% vim: tw=50 % 30/11/2022 11AM \subsection{Application to bilinear forms} Diagonalisation of self adjoint / unitary operators. \begin{theorem} Let $V$ be a finite dimensional inner product space (over $\RR$ or $\CC$). Let $\alpha \in \mathcal{L}(V)$ be \emph{self adjoint} ($\alpha = \alpha^*$). Then there exists an \emph{\textbf{orthonormal}} basis of $V$ made of \emph{\textbf{eigenvectors}} of $\alpha$. \end{theorem} \begin{theorem*} Let $V$ be a finite dimensional \emph{complex} inner product space. Let $\alpha \in \mathcal{L}(V)$ be unitary ($\alpha^* = \alpha^{-1}$). Then there exists an \emph{\textbf{orthonormal}} basis of $V$ made of \emph{\textbf{eigenvectors}} of $\alpha$. \end{theorem*} \noindent These theorems are so important we stated them twice! \begin{itemize} \item Translate these statements for bilinear forms. \end{itemize} \begin{corollary*} let $A \in \mathcal{M}_n(\RR)$ (respectively $\CC$) be a symmetric (respectively Hermitian) matrix. Then there is an orthogonal (respectively unitary) matrix such that $P^\top AP$ (respectively $P^\dag AP$) is diagonal with real valued entries. \end{corollary*} \begin{remark*} $P^\dag = \ol{P}^\top$ \end{remark*} \begin{proof} $F = \RR$ ($\CC$). Let $\langle , \rangle$ be the standard inner product over $\RR^n$. Then $A \in \mathcal{L}(F^n)$ is self adjoint, hence we can find an orthonormal (for the standard inner product) basis of $F^n$ such that $A$ is diagonal in this basis, say $(v_1, \dots, v_n)$. Let $P = (v_1 \mid \cdots \mid v_n)$ \begin{align*} (v_1, \dots, v_n) \text{ orthonormal basis} &\iff P \text{ orthogonal (unitary)} \\ &\iff P^\top P = \id (P^\dag P = \id) \end{align*} So $P^{-1} AP = P^\top AP = D$, and we know $\lambda_i$ are real, they are the eigenvalues of a symmetric operator. \end{proof} \begin{corollary*} Let $V$ be a finite dimensional real (complex) inner product space. Let $\varphi : V \times V \to F$ be a symmetric (Hermitian) bilinear form. Then there is an orthonormal basis of $V$ such that $\varphi$ in this basis is represented by a diagonal matrix. \end{corollary*} \begin{proof} Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be any orthonormal basis of $V$. Let $A = [\varphi]_{\mathcal{B}}$. Then since $\varphi$ is symmetric (Hermitian), $A^\top = A$ ($^\dag = A$), hence there is an orthogonal (unitary) matrix $P$ such that $P^\top AP$ ($P^\dag AP$) is diagonal, say $D$. Let $v_i$ be the $i$-th row of $P^\top$ ($P^\dag$), then $\{v_1, \dots, v_n\}$ is an orthonormal basis say $\mathcal{B}'$ of $V$ and $[\varphi]_{\mathcal{B}'} = D$. (We are using the change of basis for bilinear forms). \end{proof} \begin{remark*} Diagonal entries of $P^\top AP$ ($P^\dag AP$) are exactly the eigenvalues of $A$. Moreover: \[ \Delta(\varphi) = \text{\#(positive eigenvalues of $A$)} - \text{\#(negative eigenvalues of $A$)} \] (recall $\Delta$ is the signature of a bilinear form) \end{remark*} \noindent Important corollary \begin{flashcard}[simultaneous-diagonalisation-of-hermitian-forms] \begin{corollary*}[Simultaneous diagonalisation of Hermitian forms] \cloze{ Let $V$ be a finite dimensional real (complex) vector space. Let: \[ \varphi, \psi : V \times V \to F \] $\varphi, \psi$ are bilinear symmetric (Hermitian) forms. And suppose $\varphi$ is positive definite. Then there exists $(v_1, \dots, v_n)$ basis of $V$ with respect to which \emph{both} bilinear forms are represented by a diagonal matrix. } \end{corollary*} \end{flashcard} \begin{proof} $\varphi$ is positive definite so $\varphi$ induces a scalar product on $V$, $V$ equipped with $\varphi$ is a finite dimensional inner product space: \[ \langle u, v \rangle = \varphi(u, v) \] Hence there exists an \emph{orthonormal} (for the $\varphi$ induced scalar product) basis of $V$ in which $\psi$ is represented by a diagonal matrix. Observe that $\varphi$ in this basis is represented by the Identity matrix (because the basis orthonormal for $\varphi$: $\mathcal{B} = (v_1, \dots, v_n)$, $\langle v_i, v_j \rangle = \delta_{ij} = \varphi(v_i, v_j)$) So both matrices of $\varphi$ and $\psi$ in $\mathcal{B}$ are diagonal. \end{proof} \begin{corollary*}[Matrix reformulation of simultaneous diagonalisation] Let $A, B \in \mathcal{M}_n(\RR)$ (respectively $\mathcal{M}_n(\CC)$), both symmetric (respectively Hermitian). Assume $\forall x \neq 0$, $\ol{x}^\top Ax > 0$. Then there exists $Q \in \mathcal{M}_n(\RR)$ (respectively $\mathcal{M}_n(\CC)$) invertible such that \emph{both} $Q^\top AQ$ (respectively $Q^\dag AQ$) and $Q^\top BQ$ (respectively $Q^\dag BQ$) are diagonal. \end{corollary*} \begin{proof} Direct consequence of the simultaneous diagonalisation Theorem. \end{proof}