P(z,y) > 0, and write the probability on top of these arrows.

P [ﬁﬁ 1;“] 0.8 € (0,1)
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Theorem. X is Markov(\, P) if and only if for all n > 0 and zo,...,z, € I,

P(Xo =x0,...,Xn =xn) = Maxo)P(xo,21) - P(Xp—1,2n)

Proof. =

P(X, =xn,....,.Xo=x0) =P(X,, =2, | Xpno1 = p—1,..., X0 = x0)
X ]P’(Xn_l =Tp—1,y--- ,Xo = .730)
= P(xp—1,2,)P(Xp—1 = p_1,..., X0 = 20)
= Mzo)P(z0,21) - P(Tp—1,Tn)
< forn =0, P(Xg =x9) = M o)
P(Xn = $n,Xn_1 = Tn—-1,--- 7X0 = Zo
P(X, =2, | Xy 1 =291 Xo=z0) =
( " Tn | n—l Tn-1 0 -’EO) ]P)(Xn,1 = Tp—1y--- 7X0 = .TJ())
= P($n_1,$n)

Definition. Let 7 € I. The §;-mass at i is defined as

1 ifi=j
b =1(i = j) =
J ( 7 {0 otherwise




~

Definition. Let X1,..., X, be discrete random variables with values in I. They
are independent if for all x1,...,x, € [

P(Xy =x1,...,Xp = 2,) = [ [P(X; = z)

Let (X,,)n>0 be a set of random variables in I. They are independent if for all iy < s <
- < i, for all k£ and for all x4, ...z,

k
P<XZ1 = xl?"'uXik = xk) = HP(XZ] :I'J>
j=1

Let (X,)n>0 and (Yy,)n>0 be 2 sequences. X L Y if for all k,m € N, and for all
il < - <ik7j1 <<.7m; Llye oy Ty Y1y -y Ym,

P(Xh ::L‘l,...,Xik :mk,le :y1,...,ij :ym)
:IP(ij :xl,...,Xik :J}k) X]P)(le :yl,...,ij :ym)

Start of

lecture 2 Theorem (Simple Markov property). Suppose X is Markov(\, P) with values in
I. Let m € N and 7 € I. Then conditional on X, = i, the process (Xy,4n)n>0 is
Markov(d;, P) and it is independent of Xy, ..., X,,.

Proof. Let xg,21,...,2, € 1.

P(Xm =20, Xm+1 = T1, -+, Xmtn = Tn | Xm = Z)
P(Xom = 20, - - - Xon = Tn
P(Xy = 1)

= ]li:xo

P(X, =20,y Xontn = Tn)
= Z P(X(]:yO’-n,mel:ym—l,Xm:l“o,---,Xern:l‘n)

Y0,5--Ym—1

= > Aw0)Po,y1) + PYm—2,Ym-1)P(ym—1,20) -+ P(wn_1,2n)
Y0, Ym—1

=p(zo,71) - P(@n-1,7n) Y Myo)P(yo,y1) - P(Ym-1, o)

Yo,--Ym—1

—P(X =)
putting back into () we get that

]li:IOP(iL‘o, IL‘1) s P(."L‘nfl, :L'n) — Markov(éi, P)
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(1,24, is another notation for d;,). Let m < iy < ig9 < -+ < i, yo = i. Then

]P)(Xh:xl)"wX’ik:xkaXOZyOV"aXm:ym‘Xm:/i)
_IP)(X’L :$17"'7Xik:mkaXO:y()?"')Xm:ym)
P(X,, = 1)
Y P(yo, o P(Ypm1, .
= (yO) (yOPZ(/; —z;ym ! ym)P(X“:xl,,Xlk:xk‘Xm:Z)
m =

:P(Xil:$1,...,Xik:l‘k|Xm:i)P(X0:y0,...,Xm:ym‘Xm:’b')

X ~ Markov(\, P)

PXp=2)= » PXo=u0,...,Xn 1=2an 1,X,=2)

L0555 Tn—1

= > Mao)Pleo.x) - Plear,)

L0+ Tn—1

= ()‘Pn)ﬂc

By convention P? = I.
P(Xnim =y | Xm = 2)

Conditional on X,, = &, (Xy4n)n>0 is Markov(dz, P). So

We will write
pmy(n) = (Pn)xy

Let A be such an event. We will write

P;(A) = B(A | Xo = i)

Examples for P"

Consider
11—« o
P=
(50
ptt=pr.p=p.p"
So
pr1(n+1) = (1 — a)p11(n) + pia(n)
p1i(n) +pi2(n) =1 p11(0) =1
pu(n) = 4 a8 tafp—a= B ifa+ >0
1 ifa+p5=0
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In this simple case, it is easy to solve directly for P™. However this is not generally the
case for large matrices.

Finding eigenvalues of P is another useful method. Let P be a k X k stochastic matrix.
Let A1, ..., A be the eigenvalues of P.

e If \y,..., \x are all distinct, then P is diagonalisable.
P=UDU!' = P"=UD"U!

pll(n) = al)\? —}-042/\3 4+t Olk)\z

p11(0) = 1. Plug in small values of n, then solve the system to find aq, ..., ay.
If one of the eigenvalues is complex, say Ap_1, then also its conjugate will be an
eigenvalue say A\ = A\p_1.

9 = rcos@ + irsinf

A1 = ret
A =7cost —irsinf
It becomes easier (calculations) to write the general form as

p11(n) = gl AT + - + ag_2 A}y + ag_17" cos(nd) + axr" cos(nh)

e If the eigenvalues are not all distinct then suppose A appears with multiplicity 2.
Then we also include the term an + S)A™ in the expression for pi1(n). (Jordan
normal form).

01 0
p={o 1}
1 1
3 0 3

eigenvalues : 1, 5, —3.
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Communicating classes

Definition (Communicating classes). Let X be a Markov Chain with matrix P on
I. Let z,y € I. We say x — y (x leads to y) if

P, (X, = y for some m > 0) > 0.

We say that x and y communicate and x <> y if both * — y and y — =z.

-

Theorem. The following are equivalent:
(1) z—y
(2) 3 a sequence x = xg,z1,...,x; =y such that

P(xo,x1) - P(xk—1,2%) >0

(3) 3n > 0 such that pgy(n) > 0 (recall that pyy(n) is the (z,y) element of P", and
is also equal to P, (X, = y))

Proof. First we prove (1) <= (3). We have:

{X,, =y for some n > 0} = U{Xn:y}
n>0
If £ — y, then In > 0 such that P,(X,, = y) > 0. From the definition of —, we
immediately have (3) = (1).
Now we prove (2) < (3):
Po(Xn=y)= > pla,z) p@n1,y)

L1y Tn—1

so (2) < (3). O

Corollary. < defines an equivalence relation on I.

Proof. x <> x, because py,(0) = 1. Transitivity: suppose X <> y and y <+ z. Then from
(2), z < 2. O

Definition. The equivalence classes induced by <> on I are called communicating
classes. We say that a class C' is closed if whenever x € C and x — y, then y € C.

10



Definition. A matrix P (transition) is called irreducible if it has a single commu-
nicating class. In other words, x <+ y for all z,y € I.

Definition. A state z is called absorbing if {z} is a closed class. Equivalently if
the Markov chain started from z then it stays at x forever.

Definition. ACU. 74 : Q2 — NU {oco}

T4 =inf{n >0: X, (w) € A}

Convention: inf(()) = co. 74 is the first hitting time of A.

Denote hit = P;(14 < o0), i € 1.
hA T —[0,1], (h{* i € I) is vector of hitting probability.

Also define k4 : I — R, U {oo}, the mean hitting time. So

k= Ei[ra] =Y nPi(ra =n) + 0o - Pi(ta = 00)
—_—

n=1 0-00=0

P2(7'4 < OO) = h§4} T4 = T{4}-

(h1 =0, hgy =1) k§1’4} = Ea[r1,43]

1 1
ko =14+ = —k
2 +2 0+23
1 1
ks =14+ = —k
3 +2 0+22

— ky =2

ki =k4=

11



Theorem. Let A C I. The vector (h{' : i € I) is a solution to the linear system

4 {1 ifieA
i . N7 A -

ij(%])h]‘ i¢A
The vector (hf‘) is the minimal non-negative solution to this system.

A solution (hZ') is minimal if for any other non-negative solution (X;), we have that
ht < X; Vi

Proof. Clearly, if i € A, then ht = 1. Assume i ¢ A.

h?:Pi(TA<OO)
{ra<oc}=J{ma=n}={J{X0 €A X1 ¢A. . X, 1¢AX,cA}
n=0 n=0

Pi(TA < OO) :Z]P)’L(Xl QA,...,XTL,1 Q/A,Xn EA)

n=1
=Pi(X1 € A)+ ) P(X1¢A... Xn1&AX, €A
n=2

Now compute:

Pi(X1 €A, Xo 1 @AXn€A) =) Pi(X1=5Xo¢A,.. ., Xo1¢AX, €A
JgA
=3 Pi(Xo @A, . Xp1 g AXy€A|Xog=1,X1=4)P(i,})
JgA
=3 Pli,j)Pj(X1 € A,... . Xpn 2@ A Xp 1 €A
JEA

Now plus back in:

ht =P;i(X; € A) +ZZP@; (X1 €A,...,X,€A)
n=1j&A

—ZPZ] hA —I—ZPz]
JEA 71 jZA

= ' =>_P(i,j)h

A
hj

So hf‘ is a solution as claimed.

12



Now we prove minimality. Let (z;) be another non-negative solution. Need to show that
ht < x; for all i. If i ¢ A, then

T = ZP(i,j)xj
J

= 2= _ P@i,j)+ > P(i,j)z;

JEA JEA
jEA JEAGEA JEAkZA
v =Pi(X1 € A)+ Pi(X1 € A, Xp € A)+ > Y P(i,5)P(j, k)
JEAKZA

(the inequality holds because the remaining terms are all non-negative since we assume
that the x; are non-negative). Rewriting:

x; > Pi(ta <n) VYneN
{ra<n} /| J{ra <n} ={ra < o0}

s0 Pi(1a <mn) /' Pi(14 < 00) hence z; > P;(14 < 00) = hf‘. O
Start of

lecture 4 Examples

Simple random walk on Z .
P(0,1)=1

Pli,it1)=p=1—P(i,i—1) i>1
Want to find h; = P;(Th < 00).

ho =1 h; =phit1 +qhi—1

hi:a+b<z>i:a+(1—a) <Z>

i=0,a+b=1. Assume ¢ > p: to get non-negative and minimal solution need to
take a = 1. So h; = 1 for all ¢ > 1. If instead we have ¢ < p, then a = 0 implies

h; = (%)Z for ¢ > 1.

e p#q. Then

e lfp=qg= % General solution h; = a + bi, hg = 1 implies ¢ = 1. For minimality
need to take b =0. So h; =1 for all ¢ > 1.

13
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Birth and death chains.
P0,0)=1, P(,i+1)=p; Pl,i-1)=q, pita=1
h; =Pi(Th < ), ho=1
hi = pihiv1 + gihi—
= pi(hi+1 — hi) = qi(hi — hi—1)
Set u; = h; — h;j—1.

i
4i 4k

wipr === [ Fu w=h -1
' pi Pk

h; = Z(hj — hj_l) +1

j=1

i
= 1+ZUJ
j=1
7

j—1
:1+u1+Zu1qukf

= k=1 P
- hi:1+(h1—1)+(h1—1)
Set v; = i:o L 49 =1. Then
i—1
hi=1—(1=M)> v
§=0

We want (h;) to be the minimal non-negative solution, implies:

1
1-h) < =—
Z?io Vi
Minimality implies
1
h=1— =—
Zjo'io Vi
® > 207 < oo, then
o
B — Zj:l Vi
===
Z]o'io Vi

® > 207 = 00, then by =1 for all i > 1.

14



Mean hitting times

ACI, ta=inf{n>0:X, € A}. k! = E;[ra].

Theorem. The vector (k! : i € I) is the minimal non-negative solution to the

pA 0 ificA
' 14+ Y04 P(i )k ig A

System

Proof. If i € A, then k{* = 0. Assume i ¢ A. Then

kA = Ei[ra]

:Z]P)i(TA >n)
n=0
:ZIP’Z»(X()%A,...,XTL%A)
n=0

n=1

=14+ > Pi(X1=jXa¢A,... . Xn¢A)

n=1 j

:1+Zzp(i’j)P(X1 ZA... X,dA| Xo=7,X =)

n=1 j

=1+ ) > P,j)Pj(Xo€A,...,Xp 1 & A)

n=1 j

= 1+ZP(i,j)i)Pj(X0 dA...  X,¢&A)
=1+ iP(m)lEj[m]
= 1+iP(i,j)k§‘
= 1+zj:P(i,j)kf
igA

Minimality: Let (x;) be another non-negative solution. Then z; = 0,7 € A. If i ¢ A,

15
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then
vi=14) P(i,j)z;
jgA
=1+ P(i.j)+) > Pli. )P, k)
jgA JEAkZA

x; =1+ Z P(i,ji)+ -+ Z P(i,j) - P(jn—2,Jn-1) + Znon—negative terms
ngA J1sensdng1€
i 2 14+Pi(ta > 1) +Pi(ta >2)+ -+ Pi()

So x; > 1 oPi(ta > k) for all n. So

i > Y Pi(m) = Eilra] = k{! -
k=0

Simple Markov Property

Recall that the Simple Markov property states that if m € N, ¢ € I, X ~ Markov(\, P)
then conditional on X,, = i, (Xp4m)n>0 is Markov(é;, P) and is independent of Xo, ..., Xp,.
We would like to generalise this to a value of m that is randomly picked.

Definition. A random variable T': Q — {0,1,...} U{oco} is called a stopping time
if the event {T' = n} depends on Xy, ..., X, for all n € N.

Example. A C I, 74 = inf{n > 0 : X,, € A}. Then {74 = n} = {Xo ¢
A, ., X1 € A X, € A} so first hitting times are always stopping times. What
about last hitting time:

Ly=sup{n<10:X, € A}

Then L4 is not a stopping time, because for example {L4 = 5} does not depend on
X(), vl ,X5 only.

Theorem (Strong Markov Property). Let X be Markov (A, P) and T be a stopping
time. Conditional on 7' < oo and X7 = 4, (X74n)n>0 is Markov(é;, P) and it is
independent of X, ..., X7.

Proof. Let zq,...,2, € I, w € |J,, I*. Need to show

P(XT:Zbo,...,XT+n,(x0,...,XT) =w | T < OO,XT:’i)
= Oizo P(x0,21) - - P(p—_1,2n)P((x0,...,X7) =w | T < 00, X7 =1)

16
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Let w have length k. Then
P(Xy =x0,..., Xpsn = Tn, (X0, ..., Xg) =w, T =k | T < 00, Xp =)
P(T < 00, X7 =1)
=P(Xx =20y, Xpan=2n | (Xoy...,. Xp) =w, T =k, Xy, =1)
XIP’((XO,...,Xk):w,T:(f,Xk:i) (%)
P(T < o0, X7 = 1)
The event {T' = k} only depends on Xy, ..., Xy (T stopping time). So
P(Xy = 20, - Xpan | (Xoy- .., Xp) =w, T =k, Xj, = i)
=P(Xk =20, .., Xpan =xpn | Xp = 1)

by the Markov property. This is also equal to
SizgP(T0, 1) - P(Tn—1, Tn)
So the expression in (x) is equal to
P(Xo,...,Xp) =w, T =k |T <o00,Xpr =1) =P((Xo,...,X7)=w | T < o0, Xp =1)
(w has length k). O

Example

Consider a Markov chain with P(0,1) =1, P(i,i+ 1) = P(i,i — 1) = 3. (like a random
walk but restricted to X > 0). Let
To=inf{n >0: X, =0}
Let h; = P1(Th < o), hog = 1. What is h; equal to?
1

1
h1—§+§h2

ha ]P)Q(TO < OO)
2(T1 < 00,1y < OO)
2(T0 < o0 | T < OO) ']P)Q(Tl < OO)

Q(To < 0 | T < OO)hl

P
P
P

Conditional on Ty < oo (X7, = 1), by the Markov property (X7, +n)n > 0is Markov(dy, P).
So (under the conditioning) we can express Ty = T1 + Tp, where Ty is independent of T}
and has the same law as T under P;.

]P)Q(T()<OO|T1<OO):P2(T0+T1<OO|T1<OO)

:Pl(T0<OO)
= hy
so hg = h3. So
11,
h1:§+§h1 == h =1

17



Transience and recurrence

Definition. A state ¢ is called recurrent if
P;(X,, = i for infinitely many n) =1
A state 7 is called transient if

P;(X,, = ¢ for infinitely many n) =0

Let
o0
Vi = Z 1(X; = i) = total number of visits to i
=0

We will calculate P;(V; > r) for some values of . Let Tl(k:) denote the k-th return time.
PV;>0) =

Pi(V; > 1) = BT < o0

Pi(V; > 2) = Py(T}1) < o0)?
More formally: define Ti(o) =0 and for £ > 1:

7" =inf{n > TV : X, =i}

(k-th return time to ¢). Then

TV = inf{n > 0: X, =i}

Let f; = Piy(T\" < o0).

Lemma. For all » € N, P;(V; > r) = fI'. So V; has a geometric distribution.

Proof. True for r = 0. Suppose it is true for » < k. We will prove it for k + 1.

Pi(V; > k+1) = P(T*™Y < o0)

(2

=Py(T* ™ < 00, T < )

(2

= Pi(T-(k+1) < o0 | Ti(k) < oo)IP’Z-(Ti(k) < 00)

7

k)

The successive return times to i are stopping times, so conditional on T ®) < (and
hence X, T = =1) (XTgk)+n)n20 is Markov(d;, P) is independent of Xj, ... T(k) So
(1" < 00 | TV < o00) = BTV < o0) = i
O

18
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Theorem. (a) If f; = 1, then ¢ is recurrent and

szz(n) =00

n>0

(b) If fi < 1, then i is transient and

Proof.

(a) If f; = 1 then by the lemma, P;(V; = oo) = 1, so i is recurrent, so E;[V;] = oo so

> Pii(n) = oo.

(b) If fi < 1 then by the lemma, E;[V;] = %ﬂ < 00,80 Y., pii(n) < oosoP;(V; <o) =
1, so ¢ is transient.

O]

Theorem. Let x and y communicate. Then they are either both recurrent or both
transient.

Proof. If x is recurrent, we will show y is also recurrent. z <> y implies that there exists
m,r > 0 such that pyy(m) > 0, py(r) > 0. Then

Pyy(n+m +71) > pya(r)Pae(n)pay(m)

SO
Zpyy(n +m+17) > pye(1)pey(m) me(n) =0
n>0 n>0

so y is also recurrent. O

<
Corollary. All states in a communicating class are either all recurrent or all tran-

sient.

Theorem. If C' is a recurrent communicating class, then C' is closed.

19
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Proof. Let x € C'and  — y, but y € C. Since z — y, Im > 0 such that p,(m) < 0, so
Py (Vy < 00) > pay(m) >0

SO this shows that x is transient, contradiction. O

Theorem. A finite closed class is recurrent.

Proof. Let x € C. Since X is finite, dy € C such that
P, (X, =y for infinitely many n) > 0
by the pigeonhole principle.

P(X,, = y for infinitely many n) > Py (X,, = z, X,, = y for infinitely many n > m
=Py (X, = y for infinitely many n > m | X, = 2)Py(X,, = z)
= P,(X,, =y for infinitely many n)py,(m)
>0

so Py (X, = y for infinitely many n) > 0. So y is recurrent. O

Theorem. Let P be irreducible and recurrent. Then for all x,y

P.(Ty < o0) =1

Proof.
P, (X, = y infinitely many times) = Px (T}, < oo, X;, = y for infinitely many n > T}))
= P,(X,, =y infiniteley many n > T, | T,, < o0)
Po(Ty < 00)

= Py (X,, = y infinitely many n) - P, (T}, < c0)
=P,(T, < o)

Suppose P, (T, < 00) < 1. Then P, (T, = oo) > 0. Pick py,(m) > 0, and define

T, =inf{n >m: X, =y}

Then
P, (V, < 00) > Py(X,, = z,T, = 00)
=Py(Ty = 00 | X = 2)Py (X, = )
= Po(Ty = 00)pya(m)
>0
so y is transient. O

20



2 Simple random walks on Z¢

~

Definition. A simple random walk on Z¢ is a Markov chain with transition matrix

1
p(x,ac—l—ei):p(a:,x—ei):ﬁ VeeZ Vi=1,...,d

where ¢; is the standard basis of R%.

Theorem (Pdlya). A simple random walk is recurrent when d < 2 and it is transient
when d > 3.

Proof.d =1 Need to show 0 is recurrent, i.e. we want to show

> " poo(n) = oo
poo(n) = Po(Xy, =0)
on 1\ (2n) 1
Po(X2, =0) = = =——_—
0(X2 ) (n) <2) nln! 22n
Recall Stirling’s formula: n! ~ n"e™ - e~ - /27N so

1
VTN

S0 Y, Poo(2n) = co. So simple random walk on Z is recurrent.

Po(Xa2n =0) ~

Now consider a random walk where we move right with probability p, and left with
probability ¢ = 1 — p, with p # ¢. Then

2n 4dpq)™
)‘pn,qnd )

Po(X2, = 0) = (

Since p # q, 4pq < 1, so

d = 2 Consider projecting the random walk as follows:
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Define a function f : Z? — R?

(X,,) simple random walk on Z?, f(X,) = (X,}, X,;). We claim that (X;}) and
(X,,) are 2 independent simple random walks on %. Let (&;) be an iid sequence

Solet X, =S, & and & = (¢}, €2).

8 - -8
f(Xn)—< ) z’ % z)

=1

So we want to show that ¢! + £? is independent of £} — ¢2. This can be done by
checking lots of calculations / cases. So (X,I) and (X,,) are independent. Now

Po(Xo, =0) = IP’O(X;l =0,X,;,=0)
Po(X5 = 0)Py(X,, = 0)

(
&)

~

1_
SO ), - = 00 s0 recurrent.

Start of d =3 We will prove that ), poo(n) < oo, which will imply it is transient. Let’s compute
lecture 7 poo(2n). In order to be back at 0 after 2n steps it must make ¢ steps to the right,
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1 to the left, 7 north and j south, & west and k east for some 7,5,k > 0 and
i+j+k=n. So

on 1 2n
poo(2n) = Z <i7i,j,j,k,k> <6>

1,5,k>0
i+j+k=n

6" 2, (5 6)

i+j+k=n
()

> () (G) =

i,5,k>0 <l’j’k 3

i+j+k=n
n n
. <
(z,j,k) - (m,m,m)

Let n = 3m. We claim that
To prove this, suppose the maximum over i, j, k is attained at some i, j, k with

1> 7+ 1. Then
n < n
Z'7‘7'7]{: 1_17]+17k

because i!j! > (i — 1)!(j + 1)!. So for n = 3m,

2n n
i <) () (5) () =
Stirling’s formula gives
poo(2n) < 3i
n3/2
for some A > 0. So ), poo(6m) < co. But also poo(6m) > poo(6m — 2) (%)2 and

Ppoo(6m) > poo(6m — 4) (%)4. So Y, poo(2n) < oo so it’s transient. a

Invariant distribution

distribution if \; > 0 for all ¢ and > ., \; = 1.

Definition. I discrete (countable / finite) set. A = (\; : @ € I) is a probability J
el

(_\,/Z
s £% U]
/1@ Z ?t (
ﬂ’/& l/l \/Z

Example.
Then p11(n) — 3. So the Markov chain will converge to (3, 3).
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Want to find a distribution 7 such that if Xy ~ 7, then X,, ~ 7 for all n.

P(X; = j) = Z]P’(Xo =i, X1 =y)
=D PG = | Xo=)P(Xo=1)
= ZP(i,j)Tr(i)

som(j) =>;m(i)P(i,j) for all j. m = wP. (7 as a row vector).

~

Definition. A probability distribution 7 is called invariant / stationary / equilib-
rium if m = wP.

I Theorem. Let 7w be invariant and Xg ~ 7. Then X,, ~ 7 for all n.

Proof. n =0 is done.
P(Xni1 =) = 3 P(Xni1 = j: Xn = i)
= ST Pt = | X = DB, = )
- ZP(i,j)w(z’)

= 7(j) (r=7P) O

Theorem. Let I be a finite set and 3i € I such that p;j(n) — 7(j) as n — oo.
Then 7 = (m; : ¢ € I) is an invariant distribution.

Proof.

Y om= lim py(n)

jel jel
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Start of
lecture 8

(we changed the order of sum and limit because the sum is finite). So 7 is a distribution.
mj = lim pi;(n)

= lim sz‘k(n_ 1Pk, j)

n—oo
kel
= lim pg(n —1)P(k, j)
n—oo
kel
kel
ile. m = 7wP. O
s N

Remark. [ finite is essential: Consider a simple random walk on Z. Then pgo(2n) ~
% — 0. Similarly pg;(n) — oo as n — oo.
L J

s N
Remark. P is a stochastic matrix, so 1 is always an eigenvalue. If P is irreducible,

on a finite state space, then the Perron-Frobenius theorem from linear algebra en-

sures the existence of the invariant distribution.
L )

Definition. k € I, T, = inf{n > 1: X,, = k}. First return time to k. i € I

T—1
> = i)]

=0

So vy (7) is the expected number of visits to ¢ during an excursion from k. So vy is
a measure on I.
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Theorem. If P is irreducible and recurrent, then v is an invariant measure (v, =
v P) satisfying
0 < (i) < oo Vi

and

vp(k) =1

Proof. Obviously vg(k) = 1. Let i € I. We will prove
vi(i) =) PG, ()
J

By recurrence we get 7, < oo with probability 1 and X7, = k. So

Tk
> X = i)]

=1

=By | Y 1(X; =i)l(r > 1)]
=1
=Y Pu(Xi =i, > 1)
=1
=YY Pu(Xi =i, Xy =, 7 > 1)
=1 j
=N Pu(Xi =i | Xy = g, > DPR(Xpy > G, 7 > 1)
=1 j

{2l ={Tp <1-1}°
By the Markov property
Po(Xi=i| Xii =4, >1) =Pr(n =1 | Xj—1 =)
SO

ve(i) => > P, 0Pe(Xi1 = jy 7 > 1)

=1 7

= ZP(j,i)Ek Z (X1 =4,7k > l)]
i Li=1

T

E

-1
— ZP(j,i)Ek 1(X; = j)]
= (i) =Y ()P, 1)
j
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for all i. So since vy (i) > 0:
v, = v, P™

for all m
v (1) > vr(k) Pri(m) = Pri(m)

By irreducibility there exists m such that pg;(m) > 0 so v (i) > 0.
ve(k) = vi(§)pjn(m)
J
1 =v(k) > vip(i)pix(m)
Take n such that p;p(n) > 0 (irreducibility of P) then we get

1
Pik(n)

Vk(l) < < 00

Theorem. If P is irreducible and A is an invariant measure satisfying A = 1, then
A Z Vi (VZ )\[ Z l/k(’L))

If P is also recurrent, then \ = 1.

Proof. \; > 0 for all 4.
Ai =Y AP(j,4)
j

=P(k,i)+ Y P(j,1)\;

n#k

= P(k,i)+ Y P(k,j)P(j1, 1) + > P(ja, j1)P(j1, )N,
J1#k J1#k

JoFk

=P(k,i)+ Y Pk,j)P(r,i)+-+ > Plkjn-1)-- P(j1,i)

n#k J1sensdn—174
+ Y P(jnygn-1)-- P(j1, D),
Jyeeerin#k

So

)\iZPk(Xl :i,TkZ2)+Pk(X2:i,Tk23)+"'+Pk(Xn:i,Tan+1)
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SO

3

A > Eg ]l(Xl:i,TkZl—f-l)

=1

—k Z]l(Xl:i,lng—l)]

=0

|
=

D ERL(X =i, 0 <7 —1)]
=0

o0
= Y Bi[L(X; =4,0 < 7 — 1)]
=0
= k(1)
Ai > v (i) for all i.
If P is recurrent, then vy is an invariant measure with v,(k) = 1. So we also have that

i = Aj — (1) is an invariant measure, since we know \; > vy (i), hence p; > 0. Need
to show that u; = 0 for all 7. Let ¢ € I.

0=pk =Y wP"(jk) Ym
;

= g > i P (i k)
Take m such that p,, (i, k) > 0. Then u; = 0. O

Remark. If P is irreducible and recurrent, then all invariant measures are unique
up to multiplicative factors.

Question: When can we get an invariant distribution 7 = 7P, Y m; = 17

Let P be irreducible and recurrent. By the uniqueness (up to multiplication) we can get
an invariant distribution (unique) if

Z v (i) < oo
el

Then .
Vi (9)

Zj vk (J)

T =
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Start of
lecture 9

If Ex[m%] < oo, then we can normalise.

Definition. Let P be irreducible and recurrent, 7, = inf{n > 1: X,, = k}, Pp(1x <
oo) =1 for all k. We say k is positive recurrent if

Ek [Tk] < 0
We say k is null recurrent if
Ex[mx] = o0
If k is positive recurrent, then
vp(k) 1

T —

Exlmk]  Exlre]

Recall that
T =inf{n >1: X, =k}

k is recurrent if and only if Px(7, < oco) = 1. k is positive recurrent if Eg[r] < oo.
Otherwise £ is null-recurrent.

Theorem. Let P be an irreducible matrix. Then the following are equivalent:
(1) All states are positive recurrent

(2) Some state is positive recurrent

(3) There exists an invariant distribution 7.

If any of the above holds, then

Proof.

(1) = (2) Obvious.

(2) = (3) Let k be the positive recurrent state.

Vi v(i) = Eyg
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implies k is also recurrent so by theorem from last time, vy P = vg. vg: invariant
measure.

T —1
Do) =B | YD LXK Zi)] = Ep[7]
icl =0 el

Since k is positive recurrent, implies Ex[r;] < co. So we can define

invariant distribution.

Let m be the invariant distribution. Let k be a state. Need to show k is positive
recurrent. First show 7 > 0. Exists ¢ € I such that m; > 0. 7 = 7P = 7wP" for
all n.

T =Y mP"(j,k)
k
Take n such that P"(i, k) > 0 (irreducibility of P). Then
T = ﬂiPn(i, k) >0
Define \; = % invariant measure, with A\, = 1. So since P is irreducible A > v,
fe. Vi vg(i) < \.
1
E pr— ) < ;g = —
K [7k] ka(l) < Z)\z .
i€l el

So Eg[mx] < ﬂik < 00. So k is positive recurrent.

Suppose (1), (2), (3) hold. Let k be a state. Then k is positive recurrent. Define \; = *:

™

invariant measure with A\, = 1. Since P is recurrent, A = v} (that is, \; = v, (i) for all

i). So
> =D )
icl iel
SO .
— = Eg[m]
Tk
O
Corollary. P irreducible, 7 invariant distribution. Then for all z,y, v,(y) = %
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Example. Simple random walk on Z. P(x,x+1) = P(x,x—1) = % P is recurrent
(d =1). Does there exist an invariant distribution? m = 7P. Need
1

T = 51 + 5 M1

Then m = 1 for all ¢ satisfies 7 = wP. Since P is recurrent, all invariant measures
have to be multiples of m; = 1 for all . So there does not exist invariant distribution,
so not positive recurrent.

Example. Z, P(z,z + 1) = p, P(x,x —1) =¢q¢,p+q=1,p > q. Need 7 = 7P,
need
Ty = PTi—1 + qTit+1

7T—a+b<p>
q

is an invariant measure for any choice of a,b. So no uniqueness up to multiplicative
factors. Indeed, P is transient.

Solve to get

Example. Simple random walk on Z3 transient. 7; = 1 for all ¢ € Z3 invariant
measure. This shows that the existence of an invariant measure does not imply
recurrence.

Example. Z, P(z,z +1) =p, P,z —1) =¢,p+q=1,p < gq. P(0,1) =p,
P(0,0) = q. Look for 7 such that 7 = 7P.

T = pmi—1 +qmiy1 t>1

Ty = qm1 + Toq
i
7r1:7r08, g = <p> my Vi>1
q q
p<q,set7r0:1—§,toget

() (2)
q q

so there exists an invariant distribution, so positive recurrent.
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Time Reversibility

Proposition. P irreducible, 7 invariant distribution. Fix N € N and Xy ~ .
Define Y, = Xy_p, 0 <n < N. Then (Y},)o<n<n is a Markov chain with transition
matrix

P(a,y) = :E:‘Z;P(y,w)

and 7 is an invariant distribution. If P is irreducible, then P is too.

Proof. P is a transition matrix, since
~ T y 7T(.’E)
P —= =1
2 Py =3 1 )
y y
Let yo,...,yn € I. Then

P(Yo =yo,..., YN = yn) = P(Xn =yo,..., Xo = yn)
(Xo=yn,--, Xn =10)
(
(

~

=T

yn)P(yn,yn—1) - P(y1,90)

= m(yn—1)Pyn-1,yn)P(yn—1,yn—-2) - P(y1,%0)

_ 7T(yo)ﬁ(yo, y1) - P(yn—1,yn)

so Y is Markov(m, P). Check P has invariant distribution 7. Need to show 7P = .

S n(@)Pley) = 3 m(@) " Py, 2) = m(y)

- - ()
somP = . U
Also, P is irreducible.

Start of

Tecture 10 Proof. Let x,y € I. Need to show P"(y, x) > 0 for some n. P is irreducible, so there

exists n and x¢9 = x,..., T, = y such that

P(zg, 1)+ P(xp_1,2n) >0

P(xn, Tp—1) - P(xl, xo) = P(xn, Tp—1) - P(xo, xl)ﬂ(xo)

= P(x0,21)P(21,72) - - - P(Tp-1, Tn)
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Definition. A chain with matrix P and invariant distribution 7 is called (time)
reversible if

That is, for all x,y,

P(z,y) = P(z,y) < W

X is reversible if for all z, y,

| 7(@)P(x,y) = 7(y) Ply, )

Detailed balance equation.
Equivalently, X is reversible if VN € N, when Xy ~ 7, then
(Xoy.. o, XN) ~ (Xn, ..., X0)

P(Xg=2,X1 =y) =n(z)P(z,y).
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1
B2 b—a
Example. 5
2 (s 2 3 (8 1
P(i,(i4+ 1) mod n) = = P(i,(i— 1) mod n) = =

for all © € Z,,. Is P time reversible? Take m; = % for all 7, then P is not reversible,
because the Detailed Balance equation are not satisfied, for example

12

NPt 1) = L2

(i) P(i,7 + 1) -3

but

11

2 25 Ak
]
5 o
Example.
Is this time reversible? A\ = 2! invariant measure. (i) o 2¢, Xo ~ 7. Check 7

satisfies Detailed Balance equation.

n-
v ' =+ )

Lemma. Let p be a distribution satisfying

w(@)P(x,y) = p(y)P(y,z) Vz,y

Then p is an invariant distribution.
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Proof.
ply) = u@)Plx,y) = > uy)P(y, ) = (uP)(y)

So = puP. O

When looking for an invariant distribution, first we should look for a solution to the
Detailed Balance equation. If a distribution that solves Detailed Balance equation exists,
then it is an invariant distribution. If no solution to Detailed Balance equation exists,
then if there exists an invariant distribution, it means the chain is not reversible.

Example. Simple random walk on a graph. G = (V, E), F is edge set, V is vertex
set. (G is finite and connected.

i @y eE

0 otherwise

P(:L“,y) = {

d(z) is the degree of x. Then since G is connected, P is irreducible. To find 7, let’s
look at Detailed Balance equation

(z,y) € £ w(z) P(z,y) = n(y) P(y,z)

1 1
(@) d(y)
so 7 must satisfy
1 1

m(x)—— =7(y)— V(x,y) € E
Taking v(z) = d(z), then v is an invariant measure. So

d) _ d()
Syevd  2/B]

So simple random walk on G is reversible.

m(x) =

Convergence to equilibrium

Theorem. [ finite, i € I such that Vj
pij(n) = m(j)

as n — oo. Then 7 is invariant.

P has invariant distribution 7. Question: Under what conditions do we have convergence
to w?
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Example.
p+qg=1p= %, q= % P™(0,0). If n is odd, then

P™0,0) =0

Definition. P transition matrix, i € I. The period of i is defined
d; = ged{n >1: P"(i,i) > 0}

1 is called aperiodic if d; = 1.

Lemma. Let P be a transition matrix and ¢ € I. Then d; = 1 if and only if
P"(i,i) >0

for all n sufficiently large.

Proof. < Obvious.
= If d; = 1 then want to show P"(i,7) > 0 for all n large enough.
D(i)={n>1:P"(i,i) > 0}

Observation: if n,m € D(i) then n +m € D(i). So suffices to prove that D(i)
contains 2 consecutive integers. Say it contains m,m+ 1. Then by the observation
it will also contain am + b(m + 1) for all a,b € N. One can check that

D(i) D {n:n>m?}

Suppose min{x —y : © > y,z,y € D(i)} = r > 2. Let n,m € D(i) such that
n =m+r. Then there exists k = lr + s with 0 < s < r, [ € N such that k € D(i).
If there does not exist such k, then all elements of D(i) would be multiples of r,
and hence ged D(i) would be r, contradiction.

Let a = (I4+1)n and b = (I + 1)m + k. By observation, a,b € D(i).

a—b=r—s<r

so r =1, so D(7) contains 2 consecutive integers.
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Lemma. If P is irreducible and ¢ € [ is aperiodic, then all states are aperiodic.

Proof. Let j € I. There exists r,s > 0 such that
P"(i,5) > 0 and P°(j,i) > 0

(by irreducibility)
PTG, 5) > P(4,4) P (i,4) P" (i,7) > 0
for all n sufficiently large.

Start of

lecture 11 Theorem. Let P be irreducible and aperiodic with invariant distribution 7. Let
X ~ Markov(A, P). Then Vy,

P(Xn = y) — ﬂ-(y)
as n — oo. In particular, for all z and y,
P"(z,y) = m(y)

as n — oo. (Taking A\ = 4,)

Proof. Coupling of Markov chains. Let (Y;,)n>0 ~ Markov(w, P) independent of X.

~

X z

§ e
T T

Consider ((X,Yy))n>0 ~ Markov(A x m, P) where
P((x,y), («',y)) = P(a,2")P(y,y)

We claim that P is irreducible. So we want to show that there exist I, m such that
Pl(z,2’)>0 and P™(y,y) >0

Then note
P™(z,2") > Pl(z,2)P" ' (2/,2') > 0

for all N sufficiently large by aperiodicity of P. Similarly

P"(y,y') > P™(y,y)P"""(y,y') > 0
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for sufficiently large N. So

P ((,y), («',y) = P"(z,2')P"(y,y') > 0

for all n large enough. So P is irreducible.

P has invariant distribution 7(z,y) = 7(z)n(y). So P is positive recurrent. Fix o € I.
Define T = inf{n > 1: (X,,,Y,) = (a,a)}. T is a stopping time for (X,Y). P is positive
recurrent so P(T" < oco) = 1. Define

Zn:{Xn n<T

Y, n>T
Now claim that Z ~ Markov(A, P). Note that Zy ~ X\ because
P(Zy =) =P(Xo =z) = A(z).
Let A={Z,-1 =2p-1,...,Z0 = 20}. Need to show
P(Zni1 =y | Zn = 2, 4) = Pa,y)
So we calculate:
P(Znt1=y|Zn=2,A)=P(Zp1=y,T>n|Z,=2,A)+P(Zpy1=y,T <n|Z,=x4)
P(Zps1=y,T>n|Z,=2,A) =P Xpp1=y|T>n,Zy =2, AP(T >n| Z, =z,A)

Now note that {T" > n} = {T < n}¢, but {T' < n}¢ only depends on (Xy, Yp), (X, Ys)
so by Strong Markov Property,

= P(z,y)P(T >n| Z, =z, A)
Similarly
P(Zpt1=y,T<n|Z,=2,A) =Pz,y)P(T' <n| Z,=uz,A)
So
P(Zps1=vy| Zp=1,A) = P(z,y)

So Z ~ Markov(\, P).
Now we want to show that |P(X,, = y) = 7(y)] — 0 as n — oo. But since YV ~
Markov (7, P) so P(Y,, = y) = 7(y) for all n. So

P(Xn =y) = P(Yn = y)| = [P(Zn = y) = P(Yn = y)|
= [P(Zn =y;n <T)+P(Zn =y,n > T) = P(Yy, = y)|
= [P(Xn =y,n <T)+P(Yy=y,n>T) - P(Y, = y)|
=P(X,=yn<T)—-PY,=yn<T)]
<P(T >n)
Take n — oo we get P(T" > n) — 0 because P(T' < o0) = 1. So P(X,, = y) — P(Y,, =
y) = 7(y)- =
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Theorem. Let P be irreducible and aperiodic. Suppose P is null recurrent. Then

for all x,y,
P"(z,y) = 0

as n — oQ.

Proof. Consider P((z,y), («',y')) = P(x,2')P(y,y’). As before, P is irreducible.

e If P transient, then

an((x,x)’ (yvy)) = Z(Pn(xvy))z <00

so P"(x,y) — 0 as n — oo.

e If P is recurrent then

Ty—1
vy(2) =By | 3 Ui =2)
=0
vy is invariant, i.e. vy P = v,,. P is null-recurrent so E,[r,] = o0, so v, (I) = oc.
Fix M € N. Since vy(I) = oo, we can find a finite set A such that v,(A4) > M.
Define (@)
vy(x
pz) = =51z € A)
vy(A)

probability measure.

uP(z) = 3 (@) P, 2)

xT

<Y e
vy()

(4)

S

(vyP = 1y) So

vy(z

vy(z

~—

pP"(z) <

~—

Consider (X,Y’) ~ Markov(u x 0z, P). Define T = inf{n > 0: (X,,Y;) = (z,2)}.
P(T < 00) =1, since P is recurrent.

Ly =

X, n<T
Y, n>T
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Then Z,, ~ Markov(u, P)

Need to show: P"(x,y) — co as n — oo.

P*(z,y) =P(Y, =y)
=PY,=yn<T)+PY,=y,n>T)
<P(T > n) +P(Z, =)

Let n — oo then P(T" > n) — 0 (P(T' < 00) =1). So

1
lim P" —
1mn (I, y) < M

n—oo
Taking M — oo finishes that proof. O
Start of
lecture 12 Theorem (Ergodic theorem). Let P be irreducible with an invariant distribution

. Suppose Xg ~ A. Then with probability 1 we have Vx € I,

lim E?:_ol 1(X; = =)

n—o0 n

— 7(x)

Proof. Since P has an invariant distribution, it follows that it is recurrent and so T, < co
with probability 1. By the strong Markov property,

(XTI+n)n20 ~ Markov(éx, P)

n—1
and is independent of Xy, ..., X7,. But since lim,_,o 2’50 is not affected by changing
the initial distribution, it suffices to consider A = J,. Write

vp(x) = 1(X; = x) = number of visits to = by time n — 1
Successive return times to x:
70 =0
THED —inf{t > T® +1: X, = 2}

40


https://notes.ggim.me/MC#lecturelink.12

These are stopping times. Define

(k) (k=1) .o p(k=1)
Sg(f) _ T — Ty if Ty < 00
0 otherwise

By the strong Markov property, we see that (Sg(ck))k are independent identical distribu-
tions and have expectation

1
E[SM] = E,[T,] = —
[Sz] T2 @)
T, =TV,
7@ < p -1 (1)
T > (2)

(1) <= S+ 48O <y 1and 2) = S 4.4 5@ S g0

S(l) + -+ S:(Dvn(it)—l) <n< S;l) + -+ S£U7L($)) (*)

T

Since (Sg(ck)) are IID and E[S’g)] < oo then by Strong Law of Large numbers:

S 4o s
k

— E[S]]

as k — oo with probability 1. By recurrence, v,(x) — oo as n — oo so dividing (x)
through by v, (z) we get both the LHS and RHS converge to

1
1)y —
E[S{)) =
and hence
lim no_ 1
w0 vp(z) (@)
SO

Continuous time Markov Chains (non-examinable)

We defined Markov chain as “the past and future are independent if we are given the
present”. We only considered only discrete time Markov chains, but we could generalise:

. (Xt)tzo, te Rt
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e S, = holding time at the state z

P(Sy >t+s|S;>s)=P(Xy, =2,Vue|0,t+s]|X,=2xVuec|0,s])
=P(X, =z,YVue[s,t+5]| Xy =2z,Vuel0,s])
B(

=P(X, =z,Vue[s,t+ 5] | Xy =2) (Markov property)
=P, (X, = z,Vu € [0,t]) (time-homogeneity)
=P(S, > t)

Sz has the property: P(S; >t+s| Sy > s) =P(S, > t) for all s,£. So S, has the
memoryless property. Recall from TA probability that Memoryless property for a
positive random variable S is equivalent to .S having the exponential distribution
with some parameter.

So the simplest example of a continuous time Markov chain is:
Poisson process:

S1,59, ...
IID, ~ Exp(A)

oy
j=1

Xt:iifJi§t<Ji+1

5( X< 63.‘\\
<=, /
s 3, ¢ X

J,
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