% vim: tw=50 % 19/10/2022 11AM \subsection{Change of basis and equivalent matrices} Let $\beta : U \to V$, $\alpha : V \to W$ and $\mathcal{A}, \mathcal{B}, \mathcal{C}$ bases of $U, V, W$. \[ \implies [\alpha \circ \beta]_{\mathcal{A}, \mathcal{C}} = [\alpha]_{\mathcal{B}, \mathcal{C}} [\beta]_{\mathcal{A}, \mathcal{B}} \] \subsubsection*{Change basis} Let $\alpha : V \to W$ and let $\mathcal{B}, \mathcal{B}'$ and $\mathcal{C}, \mathcal{C}'$ be bases for $V$ and $W$. \begin{flashcard}[change-basis-matrix] \begin{definition*} The ``change of basis matrix'' from $\mathcal{B}'$ to $\mathcal{B}$ is \[ P = (p_{ij}) \] given by \[ P = \cloze{([v_1']_{\mathcal{B}} \cdots [v_n']_{\mathcal{B}}) = [\id]_{\mathcal{B}', \mathcal{B}}} \] \end{definition*} \end{flashcard} \begin{lemma*} $[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}$ \end{lemma*} \begin{proof} \begin{itemize} \item $[\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B}, \mathcal{C}} [v]_{\mathcal{B}}$ \item $P = [\id]_{\mathcal{B}', \mathcal{B}}$ \[ \implies [\id(v)]_{\mathcal{B}} = [\id]_{\mathcal{B}', \mathcal{B}} [v]_{\mathcal{B}'} \] \[ \implies [v]_{\mathcal{B}} = P[v]_{\mathcal{B}'} \] \end{itemize} \end{proof} \begin{remark*} $P$ is a $n \times n$ invertible matrix, and $P^{-1}$ is the change of basis matrix from $\mathcal{B}$ to $\mathcal{B}'$. \myskip Indeed \[ [\alpha \circ \beta]_{\mathcal{A}, \mathcal{C}} = [\alpha]_{\mathcal{B}, \mathcal{C}} [\beta]_{\mathcal{A}, \mathcal{B}} \] \[ \implies [\id]_{\mathcal{B}, \mathcal{B}'} [\id]_{\mathcal{B}, \mathcal{B}'} = [\id]_{\mathcal{B}', \mathcal{B}'} \equiv I_n \] \[ \implies [\id]_{\mathcal{B}', \mathcal{B}} [\id]_{\mathcal{B}, \mathcal{B}'} = [\id]_{\mathcal{B}, \mathcal{B}} \equiv I_n \] \end{remark*} We changed $\mathcal{B}$ to $\mathcal{B}'$ in $V$. We can also change basis to $\mathcal{C}$ to $\mathcal{C}'$ in $W$. \begin{flashcard}[change-basis-formula] \begin{proposition*} $A = \cloze{[\alpha]_{\mathcal{B}, \mathcal{C}}}$, $A' = \cloze{[\alpha]_{\mathcal{B}', \mathcal{C}'}}$, $P = \cloze{ [\id]_{\mathcal{B}', \mathcal{B}}}$, $Q = \cloze{[\id]_{\mathcal{C}', \mathcal{C}}}$. Then \[ \cloze{A' = Q^{-1} A P} \] \end{proposition*} \end{flashcard} \begin{proof} \[ [\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B}, \mathcal{C}} [v]_{\mathcal{B}} \] \[ [\alpha \circ \beta]_{\mathcal{A}, \mathcal{C}} = [\alpha]_{\mathcal{B}, \mathcal{C}} [\beta]_{\mathcal{A}, \mathcal{B}} \] \[ [v]_{\mathcal{B}} = P[v]_{\mathcal{B}'} \] \begin{itemize} \item \[ [\alpha(v)]_{\mathcal{C}} = Q[\alpha(v)]_{\mathcal{C}} = Q[\alpha]_{\mathcal{B}', \mathcal{C}'} = QA' [v]_{\mathcal{B}'} \] \item $[\alpha(v)]_{\mathcal{C}} = [\alpha]_{\mathcal{B}, \mathcal{C}} [v]_{\mathcal{B}} = AP[v]_{\mathcal{B}'}$. \end{itemize} So for all $v \in V$, \[ QA' [v]_{\mathcal{B}'} = AP[v]_{\mathcal{B}'} \] hence \[ QA' = AP \implies A' = Q^{-1}AP \qedhere \] \end{proof} \begin{flashcard}[equivalent-matrices] \begin{definition*}[Equivalent matrices] Two matrices $A, A' \in \mathcal{M}_{m, n}(F)$ are equivalent if\cloze{: \[ A' = Q^{-1} AP \] with $Q \in \mathcal{M}_{m, m}, P \in \mathcal{M}_{n, n}$, with both invertible.} \end{definition*} \end{flashcard} \begin{remark*} This defines an equivalence relation on $\mathcal{M}_{m, n}(F)$. \begin{itemize} \item $A = I_m^{-1} A I_n$ \item $A' = Q^{-1} AP \implies A = (Q^{-1})^{-1} A' P^{-1}$ \item $A' = Q^{-1}AP$, $A'' = (Q')^{-1} A'P'$. Then \[ A'' = (QQ')^{-1} A (PP') \] \end{itemize} \end{remark*} \begin{flashcard}[every-matrix-equivalent-to-I-r-form] \begin{proposition*} Let $V$, $W$ be vector spaces over $F$, with $\dim_F V = n$, $\dim_F W = m$. Let $\alpha : V \to W$ be a linear map. Then there exists $\mathcal{B}$ basis of $V$ and $\mathcal{C}$ basis of $W$ such that \[ [\alpha]_{\mathcal{B}, \mathcal{C}} = \left( \begin{tabular}{c|c} $I_r$ & $0$ \\ \hline $0$ & $0$ \end{tabular} \right) \] \end{proposition*} \prompt{ \begin{proof} \cloze{ Let $v_{r + 1}, \ldots, v_n$ be a basis of $\ker(\alpha)$. Extend to a basis of $V$: \[ \mathcal{B} = (v_1, \ldots, v_r, v_{r + 1}, \ldots, v_n) \] Prove that $(\alpha(v_1), \ldots, \alpha(v_r))$ is a basis of $\Image(\alpha)$ (check that it's free and generating). Extend this to a basis of $W$: \[ \mathcal{C} = (\alpha(v_1), \ldots, \alpha(v_r), w_{r + 1}, \ldots, w_m) \] Then $[\alpha]_{\mathcal{B}, \mathcal{C}}$ is of the desired form. } \end{proof} } \end{flashcard} \begin{proof} Choose $\mathcal{B}$ and $\mathcal{C}$ wisely. \begin{itemize} \item Fix $r \in \NN$ such that $\dim \Ker \alpha = n - r$. \item $N(\alpha) = \Ker(\alpha) = \{x \in V, \alpha(x) = 0\}$ \item Fix a basis of $N(\alpha)$: $v_{r + 1}, \dots, v_n$. Extend it to a basis of $V$, so \[ \mathcal{B} = (v_1, \dots, v_r, \ub{v_{r + 1}, \dots, v_n}_{\Ker \alpha}) \] \item Claim: $(\alpha(v_1), \dots, \alpha(v_r))$ is a basis of $\Image\alpha$. \begin{itemize} \item Span: \[ v = \sum_{i = 1}^n \lambda_i v_i \] \[ \implies \alpha(v) = \sum_{i = 1}^n \lambda_i \alpha(v_i) = \sum_{i = 1}^r \lambda_i \alpha(v_i) \] Let $y \in \Image\alpha$ then exists $v \in V$ such that $y = \alpha(v)$ then \[ y = \sum_{i = 1}^r \lambda_i \alpha(v_i) \] \[ \implies y \in \langle \alpha(v_1), \dots, \alpha(v_r) \rangle \] \item Free: \[ \sum_{i = 1}^r \lambda_i \alpha(v_i) = 0 \] \[ \implies \alpha \left( \sum_{i = 1}^r \lambda_i v_i \right) = 0 \] \[ \implies \sum_{i = 1}^r \lambda_i v_i \in \Ker \alpha \] \[ \implies \sum_{i = 1}^r \lambda_i v_i = \sum_{i = r + 1}^n \mu_i v_i \] \[ \implies \sum_{i = 1}^r \lambda_i v_i - \sum_{i = r + 1}^n \mu_I v_i = 0 \] but since $\mathcal{B}$ is free, we must have $\lambda_i = 0, \mu_i = 0$ so it's free. \end{itemize} \end{itemize} Conclusion: $(\alpha(v_1), \dots, \alpha(v_r))$ basis of $\Image\alpha$, $(v_{r + 1}, \dots, v_n)$ basis of $\Ker\alpha$. Let \[ \mathcal{B} = (v_1, \dots, v_r, v_{r + 1}, \dots, v_n) \] \[ \mathcal{C} = (\alpha(v_1, \dots, \alpha(v_r), w_{r + 1}, \dots, w_m) \] Then \[ [\alpha]_{\mathcal{B}, \mathcal{C}} = (\alpha(v_1), \dots, \alpha(v_r), \alpha(v_{r + 1}), \dots, \alpha(v_n)) \] \end{proof} \begin{remark*} This provides another proof of the rank nullity theorem: \[ r(\alpha) + N(\alpha) = n \] \end{remark*} \begin{corollary*} Any $m \times n$ matrix is equivalent to: \[ \left( \begin{tabular}{c|c} $I_r$ & $0$ \\ \hline $0$ & $0$ \end{tabular} \right) \] where $r = r(\alpha)$. \end{corollary*}