% vim: tw=50 % 12/10/2022 11AM \begin{proof} Induction. Suppose that we have replaced $l$ ($\ge 0$) of the $w_i$. Reordering if necessary: \[ \langle v_1, \dots, v_l, w_{l + 1}, \dots, w_n \rangle = V \] If $m = l$ then we are done. So assume $l < m$. Then take $v_{l + 1} \in V$, and we must have \[ v_{l + 1} = \sum_{i \le l} a_i v_i + \sum_{i > l} \beta_i w_i \] Since the family $(v_1, \dots, v_{l + 1})$ is free, we must have that one of the $\beta_i$ is non zero. So up to reordering, $\beta_{l + 1} \neq 0$ \[ \implies w_{l + 1} = \frac{1}{\beta_{l + 1}} \left[ v_{l + 1} - \sum_{i \le l} \alpha_i v_i - \sum_{i > l + 1} \beta_i w_i \right] \] So \[ w_{l + 1} \in \langle v_1, \dots, v_{l + 1}, w_{l + 2}, \dots, w_n \rangle \] hence we have that \begin{align*} V &= \langle v_1, \dots, v_l, w_{l + 1}, \dots, w_n \rangle \\ &= \langle v_1, \dots, v_{l + 1}, w_{l + 2}, \dots, w_n \rangle \end{align*} so we can induct up on $l$. The base case $l = 0$ is trivial, so we deduce the last part of the lemma (which also trivially proves that $m \le n$). \end{proof} \subsection{Basis, dimension, direct sums} \begin{corollary*}[of Steinitz] Let $V$ be a finite dimensional vector space over $F$. Then any two basis of $V$ have the same number of vectors called the \emph{dimension} of $V$, denoted $\dim_F V$ ($\in \NN$). \end{corollary*} \begin{proof} $(v_1, \dots, v_n)$, $(w_1, \dots, w_m)$ basis of $V$ over $F$. Then since $(v_i)_{1 \le i \le n}$ free, $(w_i)_{1 \le i \le m}$ generating, by Steinitz exchange lemma, $n \le m$. Similarly $m \le n$, so $n = m$. \end{proof} \begin{corollary*} Let $V$ be a vector space over $F$ with dimension $n \in \NN$. \begin{enumerate}[(i)] \item any set of independent vectors has at \emph{most} $n$ elements, with equality if and only if it is a basis \item any spanning (generating) set of vectors has at \emph{least} $n$ elements with equality if and only if it is a basis. \end{enumerate} \end{corollary*} \begin{proof} Exercise. \end{proof} \begin{flashcard}[dim-U-plus-W-equals] \begin{proposition*} Let $U, W$ be subspaces of $V$. If $U$ and $W$ are finite dimensional, then so is $(U + W)$ and: \[ \dim (U + W) = \cloze{\dim U + \dim W - \dim (U \cap W)} \] \end{proposition*} \prompt{ \begin{proof} \cloze{ Pick $(v_1, \ldots, v_n)$ basis of $U \cap W$. Extend to bases \[ \langle v_1, \ldots, v_l, u_1, \ldots, u_m \rangle = U \] \[ \langle v_1, \ldots, v_l, w_1, \ldots, w_n \rangle = W \] Then check that $(v_1, \ldots, v_l, u_1, \ldots, u_m, w_1, \ldots, w_n)$ is a basis of $U + W$. (Check that it is a generating family and a free family). } \end{proof} } \end{flashcard} \begin{proof} Pick $(v_1, \dots, v_n)$ basis of $U \cap W$. Extend to bases: \[ \langle v_1, \dots, v_l, u_1, \dots, u_m \rangle = U \] \[ \langle v_1, \dots, v_l, w_1, \dots, w_n \rangle = W \] \begin{claim*} $(v_1, \dots, v_l, u_1, \dots, u_m, w_1, \dots, w_n)$ is a basis of $U + W$. \end{claim*} Proving it is a generating family is an exercise. Proving it is a free family: \[ \ub{\sum_{i = 1}^l \alpha_i v_i + \sum_{i = 1}^m \beta_i u_i}_{\in U} + \ub{\sum_{i = 1}^n \gamma_i w_i}_{\in W} = 0 \tag{$*$} \] \[ \implies \sum_{i = 1}^n \gamma_i w_i \in U \cap W \] \[ \implies \sum_{i = 1}^l S_i v_i = \sum_{i = 1}^n \gamma_i w_i \] \[ \stackrel{(*)}{\implies} \sum_{i = 1}^l (\alpha_i - S_i) v_i + \sum_{i = 1}^m \beta_i u_i = 0 \] \[ \stackrel{\text{$U$ basis}}{\implies} \beta_i = 0, \quad \alpha_i = S_i \] \[ \stackrel{(*)}{\implies} \sum_{i = 1}^l \alpha_i v_i + \sum_{i = 1}^n \gamma_i w_i = 0 \] \[ \stackrel{\text{$W$ basis}}{\implies} \alpha_i = \gamma_i = 0 \] so the set is free, so it's a basis. \end{proof} \begin{flashcard}[dimension-using-quotient] \begin{proposition*} Let $V$ be a finite dimensional vector space over $F$. Let $U \le V$. Then $U$ and $V / U$ are both finite dimensional and: \[ \dim V = \dim U + \dim (V / U) \] \end{proposition*} \begin{proof} \cloze{ Let $(u_1, \dots, u_l)$ be a basis of $U$. Complete it to a basis $(u_1, \dots, u_l, w_{l + 1}, \dots, w_n)$ of $V$.\prompt{ Then check that $(w_{l + 1} + U, \dots, w_n + U)$ is a basis of $V / U$.} \fcscrap{ \begin{claim*} $(w_{l + 1} + U, \dots, w_n + U)$ is a basis of $V / U$. \end{claim*} Exercise. } } \end{proof} \end{flashcard} \begin{remark*} $V$ vector space over $F$ with $U \le V$. We say that $U$ is \emph{proper} if $U \neq V$. $U$ proper implies $\dim U < \dim V$, since $V / U \neq \{\emptyset\}$. \end{remark*} \begin{definition*}[Direct sum] Let $V$ be a vector space, and $U, W \le V$. We say \[ V = U \oplus W \] We say ``$V$ is the \emph{direct} sum of $U$ and $W$'' if and only if any element $v \in V$ can be \emph{uniquely} decomposed: \[ v = u + w, \quad u \in U, ~ w \in W \] Equivalently, \[ V = U \oplus W \iff \forall v \in V, \exists ! (u, w) \in U \times W ~~ v = u + w \] \end{definition*} \begin{warning} If $V = U \oplus W$, we say that $W$ is \emph{a} complement of $U$ in $V$. There is no uniqueness of such a complement. \end{warning} \begin{example*} $V = \RR^2 = \langle (1, 0) \rangle \oplus \langle (0, 1) \rangle = \langle (1, 0) \rangle \oplus \langle (1, 1) \rangle$. \end{example*} \begin{notation*} We will in the sequel systematically use the following notation. Let two collections of vectors: \[ \mathcal{B}_1 = \{v_1, \dots, v_l\} \] \[ \mathcal{B}_2 = \{w_1, \dots, w_m\} \] then \[ \mathcal{B}_1 \cup \mathcal{B}_2 = \{u_1, \dots, u_l, w_l, \dots, w_m\} \] not a set, because we care about the order. (it is more like a list) With this notation: \[ \{u_1\} \cup \{u_1\} = \{u_1, u_1\} \] so the collection $\{u_1\} \cup \{u_1\}$ is never a free family. \end{notation*} \begin{flashcard}[direct-sum] \begin{lemma*} $U, W \le V$. Then the following are equivalent (TFAE): \begin{enumerate}[(i)] \item $V = U \oplus W$ \item \cloze{$V = U + W$ and $U \cap W = \{0\}$} \item \cloze{For any basis $\mathcal{B}_1$ of $U$, $\mathcal{B}_2$ of $W$, the union $\mathcal{B} = \mathcal{B}_1 + \mathcal{B}_2$ is a basis of $V$.} \end{enumerate} \end{lemma*} \end{flashcard} \begin{proof} \begin{enumerate}[(i)] \item[(ii) $\implies$ (i)] $V = U + W$ implies that $\forall v \in V$, there exists $(u, w) \in U \times W$ such that $v = u + w$. So it is generating. To show it is free, let $u_1 + w_1 = u_2 + w_2 = v$. Then \[ \ub{u_1 - u_2}_{\in U} = \ub{w_2 - w_1}_{\in W} \] \[ \implies u_1 - u_2, w_1 - w_2 \in U \cap W = \{0\} \] \[ \implies u_1 = u_2, ~ w_1 = w_2 \] \item[(i) $\implies$ (iii)] $\mathcal{B}_1$ basis of $U$, $\mathcal{B}_2$ basis of $W$. Let $\mathcal{B} = \mathcal{B}_1 + \mathcal{B}_2$. It is clearly a generating family of $U + W = V$ It is a free family because \[ \sum \lambda_i v_i = 0 \] must be decomposed as $0_U + 0_W$ since $V = U \oplus W$. So \[ \sum_{u_1 \in \mathcal{B}_1} \lambda_i u_i = 0 \] \[ \sum_{w_1 \in \mathcal{B}_2} \lambda_i w_i = 0 \] so $\lambda_i = 0$ for all $i$. \item[(iii) $\implies$ (ii)] We need to show \[ V = U + W, \quad U \cap W = \{0\} \] This is obvious. \end{enumerate} \end{proof}