% vim: tw=50 % 24/10/2022 11AM \subsection{Dual spaces and dual maps} \begin{definition*} Let $V$ be a vector space. The we define \begin{align*} V^* &= \text{dual of $V$} \\ &= L(V, F) \\ &= \{\alpha : V \to F \text{ linear}\} \end{align*} \end{definition*} \begin{notation*} $\alpha : V \to F$ linear. Then $\alpha$ is a linear form. \end{notation*} \subsubsection*{Examples} \begin{enumerate}[(i)] \item \[ \Trace : \mathcal{M}_{n, n}(F) \to F \] \[ A = (a_{ij}) \mapsto \sum_{i = 1}^n a_{ii} \] \[ \implies \Trace \in \mathcal{M}_{n, n}^* (F) \] \item $f : [0, 1] \to \RR$ \[ T_f : \mathcal{C}^\infty ([0, 1], \RR) \] \[ \varphi \mapsto \int_0^1 f(x) \varphi(x) \dd x \] then $T_f$ is a linear form on $\mathcal{C}^\infty ([0, 1], \RR)$ ($\RR$ vector space). Quantum mechanics. A function defines a linear form. \end{enumerate} \begin{flashcard}[dual-basis] \begin{lemma*}[Dual basis] Let $V$ be a vector space over $F$ with a finite basis \[ \mathcal{B} = \{e_1, \dots, e_n\} \] Then there exists a basis for $V^*$ given by \[ \mathcal{B}^* = \{\eps_1, \dots, \eps_n\} \] with \[ \cloze{\eps_j \left( \sum_{i = 1}^n a_i e_i \right) = a_j, \quad 1 \le j \le n} \] We call $\mathcal{B}^*$ the dual basis of $\mathcal{B}$. \end{lemma*} \end{flashcard} \begin{remark*} Kronecker symbol \[ \delta_{ij} = \begin{cases} 1 & \text{if $i = j$} \\ 0 & \text{otherwise} \end{cases} \] \[ \eps_j \left( \sum_{i = 1}^n a_i e_i \right) = a_j \iff \eps_j(a_i) = \delta_{ij} \] \end{remark*} \begin{proof} Let $\{\eps_1, \dots, \eps_n\}$ be defined as above. \begin{enumerate}[(1)] \item Check that it is free: indeed, $\sum_{j = 1}^n \lambda_j \eps_j = 0$ \[ \implies \sum_{j = 1}^n \lambda_j \eps_j (e_i) = 0 \] \[ \implies \sum_{j = 1}^n \lambda_i = 0 \quad \forall 1 \le i \le n \] \[ \implies \text{family is free} \] \item Check that it is generating: Pick $\alpha \in V^*$, then $x \in V$: \[ \alpha(x) = \alpha \left( \sum_{j = 1}^n \lambda_j e_j \right) = \sum_{j = 1}^n \lambda_j a(e_j) \] On the other hand, let the linear form: \[ \sum_{j = 1}^n \alpha(e_j) \eps_j \in V^* \] Then: \begin{align*} \sum_{j = 1}^n \alpha(e_j) \eps_j(x) &= \sum_{j = 1}^n \alpha(e_j) \eps_j \left( \sum_{k = 1}^n \lambda_k e_k \right) \\ &= \sum_{j = 1}^n \alpha(e_j) \sum_{k = 1}^n \lambda_k \eps_k(e_k) \\ &= \sum_{j = 1}^n \alpha(e_j) \lambda_j \\ &= \alpha(x) \\ \implies \alpha &= \sum_{j = 1}^n \alpha(e_j) \eps_j \qedhere \end{align*} \end{enumerate} \end{proof} \begin{corollary*} $V$ finite dimensional, \[ \implies \dim V^* = \dim V \] \end{corollary*} \begin{warning*} These results about $V^*$ are not relevant / very different when talking about infinite dimensional vector spaces instead. \end{warning*} \begin{remark*} It is sometimes convenient to think of $V^*$ as the space of \emph{row} vectors of length $n$ over $F$, i.e. let $(e_1, \dots, e_n)$ be a basis of $V$, $x = \sum_{i = 1}^n x_i e_i \in V$, and let $(\eps_1, \dots, \eps_n)$ be a basis of $V$ with $\alpha = \sum_{i = 1}^n \alpha_i \eps_i \in V^*$. Then \begin{align*} \alpha(x) &= \sum_{i = 1}^n \alpha \eps_i \left( \sum_{j = 1}^n x_j e_j \right) \\ &= \sum_{i = 1}^n a_i \sum_{j = 1}^n x_j \eps_i(e_j) \\ &= \sum_{i = 1}^n a_i x_i \\ &= (\alpha_1, \dots, \alpha_n) \end{align*} (scalar product structure) \end{remark*} \begin{flashcard}[annihilator-of-subspace] \begin{definition*} If $U \le V$ (vector subspace), we define the \emph{annihilator} of $U$ by: \[ \cloze{U^0 = \{\alpha \in V^* : \forall u \in U, \alpha(u) = 0\}} \] \end{definition*} \end{flashcard} \begin{flashcard}[annihilator-is-subspace-with-dimensional-formula] \begin{lemma*} \begin{enumerate}[(i)] \item $U^0 \le V^*$ (vector subspace) \item \cloze{If $U \le V$ and $\dim V < \infty$ then $\dim V = \dim U + \dim U^0$.} \end{enumerate} \end{lemma*} \begin{proof} \begin{enumerate}[(i)] \item \cloze{$0 \in U^0$. If $\alpha, \alpha' \in U^0$, then, for all $u \in U$, \[ (\alpha + \alpha')(u) = \alpha(u) + \alpha'(u) = 0 \] and for all $\lambda \in F$, \[ (\lambda \alpha)(u) = \lambda \alpha(u) = 0 \] so $U^0 \le V^*$.} \item \cloze{Let $U \le V$, $\dim V = n$. Let $(e_1, \dots, e_k)$ be a basis of $U$, complete it to a basis \[ \mathcal{B} = (e_1, \dots, e_k, e_{k + 1}, \dots, e_n) \] of $V$. Let $(\eps_1, \dots, \eps_n)$ be the dual basis of $\mathcal{B}$. We claim that $U^0 = \langle \eps_{k + 1}, \dots, \eps_n \rangle$. \begin{itemize} \item Pick $i > k$, then: \[ \eps_i(e_k) = \delta_{ik} = 0 \] so $\eps_i \in U^0$, since $U = \langle e_1, \dots, e_k \rangle$. So \[ \langle \eps_{k + 1}, \dots, \eps_n \rangle \le U^0 \] \item Let $\alpha \in U^0$, then let $\alpha \in V^*$, with \[ \alpha = \sum_{i = 1}^n \alpha_i \eps_i \] Now for $i \le k$: \[ \alpha \in U^0 \implies \alpha(e_i) = 0 ~\forall 1 \le i \le k \] \[ \implies \sum_{j = 1}^n \alpha_j \eps_j(e_i) = 0 \] \[ \implies \alpha_i = 0 \quad \forall 1 \le i \le k \] \[ \implies \alpha = \sum_{i = 1}^n \alpha_i \eps_i = \sum_{i = k + 1}^n \alpha_i \eps_i \] \[ \implies \alpha \in \langle \eps_{k + 1}, \dots, \eps_n \rangle \] \[ \implies U^0 \le \langle \eps_{k + 1}, \dots, \eps_n \rangle \] \end{itemize} } \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[dual-map] \begin{lemma*} Let $V, W$ be vector spaces over $F$. Let $\alpha \in \mathcal{L}(V, W)$. Then \cloze{the map: \[ \alpha^* : W^* \to V^* \] \[ \eps \mapsto \eps \circ \alpha \] is an element of $\mathcal{L}(W^*, V^*)$.} It is called the \emph{dual} map of $\alpha$. \end{lemma*} \end{flashcard} \begin{proof} \begin{itemize} \item $\eps \circ \alpha : V \to F$ linear follows by linearity of $\eps$ and $\alpha$, so $\eps \circ \alpha \in V^*$. \item $\alpha^*$ linear: let $\theta_1, \theta_2 \in W^*$, then \begin{align*} \alpha^*(\theta_1 + \theta_2) &= (\theta_1 + \theta_2)(\alpha) \\ &= \theta_1 \circ \alpha + \theta_2 \circ \alpha \\ &= \alpha^*(\theta_1) + \alpha^*(\theta_2) \end{align*} and similarly for all $\lambda \in F$, \[ \alpha^*(\lambda \theta) = \lambda \alpha^*(\theta) \] so $\alpha^*$ is linear, i.e. $\alpha^* \in \mathcal{L}(V^*, W^*)$. \end{itemize} \end{proof} \begin{flashcard}[dual-map-matrix] \begin{proposition*}[Dual map matrix] Let $V, W$ be finite dimensional spaces over $F$ with basis respectively $\mathcal{B}$ and $\mathcal{C}$. Let $\mathcal{B}^*$, $\mathcal{C}^*$ be the dual basis of $\mathcal{B}$ and $\mathcal{C}$. Then: \[ \cloze{[\alpha^*]_{\mathcal{C}^*, \mathcal{B}^*} = [\alpha]_{\mathcal{B}, \mathcal{C}}^\top} \] \end{proposition*} \end{flashcard} \begin{proof} $\mathcal{B} = (b_1, \dots, b_n)$, $\mathcal{C} = (c_1, \dots, c_m)$, $\mathcal{B}^* = (\beta_1, \dots, \beta_n)$, $\mathcal{C}^* = (\gamma_1, \dots, \gamma_m)$. Say \[ [\alpha]_{\mathcal{B}, \mathcal{C}} = A = (a_{ij})_{1 \le i \le m, 1 \le j \le n} \] Recall: $\alpha^* : W^* \to V^*$. Let us compute: \begin{align*} \alpha^* (\gamma_r)(b_s) &= \gamma_r \circ \alpha(b_s) \\ &= \gamma_r (\alpha(b_s)) \\ &= \gamma_r \left( \sum_t a_{ts} c_t \right) \\ &= \sum_t a_{ts} \gamma_r (c_t) \\ &= a_{rs} \end{align*} Say \begin{align*} [\alpha^*]_{\mathcal{C}^*, \mathcal{B}^*} &= (\alpha^*(\gamma_1), \dots, \alpha^*(\gamma_m)) \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \\ &= (m_{ij})_{1 \le i \le n, 1 \le j \le m} \\ \implies \alpha^*(\gamma_r) &= \sum_{i = 1}^n m_{ir} \beta_i \\ \implies \alpha^*(\gamma_r)(b_s) &= \sum_{i = 1}^n m_{ir} \beta_i (b_s) \\ &= m_{sr} \end{align*} Conclusion $\alpha^*(\gamma_r)(b_s) = a_{rs} = m_{sr}$ so $[\alpha^*]_{\mathcal{C}^*, \mathcal{B}^*} = [\alpha]_{\mathcal{B}, \mathcal{C}}^\top$. \end{proof}