% vim: tw=50 % 14/10/2022 11AM \begin{definition*} Let $V$ be a vector space over $F$. Let $V_1, \dots, V_l \le V$ (subspaces). \begin{enumerate}[(i)] \item Notation: $\sum_{i = 1}^l V_i = \{x_1 + \cdots + v_l, v_j \in V_j, 1 \le j \le l\}$ \item The sum is \emph{direct}, denoted by: \[ \sum_{i = 1}^l V_i = \bigoplus_{i = 1}^l V_i \] if and only if \[ v_1 + \cdots + v_l = v_1' + \cdots + v_l' \implies v_1 = v_1', \dots, v_l = v_l' \] Equivalently: \[ V = \bigoplus_{i = 1}^l V_i \iff \forall v \in V ~\exists! v_i ~ v = \sum_i v_i \] \end{enumerate} \end{definition*} Exercise: the following are equivalent: \begin{enumerate}[(i)] \item $\sum_{i = 1}^l = \bigoplus_{i = 1}^l V_i$ (sum is direct) \item $\forall i$, $V_i \cap \left( \sum_{j \neq i} V_j \right) = \{0\}$. \item For \emph{any} basis of $V_i$, \[ \mathcal{B} = \bigcup_{i = 1}^l \mathcal{B}_i \] is a basis of $\sum_{i = 1}^l V_i$. \end{enumerate} \subsection{Linear maps, isomorphism and the rank-nullity Theorem} \begin{flashcard} \begin{definition*}[Linear map] Let $V, W$ be vector spaces of $F$. A map $\alpha : V \to W$ is \emph{linear} if and only if: \[ \cloze{ \forall (\lambda_1, \lambda_2) \in F^2, \forall (v_1, v_2) \in V \times V } \] \[ \cloze{ \alpha(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2) } \] \end{definition*} \end{flashcard} \subsubsection*{Examples} \begin{enumerate}[(i)] \item Matrices are linear maps. \item $\alpha : \mathcal{C}([0, 1]) \to \mathcal{C}([0, 1])$ defined by \[ f \mapsto \alpha(f)(x) = \int_0^x f(t) \dd t \] is a linear map \item Fix $x \in [a, b]$. $\mathcal{C}([a, b]) \to \RR$ defined by $f \mapsto f(\lambda)$ is a linear map. \end{enumerate} \begin{remark*} Let $U, V, W$ be $F$ vector spaces. \begin{enumerate}[(i)] \item $\id_V : V \to V$ defined by $x \mapsto x$ is a linear map. \item If $\beta : U \to V$ and $\alpha : V \to W$ are linear, then $\alpha \circ \beta : U \to W$ is linear. (linearity is \emph{stable} by composition) \end{enumerate} \end{remark*} \begin{lemma*} Let $V, W$ be $F$ vector spaces, and $\mathcal{B}$ a basis of $V$. Let $\alpha_0 : \mathcal{B} \to W$ be any map, then there is a unique linear map $\alpha : V \to W$ extending $\alpha_0$ (a map such that $\forall v \in \mathcal{B}$, $\alpha(v) = \alpha_0(v)$). \end{lemma*} \begin{proof} For all $v \in V$, $v = \sum_{i = 1}^n \lambda_i v_i$. Denote $\mathcal{B} = (v_1, \dots, v_n)$. By linearity: $\alpha : V \to W$ linear, so \begin{align*} \alpha(v) &= \alpha \left( \sum_{i = 1}^n \lambda_i v_i \right) \\ &= \sum_{i = 1}^n \lambda_i \alpha(v_i) \\ &= \sum_{i = 1}^n \lambda_i \alpha_0(v_i) \end{align*} \end{proof} \begin{remark*} This is true in the infinite dimensional case as well (and the proof is the same). \end{remark*} \begin{itemize} \item Often, to define a linear map, we define its value on a basis and ``extend by linearity''. \item If $\alpha_1, \alpha_2 : V \to W$ are linear and agree on a basis of $V$, they are equal. \end{itemize} \begin{definition*}[Isomorphism] Let $V, W$ be vector spaces over $F$. A map \[ \alpha : V \to W \] is called an \emph{isomorphism} if and only if: \begin{enumerate}[(i)] \item $\alpha$ is linear; \item and $\alpha$ is bijective. \end{enumerate} If such an $\alpha$ exists, we write $V \simeq W$ ($V$ isomorphic to $W$). \end{definition*} \begin{remark*} If $\alpha : V \to W$ is an isomorphism then $\alpha^{-1} : W \to V$ is linear. Take $w_1 = \alpha(v_1)$, $w_2 = \alpha(v_2)$. Then \begin{align*} \alpha^{-1}(w_1 + w_2) &= \alpha^{-1}(\alpha(v_1) + \alpha(v_2)) \\ &= \alpha^{-1}(\alpha(v_1 + v_2)) \\ &= v_1 + v_2 \\ &= \alpha^{-1}(w_1) + \alpha^{-1}(w_2) \end{align*} Similarly, $\forall \lambda \in F$, $\forall v \in V$, \[ \alpha^{-1}(\lambda V) = \lambda \alpha^{-1}(v) \] \end{remark*} \begin{lemma*} $\simeq$ is an equivalence relation on the class of all vector spaces of $F$. \begin{enumerate}[(i)] \item $\id_V : V \to V$ is an isomorphism. \item $\alpha : V \to W$ isomorphism then $\alpha^{-1} : W \to V$ is an isomorphism. \item Let $\beta : U \to V$ and $\alpha : V \to W$ be isomorphisms. Then $\alpha \circ \beta$ is an isomorphism. \end{enumerate} \end{lemma*} \begin{theorem*} If $V$ is a vector space over $F$ of dimension $n$, then: \[ V \simeq F^n \] \end{theorem*} \begin{proof} Let $\mathcal{B} = (v_1, \dots, v_n)$ be a basis of $V$. Then $\alpha : V \to f^n$ defined by \[ v = \sum_{i = 1}^n \lambda_i v_i \mapsto \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \] is an isomorphism (exercise). \end{proof} \begin{remark*} Choosing a basis of $V$ is like choosing an isomorphism from $V$ to $F^n$. \end{remark*} \begin{theorem*} Let $V, W$ be vector spaces over $F$ with finite dimension. Then: \[ V \simeq W \iff \dim_F V = \dim_F W \] \end{theorem*} \begin{proof} \begin{enumerate}[(i)] \item[$\Leftarrow$] $\dim_F V = \dim_F W = n$ implies that $V \simeq F^n$, $W \simeq F^n$ so $V \simeq W$. \item[$\Rightarrow$] Let $\alpha : V \to W$ be an isomorphism. Let $\mathcal{B}$ be a basis of $V$. Then we claim that $\alpha(\mathcal{B})$ is a basis of $W$: \begin{itemize} \item $\alpha(\mathcal{B})$ spans $V$ follows from surjectivity of $\alpha$. \item $\alpha(\mathcal{B})$ free family follows from the injectivity of $\alpha$. \end{itemize} so $V$ and $W$ have the same size basis so $\dim_F V = \dim_F W$. \end{enumerate} \end{proof} \begin{definition*}[Kernel and Image of a linear map] Let $V, W$ be vector spaces over $F$. Let $\alpha : V \to W$ be a linear map. We define: \begin{enumerate}[(i)] \item $N(\alpha) = \Ker \alpha = \{v \in V : \alpha(v) = 0\}$ \item $\Image(\alpha) = \{w \in W : \exists v \in V, w = \alpha(v)\}$. \end{enumerate} \end{definition*} \begin{lemma*} $\Ker \alpha$ is a vector subspace of $V$, and $\Image \alpha$ is a vector subspace of $W$. \end{lemma*} \begin{proof} \begin{itemize} \item $\lambda_1, \lambda_2 \in F$, $v_1, v_2 \in \Ker \alpha$ implies \[ \alpha(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2) = 0 \] hence $\lambda_1 v_1 + \lambda_2 v_2 \in \Ker \alpha$. \item $\lambda_1, \lambda_2 \in F$, $w_1, w_2 \in \Image \alpha$. Let $w_1 = \alpha(v_1)$, $w_2 = \alpha(v_2)$. Then \[ \lambda_1 w_1 + \lambda_2 w_2 = \lambda_1 \alpha(v_1) + \lambda_2 \alpha(v_2) = \alpha(\lambda_1 v_1 + \lambda_2 v_2) \] hence $\lambda_1 w_1 + \lambda_2 w_2 \in \Image \alpha$ \end{itemize} \end{proof} \begin{example*} $\alpha : \mathcal{C}^\infty(\RR) \to \mathcal{C}^\infty(\RR)$, $f \mapsto \alpha(f) = f'' - f$. Then \begin{itemize} \item $\alpha$ is linear \item $\Ker \alpha = \{f \in \mathcal{C}^\infty(\RR) : f'' - f = 0\} = \Span_\RR \langle e^t, e^{-t} \rangle$ \item $\Image \alpha$? Exercise. \end{itemize} \end{example*} \begin{remark*} $\alpha : V \to W$ linear map. Then $\alpha$ injective is equivalent to $\Ker \alpha = \{0\}$. $\alpha(v_1) = \alpha(v_2) \iff \alpha(v_1 - v_2) = 0$. \end{remark*} \begin{theorem*} Let $V, W$ be vector spaces over $F$. Let $\alpha : V \to W$ be a linear map. Then \[ \ol{\alpha} : V / \Ker \alpha \to \Image \alpha \] \[ v + \Ker \alpha \mapsto \alpha(v) \] is an isomorphism. \end{theorem*} \begin{proof} This follows from linearity. \begin{itemize} \item $\ol{\alpha}$ is well defined: \begin{align*} v + \Ker \alpha = v' + \Ker \alpha \\ \implies v - v' &\in \Ker \alpha \\ \implies \alpha(v - v') &= 0 \\ \implies \alpha(v) &= \alpha(v') \end{align*} so $\ol{\alpha}$ is well-defined. \item $\ol{\alpha}$ linear follows from the linearity of $\alpha$. \item $\ol{\alpha}$ is a bijection: \begin{itemize} \item injectivity $\ol{\alpha}(v + \Ker \alpha) = 0$ implies that $\alpha(v) = 0$ hence $v \in \Ker \alpha$. So $v + \Ker \alpha = 0 + \Ker \alpha$. \item surjectivity: follows form the definition of the image: $w \in \Image \alpha$, $\exists v \in V$ such that $w = \alpha(v) = \ol{\alpha}(v)$. \end{itemize} \end{itemize} \end{proof}