% vim: tw=50 % 26/10/2022 11AM \subsection{Properties of the dual map, double dual} Let $V, W$ be vector spaces over $F$, $\alpha \in L(V, W)$. \[ \mathcal{E} = (e_1, \dots, e_n) \] basis of $V$ \[ \mathcal{F} = (f_1, \dots, f_n) \] another basis of $V$. Let \[ P = [\id]_{\mathcal{F}, \mathcal{E}} \] (change of basis matrix from $\mathcal{F}$ to $\mathcal{E}$) \[ \mathcal{E}^* = (\eps_1, \dots, \eps_n) \] \[ \mathcal{F}^* = (\eta_1, \dots, \eta_n) \] \begin{flashcard}[change-of-basis-dual] \begin{lemma*} Let $P$ be the change of basis matrix from $\mathcal{F}$ to $\mathcal{E}$. Then the change of basis matrix from $\mathcal{F}^*$to $\mathcal{E}^*$ is: \[ \cloze{(P^{-1})^\top} \] \end{lemma*} \begin{proof} \[ \cloze{[\id]_{\mathcal{F}^*, \mathcal{E}^*} = [\id]_{\mathcal{E}, \mathcal{F}}^\top = ([\id]^{-1}_{\mathcal{F}, \mathcal{E}})^\top = (P^{-1})^\top} \] \end{proof} \end{flashcard} \subsubsection*{Properties of the dual map} \begin{flashcard}[dual-map-properties] \begin{lemma*} Let $V, W$ be vector spaces over $F$. Let $\alpha \in \mathcal{L}(V, W)$ and $\alpha^* \in \mathcal{L}(W^*, V^*)$ be the dual map. Then: \begin{enumerate}[(i)] \item \cloze{$N(\alpha^*) = (\Image \alpha)^0$ (so $\alpha^*$ injective $\iff$ $\alpha$ surjective)} \item \cloze{$\Image \alpha^* \le (N(\alpha))^0$ with \emph{equality} if $V, W$ are finite dimensional (hence in this case, $\alpha^*$ surjective $\iff$ $\alpha$ injective).} \end{enumerate} \end{lemma*} \fcscrap{ \noindent Dual method: there are many problems (controllability) where the understanding of $\alpha^*$ is simpler than the understanding of $\alpha$. } \begin{proof} \begin{enumerate}[(i)] \item \cloze{Let $\eps \in W^*$. Then: \begin{align*} \eps \in N(\alpha^*) &\iff \alpha^*(\eps) = 0 \\ &\iff \alpha^*(\eps) = \eps(\alpha) = 0 \\ &\iff ~\forall x \in V, ~ \eps(\alpha)(x) = \eps(\alpha(x)) = 0 \\ &\iff \eps \in (\Image \alpha) \end{align*}} \item \cloze{Let us first show that: \[ \Image(\alpha^*) \le (N(\alpha))^0 \] Indeed, let $\eps \in \Image(\alpha^*)$ \[ \implies \eps = \alpha^*(\varphi), ~\varphi \in W^* \] \[ \implies ~\forall u \in N(\alpha) \mid \eps(u) = \alpha^*(\varphi)(u) = \varphi \circ \alpha(u) \varphi(\alpha(u)) = 0 \] \[ \implies \eps \in (N(\alpha))^0 \]} \fcscrap{In finite dimension, we can compute the dimensions of $\Image(\alpha^*)$ and $(N(\alpha))^0$. \[ \dim(\Image(\alpha^*)) = r(\alpha^*) \] \[ r(\alpha^*) = r([\alpha^*]_{\mathcal{C}^*, \mathcal{B}^*}) = r([\alpha]_{\mathcal{B}, \mathcal{C}}^\top) = r([\alpha]_{\mathcal{B}, \mathcal{C}}) = r(\alpha) \] \[ \implies r(\alpha) = r(\alpha^*) \]} \end{enumerate} \fcscrap{ so \begin{align*} \dim (\Image \alpha^*) &= r(\alpha^*) \\ &+ r(\alpha) \\ &= \dim V - \dim N(\alpha) \\ &= \dim [(N(\alpha))^0] \end{align*} so $\Image(\alpha^*) \le (N(\alpha))^0$ and $\dim(\Image(\alpha^*)) = \dim[(N(\alpha))^0]$ so $\Image(\alpha^*) = [N(\alpha)]^0$.} \end{proof} \end{flashcard} \subsubsection*{Double dual} \begin{itemize} \item $V$ vector space over $F$ \item $V^* = \mathcal{L}(V, f)$ dual of $V$. We define the bidual: \[ V^{**} = (V^*)^* = \mathcal{L}(V^*, F) \] \end{itemize} Very important space in infinite dimension: in general, there is no obvious connection between $V$ and $V^*$ (unless Hilbertian structure). However, there is a large class of function spaces wuch that $V \simeq V^{**}$. \begin{example*} $p > 2$, \[ L^p(\RR) = \left\{f : \RR \to \RR \left| \int_\RR |f(x)|^p \dd x < \infty \right. \right\} \] Is a reflexive space. \end{example*} \noindent In general, there is a canonical embedding of $V$ into $V^{**}$. Indeed, pick $v \in V$, we define: \[ \hat{v} : V^* \to F \] \[ \eps \mapsto \eps(v) \] linear: \begin{itemize} \item $\eps \in V^*$ implies $\eps(v) \in F$. \item linearity: $\lambda_1, \lambda_2 \in F, \eps_1, \eps_2 \in V^*$ \begin{align*} \hat{v} = (\lambda_1 \eps_1 + \lambda_2 \eps_2) &= (\lambda_1 \eps_1 + \lambda_2 \eps_2)(v) \\ &= \lambda_1 \eps_1(v) + \lambda_2 \eps_2(v) \\ &= \lambda_1 \hat{v}(\eps_1) + \lambda_2 \hat{v}(\eps_2) \end{align*} so $\hat{v} \in \mathcal{L}(V^*, F)$. \end{itemize} \begin{flashcard}[double-dual-injection] \begin{theorem*} If $V$ is a \emph{finite dimensional} vector space over $F$, then: \cloze{ \[ \hat{} : V \to V^{**} \] \[ v \mapsto \hat{v} \] } \prompt{\cloze{where $\hat{v} : V^* \to F$, $\eps \mapsto \eps(v)$}} is an isomorphism. \end{theorem*} \fcscrap{ \noindent (in infinite dimension we can show under canonical assumptions (Banach space) that: $\hat{}$ is injective) } \begin{proof} \begin{itemize} \item $V$ finite dimensional. Given $v \in V$, $\hat{v} \in V^{**} \in \mathcal{L}(V^*, F)$. \item $\hat{}$ linear: \prompt{(check)} \fcscrap{let $v_1, v_2 \in V$, $\lambda_1, \lambda_2 F$, $\eps \in V^*$: \begin{align*} \widehat{(\lambda_1 v_1 + \lambda_2 v_2)}(\eps) &= \eps(\lambda_1 v_1 + \lambda_2 v_2) \\ &= \lambda_1 \eps(v_1) + \lambda_2 \eps(v_2) \\ &= \lambda_1 \hat{v}_1(\eps) + \lambda_2 \hat{v}_2(\eps) \\ \implies \widehat{(\lambda_1 v_1 + \lambda_2 v_2)} &= \lambda_1 \hat{v}_1 + \lambda_2 \hat{v}_2 \end{align*}} \item $\hat{}$ injective: \cloze{indeed, let $e \in V \setminus \{0\}$. I extend $(e, e_2, \dots, e_n)$ basis of $V$. Let $(\eps, \eps_2, \dots, \eps_n)$ the dual basis of (of $V^*$), then \[ \hat{e}(\eps) = \eps(e) = 1 \] \[ \implies \hat{e} \neq \{0\} \] \[ \implies N(\hat{}) = \{0\} \] so $\hat{}$ is injective.} \item \cloze{$\hat{}$ isomorphism. We can compute dimensions}\fcscrap{: \[ \dim V = \dim V^* = \dim[(V^*)^*] = \dim( V^{**}) \] As a conclusion: $\hat{} : V \to V^{**}$ is injective, $\dim V = \dim V^{**}$, so $\hat{}$ is surjective, so $\hat{}$ is an isomorphism.} \end{itemize} \end{proof} \end{flashcard} \begin{flashcard}[Uhat-le-U00] \begin{lemma*} Let $V$ be a finite dimensional vector space over $F$, let $U \le V$. Then \[ \cloze{\hat{U} = U^{00}} \] so after identification of $V$ and $V^{**}$, we have \[ \cloze{U \simeq U^{00}} \] \end{lemma*} \begin{proof} Let us show that: \cloze{$U \le U^{00}$.} \begin{itemize} \item \cloze{Indeed, let $u \in U$: \[ \forall \eps \in U^0, \eps(u) = 0 \] \[ \implies \forall \eps \in U^0, \eps(u) = \hat{u}(\eps) = 0 \] \[ \implies \hat{u} \in U^{00} \] \[ \implies \hat{U} \subset U^{00} \]} \item \cloze{Commute dimensions \[ \dim U^{00} = \dim V - \dim U^0 = \dim U \]} \end{itemize} \end{proof} \end{flashcard} \begin{remark*} $T \le V^*$ \[ T^0 = \{v \in V \mid \theta(v) = 0, \forall \theta \in T\} \] \end{remark*}